
This is the accepted manuscript of:

Benefits in relaxing the power capping constraint

Cesarini, Daniele; Bartolini, Andrea; Benini, Luca

Source: ACM International Conference Proceeding Series, v Part F132205, September 9, 2017, 1st
Workshop on AutotuniNg and aDaptivity AppRoaches for Energy efficient HPC Systems, ANDARE
2017 - A Workshop part of PACT 2017

©ACM 2017. This version of the work is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in https://doi.org/10.1145/3152821.3152878

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Alma Mater Studiorum Università di Bologna

https://core.ac.uk/display/226722483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3152821.3152878

Benefits in Relaxing the Power Capping Constraint
Daniele Cesarini

DEI, University of Bologna
Bologna, Italy

daniele.cesarini@unibo.it

Andrea Bartolini
DEI, University of Bologna

Bologna, Italy
a.bartolini@unibo.it

Luca Benini
IIS, Swiss Federal Institute of

Technology
Zürich, Switzerland
lbenini@iis.ee.ethz.ch

ABSTRACT
In this manuscript we evaluate the impact of HW power capping
mechanisms on a real scientific application composed by parallel
execution. By comparing HW capping mechanism against static fre-
quency allocation schemes we show that a speed up can be achieved
if the power constraint is enforced in average, during the applica-
tion run, instead of on short time periods. RAPL, which enforces
the power constraint on a few ms time scale, fails on sharing power
budget between more demanding and less demanding application
phases.

KEYWORDS
power capping, DVFS, HPC, RAPL, monitoring, P-states, power
management, hardware performance counters
ACM Reference Format:
Daniele Cesarini, Andrea Bartolini, and Luca Benini. 2017. Benefits in Re-
laxing the Power Capping Constraint. In ANDARE ’17: 1st Workshop on
AutotuniNg and aDaptivity AppRoaches for Energy efficient HPC Systems,
September 9, 2017, Portland, OR, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3152821.3152878

1 INTRODUCTION
The pace dictated by the Moore’s law on technological scaling
has provided a constant increase in the performance of computing
devices. However with the breakdown of Dennard scaling, this has
come with an increase in the power consumption.

Supercomputers are the cutting edge of computing performance.
Supercomputers integrate hundred thousand of the most powerful
processors and accelerators and they are periodically ranked based
on their peak performance [1]. Until June 2016, every new most
powerful supercomputer in the world (1st in the Top500 list) has
marked an increase in its power consumption. Reaching in 2013,
with Tianhe-2, 17.8 MWatts of IT peak power consumption, which
increases to 24MWatt when considering also the cooling power
[8]. This has set the record for the power consumption of a single
supercomputer installation, reaching the practical limit in power
provisioning which is 20MWatt [3]. The today’s most powerful
supercomputer (Taihulight) consumes 15.4 MWatt underlining the
fact that performance increase is nowadays possible only at a fix
power budget: as a matter of fact supercomputers are power limited!

To ensure this power budget during design time, it requires
considering the worst-case power consumption of the computing
resources. However, supercomputer workloads rarely cause worst-
case power consumption during their life making worst-case design
approaches a bad choice which decreases the average supercom-
puting performance.

Power capping approaches support the design for "the average
power consumption case" by packing more computing capacity,
with a feasible power budget under average workload and dynami-
cally reducing the performance during the execution of workloads
with peak power consumption.

At the basis of these approaches there is the capability of com-
puting elements to trade off performance with power consumption.
Dynamic and Voltage Frequency states (DVFS) (ACPI P-states [13])
allow the reduction of the power consumption during active com-
putation. Dynamic power management policies take advantage of
these HW states to create feedback loops adapting the performance
to workload phases aiming to reduce the energy consumption or
ensure a specific power and thermal budget. Pure software imple-
mentations of these policies have clear software advantages but
need to be executed on the same computational resources, inter-
rupting the application flow and causing overheads.

Recently vendors have added HW components to implement in
HW these policies allowing a more fine-grain control. Intel Running
Average Power Limits (RAPL) technology can enforce in hardware
a given power limit. This is done exploiting power sensors and
power management knobs. Current RAPL implementations aim to
enforce a constant power consumption within a ten-milliseconds
time window. However this is far below the timescale of super-
computing centres where the power budget must be respected in
large time windows coming from the power grid and supplier [6, 7].
Differently, RAPL enforces the power cap for every application
phase without taking into account the real power efficiency of
these phases.

In this exploration work, we compare RAPL mechanism against
fixed frequency assignment (which causes the same power con-
sumption as the one of the RAPL case, but in average for the entire
application run).

In detail, we analyze the efficacy (measured as application time-
to-solution) of power capping to maintain the same power budget
using (i) RAPL controller and (ii) a simple fixed frequency allocation
that statically assigns core’s frequencies for the entire application
time. In the first case RAPL imposes the power constraint every ten
milliseconds modulating the operating point (i.e. clock frequency)
to workload changes with a similar time granularity. The second set-
up on the contrary, uses fixed frequency for the entire application
time chosen to obtain in average for the entire duration of the
application the same power consumption as RAPL.

The paper is organized as follows. Section 2, presents related
works, Section 3 characterizes HPC architectures and their power
manager used to power constraint the system. Section 4 defines
our architecture and application targets presenting the monitoring
infrastructure. While section 5 shows the methodology used for
the exploration and our experimental results.

2 RELATEDWORK
Several approaches in the literature have proposed mechanisms
to constrain the power consumption of large-scale computing in-
frastructures. These can be classified into two main families. Ap-
proaches in the first class use predictive models to estimate the
power consumed by a job before its execution. At job scheduling
time, this information is used to allow into the system jobs that

https://doi.org/10.1145/3152821.3152878
https://doi.org/10.1145/3152821.3152878

D. Cesarini et Al.

satisfy the total power consumption budget. Hardware power cap-
ping mechanisms like RAPL are used to ensure that the predicted
budget is respected during all the application phases and to tolerate
prediction errors in the job average power consumption estimation
[4, 5, 19]. Approaches in the second class distribute a slice of the
total system power budget to each active computing element. The
per-compute element power budget is ensured to hardware power
capping mechanisms like RAPL. The allocation of the power con-
sumption budget to each compute node can be done statically or
dynamically [9, 10, 14, 18]. It is the goal of the run-time to trade off
power reduction with application performance loss. The GEOPM
[9] runtime developed by Intel is an open source, plugin extensi-
ble runtime for power management. GEOPM implement a plugin
for power balancing to improve performance in power constraint
systems reallocating power on sockets involved in the critical path
of the application. Authors in [20] quantitatively evaluated RAPL
as a control system in term of stability, accuracy, settling time,
overshoot, and efficiency. In this work, authors evaluate only the
proprieties of RAPL mechanism without considering other power
capping strategies and how can vary application workload.

3 HPC ARCHITECTURES AND POWER
MANAGEMENT SYSTEMS

3.1 HPC Architectures
HPC systems are composed of tens to thousands computational
nodes interconnected with a low-latency high-bandwidth network.
Nodes are usually organized in sub-clusters allocated at execution
time from the system scheduler according to the user request. Sub-
clusters have a limited lifetime, after which resources are released
to the system scheduler. Users request resources through a batch
queue system, where they submit applications to be executed. Even
a single node can be split in multiple resources shared among users.
The single indivisible units in a HPC machine are CPUs, memory
and possibly accelerators (GPGPU, FPGA, Many-core accelerator,
etc.).

HPC applications typically use the Single ProgramMultiple Data
(SPMD) execution model, where the same application executable
is instanced multiple time on different nodes of the cluster; each
instance works on a partition of the global workload and communi-
cates with other instances to orchestrate subsequent computational
steps. For this reason, a HPC application can be seen as the com-
position of several tasks executed in a distributed environment
which exchanges messages among all the instances. Achieving
high-performance communication on distributed applications in
large clusters is not an easy task. The Message-Passing Interface
(MPI) runtime responds to these demands by abstracting the level
of network infrastructure using a simple but high-performance
interface for communication that can scale up on thousands of
nodes.

HPC machines are extreme energy consumers and server rooms
require a proportioned cooling system to avoid overheating situ-
ations. The extreme working conditions of this kind of machines
bring a lot of inefficiencies in terms of energy and thermal control,
that turn in computational performance degradation. Hardware
power managers are becoming a fundamental component to control
power utilization using different strategies in order to reduce energy
waste and, at the same time, assure a safe thermal environment.

3.2 Power Management in HPC Systems
Nowadays, operating systems can communicate with different hard-
ware power managers through an open standard interface called
Advanced Configuration and Power Interface (ACPI) [13]. In this
work, we focus on ACPI implementation of Intel architecture, since
most HPC machines (more than 86% in [1]) are based on Intel CPUs.

Intel implements the ACPI specification defining different compo-
nent states which a CPU can use to reduce power consumption.
Today’s CPU architectures are composed of multiple processing
elements (PE) which communicate through a network subsystem
that interconnect PEs, Last Level Cache (LLC), Integrated Memory
Controllers (IMC) and other uncore components. Intel architecture
optimizes ACPI using different power saving levels for cores and
uncore components. The ACPI standard defines P-states to select
DVFS operating points targeting the reduction of active power,
while also defines specific idle states to manage power consump-
tion during inactivity time of the CPU. In our work, we consider
only P-states to manage DVFS control knob, this because HPC
applications do not manifest idle time during the execution.

P
o

w
e

r
(W

)

Core Voltage (V)

1.2 GHz

2.4 GHz

1.8 GHz

1.5 GHz

2.1 GHz
P-state 0

P-state 1

P-state 2

P-state 3
P-state n

Figure 1: DVFS levels and Intel P-states

Intel P-States show in figure 1, defining a number of levels which
are numbered from 0 to n where n is the lowest frequency and 0
is the highest frequency with the possibility to take advantage of
Turbo Boost technology. Turbo Boost is an Intel technology that
enables processors to increase their frequency beyond the nominal
via dynamic control of clock rate. The maximum turbo frequency is
limited by the power consumption, thermal limits and the number
of cores that are currently using turbo frequency. Since Haswell,
Intel cores allow independent per-core P-state.

3.2.1 Linux Power Management Driver. Intel P-states are man-
aged by a power governor implemented as a Linux kernel driver. By
default on Linux system, Intel architectures are managed by a ker-
nel module called intel_pstate developed by Intel. But intel_pstate
driver does not support a governor that allows users to select per-
core fixed frequency. Differently, the standard power management
driver of Linux acpi-cpufreq does it. acpi-cpufreq is similar to In-
tel driver but implement a large set of governors. The available
governors are:

(1) powersave: this governor runs the CPU always at the mini-
mum frequency.

(2) performance: runs the CPU always at the maximum fre-
quency.

(3) userspace: runs the CPU at user specified frequencies.
(4) ondemand: scales the frequency dynamically according to

current load [17].
(5) conservative: similar to ondemand but scales the frequency

more gradually.
In our work we use acpi-cpufreq driver with userspace governor

that allows us to select per-core fixed frequency.

Benefits in Relaxing the Power Capping Constraint

Core

0

Core

1

Core

3

Core

4

Core

2

Core

5

Uncore GPU

DRAM

Package Power Plane

PP0/CORE Power Plane

Dram Power Plane

PP1/Graphic Power Plane

PACKAGE

Figure 2: Intel RAPL design with the identification of power
domains

3.3 Hardware Power Controller
Today’s CPU architectures implement reactive hardware controller
to maintain the processor always under an assigned power budget.
The hardware controller tries to maximize the overall performance
while constraining the power consumption and maintaining a safe
silicon temperature. Intel architectures implement in its CPU a hard-
ware power controller called Running Average Power Limit (RAPL)
depicted in figure 2. RAPL is a control system, which receives as
input a power limit and a time window. As consequent, RAPL con-
tinuously tunes the P-states to ensure that the limit is respected
in the specified time window. RAPL can scale down and up core’s
frequencies when the power constraint is not respected overriding
the selected P-states. RAPL power budget and time window can be
configured writing a Machine Specific Register (MSR) on the CPU.
Maximum and minimal values for both power budget and time
window are specified in a read-only architectural register. Values
for both power and time used in RAPL are represented as multiple
of a reference unit contained in a specific architectural register. At
the machine startup, RAPL is configured using Thermal Design
Power (TDP) as power budget with a 10ms time window. RAPL
also provides 32bit performance counters for each power domain
to monitor the energy consumption and the total throttled time.
RAPL implements four power domains which can be independently
configured:

(1) Package Domain: this power domain limits the power con-
sumption for the entire package of the CPU, this includes
cores and uncore components.

(2) DRAM Domain: this power domain is used to power cap the
DRAM memory. It is available only for server architectures.

(3) PP0/Core Domain: is used to restrict the power limit only to
the cores of the CPU.

(4) PP1/Graphic Domain: is used to power limit only the graphic
component of the CPU. It is available only for client archi-
tectures due Intel server architectures do not implement
graphic component into the package.

In the experimental result section, we focus our exploration on
the package domain of RAPL controller because core and graphic
domains are not available on our Intel architecture. DRAM domain
is left for future exploration works. We also tried to modify the
time windows of package domain (which can be set in a range of
1ms to 46ms in our target system) to see its impact on application
performance. Our results show that this parameter does not lead
to noticeable changes in the results obtained. For this reason, we
report results only for the default 10ms time window configuration.

4 BENCHMARKING SCENARIO
4.1 Architecture Target
In this work, we take as architecture target a high-performance
computing infrastructure, which is a Tier-1 HPC system based on
an IBM NeXtScale cluster. Each node of the system is equipped
with 2 Intel Haswell E5-2630 v3 CPUs, with 8 cores with 2.4 GHz
nominal clock speed and 85W Thermal Design Power (TDP, [12]).
As regards the software infrastructure, SMP CentOS Linux distribu-
tion version 7.0 with kernel 3.10, runs on each node of the system.
We use the complete software stack of Intel systems for HPC pro-
duction environment. In particular, we use Intel MPI Library 5.1
as the runtime for communication and Intel ICC/IFORT 16.0 in our
toolchain. This Tier-1 supercomputer is currently classified in the
Top500 supercomputer list [1]. We focus our analysis on a single
node of the cluster.

4.2 Application Target
Quantum ESPRESSO (QE) [11] is an integrated suite of computer
codes for electronic-structure calculations and materials modelling
at the nanoscale. It is an open source package for research in mole-
cule dynamics simulations and it is freely available to researchers
around the world under the terms of the GNU General Public Li-
cense. Quantum ESPRESSO is commonly used in high-end super-
computers. QE main computational kernels include dense parallel
Linear Algebra (LA) and 3D parallel Fast Fourier Transform (FFT).
Moreover, most of application workload is based on LA and FFT
mathematical kernels which makes our exploration work relevant
for many HPC codes. In our tests, we use a Car-Parrinello (CP)
simulation, which prepares an initial configuration of a thermally
disordered crystal of chemical element by randomly displacing
the atoms from their ideal crystalline positions. This simulation
consists of a number of tests that must be executed in the correct
order.

4.3 Monitoring Framework
In this section, we describe in detail the monitoring framework
used to profile the application and the system. Our monitoring
framework is composed to two monitoring tools. The first one can
monitor several hardware performance counters with a regular
time stamping. The second monitoring framework is synchronized
with parallel phases allowing to isolate performance and architec-
tural metrics for each program phase. However due to the higher
number of monitoring points per time unit, it can access to only
on a sub-set of performance counters of the one monitored by sys-
tem monitoring tool. Our monitoring frameworks have a minimal
overhead, less than 1% w.r.t. application execution time.

4.3.1 System-aware Monitoring Tool. We use as system-aware
monitoring tool Examon [2]. This monitoring tool can be used to
read periodically per-core frequency, CPI and scalar/vector instruc-
tions retired. In addition, it can monitor for each socket the DRAM
memory bandwidth and package power consumption using RAPL
performance counters. This monitor is a simple daemon process
that can access to the performance counters of the CPU using MSR
read/write operations. The daemon starts at a given Tsamp rate, in
our benchmarks we use a Tsamp of 1 second.

4.3.2 Application-aware Monitoring Runtime. We developed a
monitor runtime to extract system information synchronously with
the application flow. The runtime is a simple wrapper of the MPI li-
brary where every MPI function of each process has been enclosed
by an epilogue and a prologue function. We used the MPI stan-
dard profiling interface (PMPI), which allow us to intercept all the
MPI library functions without modify the application source code.
The runtime is integrated in the application at linked time. Hence,

D. Cesarini et Al.

P0

Pn

APP MPI Synchronization
Time

Figure 3: Phases of computation and communication identi-
fied by application-aware Monitoring Runtime

Application-aware Monitoring Runtime is able to extract informa-
tion distinguishing application and MPI phases as shows in figure
3. The monitor runtime uses RDPMC and RDTSC assembly instruc-
tions to access respectively the Time Stamp Counter (TSC) and Intel
Performance Monitoring Unit (PMU) counters with an overhead
of few hundreds of cycles for each counter access. PMU counters
are programmable through standard MSR operations which require
administrative permissions and are costly in terms of access over-
head. However, the counter value can be read using the RDPMC
instruction directly from user space without involving syscalls. We
programmed per-core PMU registers to monitor frequency, CPI,
and scalar/vector instructions retired. The monitor runtime can
intercept a very high number of MPI calls of the application, for this
reason is not possible to use MSR operations to access low level per-
formance counters through syscalls, which cause high-performance
penalty.

5 EXPERIMENTAL RESULTS
5.1 Methodology
We run QE-CP with a configuration of 16 MPI processes with a one-
to-one bind to each core of our HPC node. We start by comparing
different configurations of power capping in our test environment.
Initially, we split the power budget in an equal manner on both
sockets, we set RAPL to maintain 48W on each socket, for a global
power envelope of 96W. This test shows that the core’s frequencies
on different sockets are heterogeneous, suggesting that the two
sockets have different inherent power efficiency. To have the same
frequency among all the cores, the tested computing node needs
of 11.31% higher power on socket 0. As consequence of this result,
we run a set of benchmarks using the OS power manager to fix
the same frequency for all the cores while monitoring the power
consumption of each socket during an application run. We use
these per-socket power budgets as power constraints to obtain the
same frequency among all the cores. We execute again the tests
using RAPL to impose these per-socket power caps and leave RAPL
decides the actual frequency.

Table 1 shows the results of our set of experiments using different
levels of power caps. In the first column, there are reported the
target frequencies used to extract the power limits specified in the
second column. Second and third columns show the sum of power
consumption of both sockets using Fixed Frequency (FF) allocation
and RAPL mechanisms for power capping. We can see that the
power consumption is the same, so the power cap is respected and
the tests are comparable. In the frequency columns are reported the
average frequencies for the entire application and among all the
cores. These columns show that RAPL has an average frequency

of 11.14% higher than FF but, if we take a look at the execution
time (reported in next columns), FF has a lower execution time,
in average 2.87% faster than RAPL. In the next sections, we will
explore why FF has a lower execution time respect to RAPL which,
in contrast, has a higher average frequency.

5.2 System Analysis
Figure 4 shows a time window of the system-aware monitoring tool
for both power capping mechanisms while QE-CP iterates on the
same computational kernel. The test reports the case of a power
constraint relative to 1.5 GHz for FF and RAPL. So, the results are
comparable directly.

First, we can check the correct behavior of power capping logic
by looking at the core’s frequencies and package power consump-
tion (first two top plots). In the FF plot on the left part of figure
4, core’s frequencies are fixed at 1.5 GHz while package power
consumption floats around the average value as effect of the differ-
ent application phases. In contrast, RAPL (on the right) maintains
constant the power consumption for both sockets while core’s fre-
quencies changes following the current application phase. Table 1
reports a similar average power consumption for both cases, thus
the power cappers are working as expected. Both benchmarks show
a lower CPI when the memory bandwidth is low and SIMD instruc-
tions retired are high. In these phases, RAPL has lower frequency
than the FF case as effect of the higher power demand of SIMD
instructions. On the other hand, RAPL assigns higher frequencies
than FF when CPI is high and this happens when the application is
moving data from/to memory as proved by the high memory traf-
fic/bandwidth reported by the Mem Ch[GB/s] plot. In these phases,
the number of SIMD instructions retired are lower and, as already
pointed out and shown in the RAPL plot, the core’s frequencies
selected by RAPL increases above average due the higher available
power budget. However, increasing core’s frequencies when the
application is memory bound does not reflect in a consequent per-
formance gain due the higher CPI and sub-linear dependency of
application speed-up with frequency in these phases.

Hence, FF is more efficient of RAPL (shorter execution time) for
two reasons: i) FF executes with higher instruction per seconds
when application has high SIMD instructions density. ii) RAPL
instead reduces the core’s frequency in the same phase to avoid
excessive power consumption. On the contrary, RAPL increases
the frequency during memory bound phases obtaining a similar
average power as the FF case.

5.3 Application Analysis
In this section, we take a look what happen in the system through
the application-aware monitoring runtime. This runtime is able
to recognize application phases marked by global synchronization
points as depicted in figure 4. In the figures 5, 6, and 7 are reported
the average values of performance counters of RAPL gathered into
frequency operational intervals. In figure 5 is depicted the amount
of time for computation (APP) and for communication (MPI) phases.
Figure 6 shows the time gain for the FF respect to RAPL distributed
on different frequency operational intervals. Negative values mean
seconds of application time saved by FF w.r.t. RAPL. Figure 7 shows
the values for CPI and SIMD instructions retired for the same phases
that RAPL executes at a given frequency.

To explain the behavior that characterizes FF and RAPL, we need
to look at all the three plots together. Starting from figure 6, we can
recognize that in the frequency intervals 1.3 to 1.5 GHz and 1.7 to
1.9 GHz, FF obtains its highest speed up. The first gaining interval
is justified by the high number of SIMD instructions retired and
by the lower CPI with respect to other application phases. Indeed

Benefits in Relaxing the Power Capping Constraint

Table 1: Quantum ESPRESSO - Power Capping

Power Frequency Execution Time
FF RAPL FF RAPL FF vs RAPL FF RAPL FF vs RAPL

1.5 GHz 95.56W 94.81W 1499MHz 1766MHz −15.11% 311.43sec 328.16sec 5.10%
1.8 GHz 111.86W 110.63W 1797MHz 2144MHz −16.22% 274.11sec 274.42sec 0.11%
2.1 GHz 122.87W 120.71W 2094MHz 2323MHz −9.86% 247.60sec 254.59sec 2.75%
2.4 GHz 134.44W 131.32W 2392MHz 2476MHz −3.37% 231.19sec 239.65sec 3.53%

Fixed Frequency

Figure 4: Time window of 50 seconds of the system monitor, every value is averaged over 1-second-interval window

from figure 7, we can notice that most of the SIMD instructions are
executed with these lower frequencies by RAPL.

In the interval 1.7 to 1.9 GHz, the CPI is higher and the SIMD
instructions retired are not negligible. From figure 5, we can recog-
nize that most the application time is spent in this frequency range
with a lower SIMD instructions density respect to the 1.3 to 1.5
GHz interval. Hence, high CPI, low density of SIMD instructions
and high frequency suggest memory bound phases as shown by
previous section. Interesting these phases run at higher frequency
than the FF but leads to a performance penalty. This suggests side
effects of high frequency in terms of memory contentions.

In the interval 2.0 to 2.1 GHz, RAPL has a performance gain with
respect to FF. This behavior is explained by the CPI and the number
of SIMD instructions retired during this phase. In this interval, RAPL
has a low CPI and does not perform SIMD instructions, so this phase
scales its execution with the frequency. RAPL can dynamically
manages the available power budget made available by the low
SIMD instructions and can increases the frequency. This leads to a
consequent performance increment.

In the turbo frequency interval, RAPL performs better than FF
as it is a MPI reduction phase where only the root process is active.
During the reduction, all the processes except the root MPI remain
in a barrier to wait the termination of the root. This is explained
by the high MPI runtime time (figure 5) presents at this frequency
interval. Hence, RAPL can use the power budget released by the
processes in barriers to speed up the root process leading to a
performance gain.

6 CONCLUSION
In this paper, we presented a novel exploration work on power
capping mechanisms for power constrained HPC nodes. Differ-
ently from state-of-the-art explorations, we focused our analysis on
power capping strategies used in real HPC system nodes. In details,
we explored the characteristics of Intel RAPL and a fixed frequency
allocation during the execution of a real scientific HPC application
which is performance constrained by the power budget assigned to
the node.

Our exploration explains why RAPL mechanism has an average
performance penalty of 2.87% (up to 5.10%) w.r.t. the fixed frequency
case, even if RAPL shows a higher average frequency for the entire
application time. This proved that dynamicallymanage the available
power budget without be aware of the application phases is not
always beneficial from performance point of view. Furthermore,
RAPL mechanism always increases the core’s frequencies during
less demanding phases to fill in the available power budget, leading
to unnecessary power consumption in memory bound phases that
can cause interference and as consequence performance loss.

In future works we will leverage these considerations to design a
software power capping mechanisms which enforces a power cap in
average on a user defined time-period. This will complement today
RAPL mechanisms allowing power shifting in between application
phases. For this purpose we plan to extend previously presented ap-
proaches, which combine speculative power management on short-
time periods (O.S. ticks) with the ability of maintaining average
power management goals on longer periods (aging periods)[15, 16].

D. Cesarini et Al.

1.2
 - 1

.3
GHz

1.3
 - 1

.4
GHz

1.4
 - 1

.5
GHz

1.5
 - 1

.6
GHz

1.6
 - 1

.7
GHz

1.7
 - 1

.8
GHz

1.8
 - 1

.9
GHz

1.9
 - 2

.0
GHz

2.0
 - 2

.1
GHz

2.1
 - 2

.2
GHz

2.2
 - 2

.3
GHz

2.3
 - 2

.4
GHz

Tu
rbo

0

20

40

60

80

100

120

140

160

Ti
m

e
(s

ec
)

APP
MPI

Figure 5: Sum of MPI and application time gathered at fre-
quency operational intervals

1.2
 - 1

.3
GHz

1.3
 - 1

.4
GHz

1.4
 - 1

.5
GHz

1.5
 - 1

.6
GHz

1.6
 - 1

.7
GHz

1.7
 - 1

.8
GHz

1.8
 - 1

.9
GHz

1.9
 - 2

.0
GHz

2.0
 - 2

.1
GHz

2.1
 - 2

.2
GHz

2.2
 - 2

.3
GHz

2.3
 - 2

.4
GHz

Tu
rbo

−10

−8

−6

−4

−2

0

2

4

Ti
m

e
Ga

in
 (s

ec
)

Figure 6: Time gain of FFP w.r.t RAPL gathered at frequency
operational intervals

ACKNOWLEDGMENTS
Work supported by the EU FETHPC project ANTAREX (g.a. 671623),
EU project ExaNoDe (g.a. 671578), and EU ERC Project MULTI-
THERMAN (g.a. 291125).

REFERENCES
[1] 2017. TOP500.Org. Top 500 Supercomputer Sites. http://www.top500.org. (2017).
[2] Francesco Beneventi, Andrea Bartolini, Carlo Cavazzoni, and Luca Benini. 2017.

Continuous learning of HPC infrastructure models using big data analytics and in-
memory processing tools. In 2017 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 1038–1043.

[3] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. 2008.
Exascale computing study: Technology challenges in achieving exascale systems.
Defense Advanced Research Projects Agency Information Processing Techniques
Office (DARPA IPTO), Tech. Rep 15 (2008).

[4] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and Luca
Benini. 2016. Predictive Modeling for Job Power Consumption in HPC Systems.
In International Conference on High Performance Computing. Springer, 181–199.

[5] Andrea Borghesi, Christian Conficoni, Michele Lombardi, and Andrea Bartolini.
2015. MS3: a Mediterranean-Stile Job Scheduler for Supercomputers-do less

1.2
 - 1

.3
GHz

1.3
 - 1

.4
GHz

1.4
 - 1

.5
GHz

1.5
 - 1

.6
GHz

1.6
 - 1

.7
GHz

1.7
 - 1

.8
GHz

1.8
 - 1

.9
GHz

1.9
 - 2

.0
GHz

2.0
 - 2

.1
GHz

2.1
 - 2

.2
GHz

2.2
 - 2

.3
GHz

2.3
 - 2

.4
GHz

Tu
rbo

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CP
I

CPI
SIMD instr

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SI
M

D
in

st
r

1e11

Figure 7: Average CPI and number of AVX instructions re-
tired gathered at frequency operational intervals

when it’s too hot!. In High Performance Computing & Simulation (HPCS), 2015
International Conference on. IEEE, 88–95.

[6] Hao Chen, Michael C Caramanis, and Ayse K Coskun. 2014. The data center as a
grid load stabilizer. In Design Automation Conference (ASP-DAC), 2014 19th Asia
and South Pacific. IEEE, 105–112.

[7] Hao Chen, Michael C Caramanis, and Ayse K Coskun. 2014. Reducing the data
center electricity costs through participation in smart grid programs. In Green
Computing Conference (IGCC), 2014 International. IEEE, 1–10.

[8] Jack Dongarra. 2013. Visit to the national university for defense technology
changsha, china. Oak Ridge National Laboratory, Tech. Rep., June (2013).

[9] Jonathan Eastep, Steve Sylvester, Christopher Cantalupo, Federico Ardanaz, Brad
Geltz, Asma Al-Rawi, Fuat Keceli, and Kelly Livingston. 2016. Global extensible
open power manager: a vehicle for HPC community collaboration toward co-
designed energy management solutions. Supercomputing PMBS (2016).

[10] Neha Gholkar, Frank Mueller, and Barry Rountree. 2016. Power tuning HPC jobs
on power-constrained systems. In Proceedings of the 2016 International Conference
on Parallel Architectures and Compilation. ACM, 179–191.

[11] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car,
Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila
Dabo, et al. 2009. QUANTUM ESPRESSO: a modular and open-source software
project for quantum simulations of materials. Journal of physics: Condensed
matter 21, 39 (2009), 395502.

[12] Per Hammarlund, Rajesh Kumar, Randy B Osborne, Ravi Rajwar, Ronak Singhal,
Reynold D’Sa, Robert Chappell, Shiv Kaushik, Srinivas Chennupaty, Stephan
Jourdan, et al. 2014. Haswell: The fourth-generation intel core processor. IEEE
Micro 34, 2 (2014), 6–20.

[13] Emma Jane Hogbin. 2015. ACPI: Advanced Configuration and Power Interface.
(2015).

[14] Aniruddha Marathe, Peter E Bailey, David K Lowenthal, Barry Rountree, Martin
Schulz, and Bronis R de Supinski. 2015. A run-time system for power-constrained
HPC applications. In International Conference on High Performance Computing.
Springer, 394–408.

[15] Pietro Mercati, Andrea Bartolini, Francesco Paterna, Tajana Simunic Rosing,
and Luca Benini. 2014. A linux-governor based dynamic reliability manager for
android mobile devices. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2014. IEEE, 1–4.

[16] Pietro Mercati, Francesco Paterna, Andrea Bartolini, Luca Benini, and Ta-
jana Šimunić Rosing. 2017. WARM: Workload-Aware Reliability Management
in Linux/Android. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 36, 9 (2017), 1557–1570.

[17] Venkatesh Pallipadi and Alexey Starikovskiy. 2006. The ondemand governor. In
Proceedings of the Linux Symposium, Vol. 2. sn, 215–230.

[18] Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kale. 2014. Max-
imizing throughput of overprovisioned hpc data centers under a strict power
budget. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE Press, 807–818.

[19] Alina Sîrbu and Ozalp Babaoglu. 2016. Predicting system-level power for a
hybrid supercomputer. In High Performance Computing & Simulation (HPCS),
2016 International Conference on. IEEE, 826–833.

[20] Huazhe Zhang and H Hoffman. 2015. A Quantitative Evaluation of the RAPL
Power Control System. Feedback Computing (2015).

http://www.top500.org

	Disclaimer_ACM_Cesarini
	a3-Cesarini
	Abstract
	1 Introduction
	2 Related work
	3 HPC Architectures and Power Management Systems
	3.1 HPC Architectures
	3.2 Power Management in HPC Systems
	3.3 Hardware Power Controller

	4 Benchmarking Scenario
	4.1 Architecture Target
	4.2 Application Target
	4.3 Monitoring Framework

	5 Experimental Results
	5.1 Methodology
	5.2 System Analysis
	5.3 Application Analysis

	6 Conclusion
	References

