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Abstract

The growth of the exchange-traded fund (ETF) industry has given rise to the trading of options

written on ETFs and their leveraged counterparts (LETFs). We study the relationship between the

ETF and LETF implied volatility surfaces when the underlying ETF is modeled by a general class of

local-stochastic volatility models. A closed-form approximation for prices is derived for European-style

options whose payoffs depend on the terminal value of the ETF and/or LETF. Rigorous error bounds

for this pricing approximation are established. A closed-form approximation for implied volatilities is

also derived. We also discuss a scaling procedure for comparing implied volatilities across leverage ratios.

The implied volatility expansions and scalings are tested in three settings: Heston, limited CEV and

limited SABR; the last two are regularized versions of the well-known CEV and SABR models.

Keywords: implied volatility, local-stochastic volatility, leveraged exchange-traded fund, implied volatility

scaling

1 Introduction

The market of exchange-traded funds (ETFs) has been growing at a robust pace since their introduction in

19931. As of the end of 2012, the global ETF industry has over $1.8 trillion in assets under management

(AUM) comprised of 4,272 products, and has seen close to $200 billion of positive capital inflows2. In recent

years, a sub-class of ETFs, called leveraged ETFs (LETFs), has gained popularity among investors for their

accessibility and liquidity for leveraged positions. These funds are designed to replicate multiples of the daily

returns of some reference index or asset. For instance, the ProShares S&P 500 Ultra (SSO) and UltraPro

(UPRO) are advertised to generate, respectively, 2 and 3 times of the daily returns of the S&P 500 index,

minus a small expense fee. On the other hand, a LETF with a negative leverage ratio allows investors to
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take a bearish position on the underlying index by longing the fund. An example is the ProShares S&P 500

UltraShort (SDS) with leverage ratio of −2. The most typical leverage ratios are {−3,−2,−1, 2, 3}. With

the same reference, such as the S&P 500, these LETFs share very similar sources of randomness, but they

also exhibit different path behaviors (see Cheng and Madhavan (2009) and Avellaneda and Zhang (2010)).

The use of ETFs has also led to increased trading of options written on ETFs. During 2012, the total

options contract volume traded at Chicago Board Options Exchange (CBOE) is 1.06 billion contracts, of

which 282 million contracts are ETF options while 473 million are equity options. This leads to an important

question of consistent pricing of options on ETFs and LETFs with the same reference. As options are

commonly quoted and compared in terms of implied volatility, it is natural to consider the implied volatility

relationships among LETF options, not only across strikes and maturities, but also for various leverage

ratios.

In this paper, we analyze the implied volatility surfaces associated with European-style LETF options

in a general class of local-stochastic volatility (LSV) models. Our approach is to (i) find an expansion for

approximate LETF option prices (ii) establish rigorous error bounds for this approximation and (iii) translate

the price approximation into approximate implied volatilities. Exact pricing and implied volatility formulas

in a general LSV setting are obviously impossible to obtain. There are a number of approaches one could

feasibly take in order to approximate European-style option prices and their associated implied volatilities.

We review some recent approaches for unleveraged products here. Gatheral et al. (2012) use heat kernel

methods in a local volatility setting. Benhamou et al. (2010) use a small volatility of volatility expansion for

the time-dependent Heston model. More recently, Bompis and Gobet (2013) use Malliavin calculus to obtain

approximations in a quite general LSV setting. And, Forde and Jacquier (2011) use the Freidlin-Wentzell

theory of large deviations to analyze an uncorrelated LSV model.

In this paper, we use a polynomial operator expansion technique to obtain approximate prices and implied

volatilities. The polynomial operator expansion technique was first introduced in Pagliarani and Pascucci

(2012) and Pagliarani et al. (2013) to compute option prices in a scalar jump-diffusion setting. It was further

developed in Lorig et al. (2015b) to obtain approximate prices and implied volatilities in a multidimensional

local-stochastic volatility setting (see also Lorig et al. (2015c) for pricing approximations for models with

jumps). The reason for basing our expansions on the methods developed in Lorig et al. (2015b) is that

these methods allow us to consider a large class of LSV models for the ETF; many of the above mentioned

methods work only for specific ETF dynamics. However, without further development, the methods described

in Lorig et al. (2015b) are not sufficient for the rigorous error bounds we establish in this paper. Indeed, in

Lorig et al. (2015b), error bounds are established under a uniform ellipticity assumption. As we shall see,

the generator of the joint ETF/LETF process is not elliptic. As such, to establish rigorous error bounds for

LETF option prices, we must work in this challenging non-elliptic setting.

Perhaps the most useful result of our analysis is the general expression we obtain for the implied volatility

expansion. This expansion allows us to pinpoint the non-trivial role played by the leverage ratio β, and thus,

relate the implied volatility surfaces between (unleveraged) ETF and LETF options. This also motivates

us to apply the idea of log-moneyness scaling, with the objective to view the implied volatilities across

leverage ratios on the same scale and orientation. In particular, for a negative leverage ratio and up to the

2



A
u
th
or

M
an
u
sc
ri
p
t

first-order in log-moneyness, the LETF implied volatility is known to be upward sloping while the ETF and

long-LETF implied volatilities are downward sloping (see Leung and Sircar (2015)). The scaling is capable

of appropriately adjusting the level and shape of the implied volatility so that the ETF and LETF implied

volatilities match closely under a given model. For illustration, we test our implied volatility expansions and

the log-moneyness scaling in three settings: Heston, limited CEV, and limited SABR; the limited CEV and

limited SABR models are, respectively, regularized versions of the well-known CEV and SABR models. Our

numerical results demonstrate a high degree of accuracy of our analytical implied volatility approximation

in the models tested.

In a recent paper, Leung and Sircar (2015) apply asymptotic techniques to understand the link between

implied volatilities of the ETF and LETFs of different leverage ratios within a multiscale stochastic volatility

framework (see Fouque et al. (2011) for a review of multiscale methods). They also introduce implied

volatility scaling procedure, different from our own, in order to identify possible price discrepancies in the

ETF and LETF options markets. In contrast to their work, the current paper studies the problem in a

general LSV framework, which naturally includes models such as limited CEV, Heston and limited SABR,

among others. Moreover, while Leung and Sircar (2015) obtain an implied volatility approximation that is

linear in log-moneyness, we provide a general expression for LETF implied volatilities that is quadratic in

log-moneyness. We also provide formulas for three specific models (limited CEV, Heston and limited SABR

that are cubic in log-moneyness.

Ahn et al. (2012) propose a method to compute exact LETF option prices when the underlying ETF

has Heston stochastic volatility dynamics. They also derive approximate LETF option prices when the

underlying ETF has Heston dynamics and jumps. While they do not investigate the implied volatilities,

they point out that if the underlying ETF admits the Heston dynamics (no jumps), then the LETF also

has Heston dynamics with different parameters. As a particular example of LSV models, we also obtain

the same result revealed through our implied volatility expansions (see Section 6.2). Lee and Wang (2015)

rigorously relate the implied volatility surfaces between LETF and ETF under various asymptotic regimes

in a family of stochastic volatility frameworks, including those driven by a fractional Brownian motion, as

well as Lévy models.

The rest of this paper proceeds as follows. In Section 2 we review how LETF dynamics are related to

ETF dynamics in a general diffusion setting. We then introduce Markov dynamics for a general class of LSV

models for the ETF. Next, in Section 3, we formally construct an asymptotic expansion for European-style

options whose payoffs depend on the terminal value of the ETF and/or LETF. Rigorous error bounds for

our pricing approximation are established in Section 4. In Section 5 we translate our asymptotic expansion

for prices into an asymptotic expansion for implied volatilities. We also discuss some natural scalings of the

implied volatility surface of the LETF. Finally, in Section 6 we implement our implied volatility expansion

in three settings: limited CEV, Heston and limited SABR. Some concluding remarks are given in Section 7.
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2 Leveraged ETF dynamics

We take as given an equivalent martingale measure Q, chosen by the market on a complete filtered probability

space (Ω,F, {Ft, t ≥ 0},Q). The filtration {Ft, t ≥ 0} represents the history of the market. All stochastic

processes defined below live on this probability space and all expectations are taken with respect to Q. For

simplicity, we assume a frictionless market, no arbitrage, zero interest rates and no dividends. We will discuss

how to relax these assumptions in Remark 3.2.

Let S be the price process of an Exchange-Traded Fund (ETF). We assume S can be modeled under Q

as a strictly positive Itô diffusion. Specifically, we have

ETF : St = eXt , dXt = −1

2
σ2
t dt+ σt dW

x
t , (2.1)

where σ is a non-negative stochastic process. Note that the drift is fixed by the volatility so that S is a

martingale. Let L be the price process of a Leveraged Exchange-Traded Fund (LETF) with underlying S

and with leverage ratio β. Typical values of β are {−3,−2,−1, 2, 3}. The LETF is managed as follows: for

every unit of currency a trader invests in L, the LETF manager borrows (β−1) units of currency and invests

β units of currency in S. The fund manager also typically charges the trader a small expense rate, which,

for simplicity, we assume is zero. Then the dynamics of L are related to S as follows

dLt

Lt
= β

dSt

St
= βσt dW

x
t ,

and thus we have

LETF : Lt = eZt , dZt = −1

2
β2σ2

t dt+ βσt dW
x
t . (2.2)

Comparing (2.1) with (2.2), we observe that the volatility of L is scaled by a factor of β. Moreover, as shown

by Avellaneda and Zhang (2010), one can solve explicitly the SDE for Z in order to obtain an expression for

Zt in terms of Xt and the quadratic variation (integrated variance) of X up to time t. Specifically, we have

Zt − Z0 = β (Xt −X0)−
β(β − 1)

2

∫ t

0

σ2
s ds. (2.3)

Equation (2.3) shows that the log returns of a LETF is the sum of two terms. The first term is proportional

to the log returns of the underlying ETF. The second term is proportional to the integrated variance of X,

and highlights the fact that options on LETFs are path dependent options. Note that, for leverage ratio

β ∈ {−3,−2,−1, 2, 3}, the coefficient −β(β−1)
2 of the realized variance is strictly negative. Note also that

−β(β−1)
2 is an asymmetric function of β.

2.1 Local-stochastic volatility framework

We now specialize to the Markov setting. We introduce an auxiliary process Y , which is intended to capture

effects such as stochastic volatility. We assume that the triple (X,Y, Z) can be modeled by the following
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Stochastic Differential Equation (SDE):

dXt = −1

2
σ2(t,Xt, Yt)dt+ σ(t,Xt, Yt)dW

x
t ,

dYt = c(t,Xt, Yt)dt+ g(t,Xt, Yt)dW
y
t ,

dZt = −1

2
β2σ2(t,Xt, Yt)dt+ βσ(t,Xt, Yt)dW

x
t ,

d〈W x,W y〉t = ρ(t,Xt, Yt)dt.

(2.4)

We assume that SDE (2.4) has a unique strong solution. Sufficient conditions for a unique strong solution are

given in Ikeda and Watanabe (1989). The class of models described by (2.4) enjoys the following features:

1. Stochastic Volatility: When σ and ρ are functions of (t, y) only (as they would be in a stochastic

volatility model such as Heston), then the pairs (X,Y ) and (Y,Z) are Markov processes. From a

mathematical point of view, the lack of x-dependence in the correlation ρ and volatility σ greatly

simplifies the pricing and implied volatility analysis, as calls written on Z can be analyzed independently

from calls on X.

2. Local Volatility: If both σ and ρ are dependent on (t, x) only (as they would be in a local volatility

model such as limited CEV), then X alone and the pair (X,Z) are Markov processes. In this case,

calls on X can be analyzed separately from Z. However, calls on Z must be analyzed in conjunction

with X.

3. Local-Stochastic Volatility: If σ and ρ depend on (x, y) (as would be the case in a local-stochastic

volatility setting such as limited SABR), then the pair (X,Y ) is a Markov process, as is the triple

(X,Y, Z). In this case, options on X can be analyzed independently from Z. In contrast, to analyze

options on Z, one must consider the triple (X,Y, Z).

4. If β = 1, then from (2.4) we see that dXt = dZt. Thus, we need only obtain prices and implied

volatilities for options written on Z. Options written on X can always be obtained by considering the

special case β = 1.

3 Option pricing

Using risk-neutral pricing and the Markov property of the process (X,Y, Z), we can write the time t price

of an option u(t, x, y, z) with expiration date T > t and payoff ϕ(ZT ) as the risk-neutral expectation of the

payoff

u(t, x, y, z) = E[ϕ(ZT )|Xt = x, Yt = y, Zt = z]. (3.1)

Under mild assumptions, the function u satisfies the Kolmogorov backward equation

(∂t +A(t))u(t) = 0, u(T ) = ϕ, (3.2)
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where the operator A(t) is given by

A(t) = a(t, x, y)
((
∂2
x − ∂x

)
+ β2

(
∂2
z − ∂z

)
+ 2β ∂x∂z

)

+ b(t, x, y)∂2
y + c(t, x, y)∂y + f(t, x, y) (∂x∂y + β ∂y∂z) , (3.3)

with the functions (a, b, f) defined as

a(t, x, y) = 1
2σ

2(t, x, y), b(t, x, y) = 1
2g

2(t, x, y), f(t, x, y) = g(t, x, y)σ(t, x, y)ρ(t, x, y).

For general (a, b, c, f), an explicit solution to (3.2) is not available. Thus, our goal is to find a closed form

approximation for the option price u and derive rigorous error bounds for our approximation.

Remark 3.1. We note that the matrix of second-order derivatives of A(t)

1

2




2a f 2βa

f 2b βf

2βa βf 2β2a


 (3.4)

is singular; the eigenvector (β, 0,−1) corresponds to eigenvalue zero. Therefore, the operator A(t) is not

elliptic. This gives rise to an additional mathematical challenge in establishing error bounds for the pricing

approximation, which we will carry out in Section 4.

Remark 3.2 (Deterministic interest rates, dividends and expense ratios). Suppose interest rates are a

deterministic function r(t) of time. Suppose also that the ETF holder receives a dividend q(t)St per unit time,

and the LETF provider charges an expense rate c(t)Lt per unit time where q(t) and c(t) are deterministic

functions. In this case options prices are computed as discounted expectations of the form

ũ(t, x̃, y, z̃) := E[e−
∫ T
t

ds r(s)ϕ(Z̃T )|X̃t = x̃, Yt = y, Z̃t = z],

dX̃t = dXt + (r(t)− q(t)) dt,

dZ̃t = dZt + (r(t)− c(t)− βq(t)) dt,

with (X,Y, Z) as given in (2.4). Upon making the following change of variables

u(t, x(t, x̃), y, z(t, z̃)) := e
∫ T
t

ds r(s)ũ(t, x̃, y, z̃), (3.5)

x(t, x̃) := x̃+

∫ T

t

ds r(s),

z(t, z̃) := z̃ +

∫ T

t

ds (r(s)− c(s)− βq(s)) ,

a simple application of the chain rule reveals that u as defined in (3.5) satisfies Cauchy problem (3.2). Thus,

the current framework allows us to readily accommodate these additional features.

3.1 Asymptotic prices via Taylor and Dyson series

In this section, we show how Taylor and Dyson series can be combined in order to formally construct an

asymptotic approximation of the solution u of Cauchy problem (3.2). Throughout the derivation that follows
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we assume that for every t the coefficients (a, b, c, f) of the operator A(t) are analytic in (x, y) so we can

expand each of these functions as a Taylor series. As we will see, this assumption is not necessary for the

Nth-order approximation of u, which we will give in Definition 3.3. However, making this assumption will

simplify the derivation that follows.

Let (x̄(·), ȳ(·)) : [0, T ] → R2 be a piecewise continuous map. For any (t, x, y) we have:

χ(t, x, y) =
∞∑

n=0

n∑

k=0

χn−k,k(t)(x− x̄(t))n−k(y − ȳ(t))k,

χn−k,k(t) =
∂n−k
x ∂k

yχ(t, x̄(t), ȳ(t))

(n− k)!k!
, χ ∈ {a, b, c, f}.

Formally, the operator A(t) can now be written as

A(t) = A0(t) +B1(t), B1(t) =
∞∑

n=1

An(t), An(t) =
n∑

k=0

(x− x̄(t))n−k(y − ȳ(t))kAn−k,k(t), (3.6)

where

An−k,k(t) = an−k,k(t)
((
∂2
x − ∂x

)
+ β2

(
∂2
z − ∂z

)
+ 2β ∂x∂z

)

+ bn−k,k(t)∂
2
y + cn−k,k(t)∂y + fn−k,k(t) (∂x∂y + β ∂y∂z) ,

Inserting expansion (3.6) for A(t) into Cauchy problem (3.2) we find

(∂t +A0(t))u(t) = −B1(t)u(t), u(T ) = ϕ.

By construction, the operator A0(t) is the generator of a diffusion with coefficients that are deterministic

functions of time only. By Duhamel’s principle, we therefore have

u(t) = P0(t, T )ϕ+

∫ T

t

dt1 P0(t, t1)B1(t1)u(t1), (3.7)

where P0(t, T ) = exp
∫ T

t
dsA0(s), is the semigroup of operators generated by A0(t); we will provide an

explicit form for P0(t, T ) in Section 3.2. Inserting expression (3.7) for u back in to the right-hand side of

(3.7) and iterating we obtain

u(t) = P0(t, T )ϕ+
∞∑

k=1

∫ T

t

dt1

∫ T

t1

dt2 · · ·
∫ T

tk−1

dtk

P0(t, t1)B1(t1)P0(t1, t2)B1(t2) · · ·P0(tk−1, tk)B1(tk)P0(tk, T )ϕ (3.8)

= P0(t, T )ϕ+

∞∑

n=1

n∑

k=1

∫ T

t

dt1

∫ T

t1

dt2 · · ·
∫ T

tk−1

dtk

∑

i∈In,k

P0(t, t1)Ai1(t1)P0(t1, t2)Ai2(t2) · · ·P0(tk−1, tk)Aik(tk)P0(tk, T )ϕ, (3.9)

In,k = {i = (i1, i2, · · · , ik) ∈ Nk : i1 + i2 + · · ·+ ik = n}. (3.10)

Note that the second to last equality (3.8) is the classical Dyson series expansion of u corresponding to order

zero generator A0(t) and perturbation B1(t). To obtain (3.9) from (3.8) we have used the fact that, by
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(3.6), the operator B1(t) is an infinite sum. Rigorous justification for exchanging infinite sums and integrals,

which would require additional assumptions, is not intended at this point. It will be clear in Definition 3.3

that the Nth-order approximation for u contains only finite sums. Expression (3.9) motivates the following

definition:

Definition 3.3. Let u be given by (3.1). Assume that for every t ∈ [0, T ] the coefficients (a, b, c, f) of the

operator A(t) are N -times differentiable in the spatial variables (x, y) in some domain D ⊆ R2. For a fixed

piecewise continuous map (x̄(·), ȳ(·)) : [0, T ] → D ⊆ R2, the N th-order approximation of u, denoted ūN , is

defined as

ūN =

N∑

n=0

un, where u0(t) := P0(t, T )ϕ, (3.11)

and

un(t) :=

n∑

k=1

∫ T

t

dt1

∫ T

t1

dt2 · · ·
∫ T

tk−1

dtk

∑

i∈In,k

P0(t, t1)Ai1(t1)P0(t1, t2)Ai2(t2) · · ·P0(tk−1, tk)Aik(tk)P0(tk, T )ϕ. (3.12)

Here, Ai(t) and In,k are as given in (3.6) and (3.10), respectively, and P0(t, T ) is the semigroup generated

by A0(t).

3.2 Expression for u0

The action of the semigroup P0(t, T ) generated by A0(t) when acting on a function θ : R3 → R is

P0(t, T )θ(x, y, z) =

∫

R3

dξdηdζ δz̄(ζ) Γ0(t, x, y;T, ξ, η)θ(ξ, η, ζ), (3.13)

where δz̄ is a Dirac mass centered at

z̄ = z + β(ξ − x)− β(β − 1)

∫ t

0

a0,0(s)ds, (3.14)

and

Γ0(t, x, y;T, ξ, η) =
1

2π
√

|C|
exp

(
−1

2
mTC−1m

)
, (3.15)

with the covariance matrix C and vector m given by:

C =

(
2
∫ T

t
a0,0(s)ds

∫ T

t
f0,0(s)ds∫ T

t
f0,0(s)ds 2

∫ T

t
b0,0(s)ds

)
, m =

(
ξ − x+

∫ T

t
a0,0(s)ds

η − y −
∫ T

t
c0,0(s)ds

)
.

Using (3.11), we have u0(t) = P0(t, T )ϕ. Hence, from (3.13) a direct computation gives the zeroth-order

approximation

u0(t, z) =

∫

R

dζ
1√

2πs2(t, T )
exp

(−(ζ −m(t, T ))2

2s2(t, T )

)
ϕ(ζ), (3.16)

where the mean m(t, T ) and variance s2(t, T ) are given by

m(t, T ) = z − β2

∫ T

t

dt1 a0,0(t1), s2(t, T ) = 2β2

∫ T

t

dt1 a0,0(t1).
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3.3 Expression for un

The following theorem, and the ensuing proof, show that un(t) can be written as a differential operator

Ln(t, T ) acting on u0(t). The theorem is written specifically for Put options, which play an important role

in derivative markets. Call prices, which are also important in derivative markets, can be obtained from Put

prices via Put-Call parity.

Theorem 3.4. Assume that for every t ∈ [0, T ] the coefficients (a, b, c, f) of the operator A(t) are n-

times differentiable in the spatial variables (x, y) in some domain D ⊆ R2. Assume also that ϕ is the

payoff of a Put option on Z. That is, ϕ(z) =
(
ek − ez

)+
. Then, for a fixed piecewise continuous map

(x̄(·), ȳ(·)) : [0, T ] → D ⊆ R2, the function un defined in (3.12) is given explicitly by

un(t) = Ln(t, T )u0(t), (3.17)

where u0 is given by (3.16) and

Ln(t, T ) =
n∑

k=1

∫ T

t

dt1

∫ T

t1

dt2 · · ·
∫ T

tk−1

dtk
∑

i∈In,k

Gi1(t, t1)Gi2(t, t2) · · ·Gik(t, tk), (3.18)

with In,k as defined in (3.10) and

Gn(t, ti) :=
n∑

k=0

(Mx(t, ti)− x̄(ti))
n−k

(My(t, ti)− ȳ(ti))
k
An−k,k(ti) (3.19)

Mx(t, ti) := x+

∫ ti

t

ds
(
a0,0(s) (2∂x + 2β∂z − 1) + f0,0(s)∂y

)
,

My(t, ti) := y +

∫ ti

t

ds
(
f0,0(s) (∂x + β∂z) + 2b0,0(s)∂y + c0,0(s)

)
.

Proof. The proof consists of showing that the operator Gi(t, tk) in (3.19) satisfies

P0(t, tk)Ai(tk) = Gi(t, tk)P0(t, tk). (3.20)

Assuming (3.20) holds, we can use the fact that P0(t, T ) satisfies the semigroup property

P0(t, T ) = P0(t, t1)P0(t1, t2) · · ·P0(tk−1, tk)P0(tk, T ), (3.21)

and we can re-write (3.12) as

un(t) =

n∑

k=1

∫ T

t

dt1

∫ T

t1

dt2 · · ·
∫ T

tk−1

dtk

∑

i∈In,k

Gi1(t, t1)Gi2(t, t2) · · ·Gik(t, tk)P0(t, T )ϕ. (3.22)

Note, in deriving (3.22), we have repeatedly used (3.20) to move the semigroup operators P0(ti, ti+1) in

(3.12) past the Ai(ti+1) operators. Then, we used (3.21). Finally, using that P0(t, T )ϕ = u0(t), equations

(3.17)-(3.18) follow directly from (3.22) Thus, we only need to show that Gi(t, tk) satisfies (3.20).
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To establish (3.20), we note that

Mx(t, T )
(
δz̄(ζ)Γ0(t, x, y;T, ξ, η)

)
= ξ
(
δz̄(ζ)Γ0(t, x, y;T, ξ, η)

)
, (3.23)

My(t, T )
(
δz̄(ζ)Γ0(t, x, y;T, ξ, η)

)
= η

(
δz̄(ζ)Γ0(t, x, y;T, ξ, η)

)
, (3.24)

where z̄ is defined in (3.14) and Γ0 is defined in (3.15). This is a direct computation, which can be checked by

hand. It follows from repeated application of (3.23) and (3.24) that if p : R2 → R is a polynomial function,

we have

p (Mx(t, T ),My(t, T ))
(
δz̄(ζ)Γ0(t, x, y;T, ξ, η)

)
= p(ξ, η)

(
δz̄(ζ)Γ0(t, x, y;T, ξ, η)

)
. (3.25)

In what follows we write A
ξ,η,ζ
n−k,k(s) and A

x,y,z
n−k,k(s) in order to indicate explicitly which variables these

operators act on. We also denote by (Aξ,η,ζ
n−k,k(s))

∗ the formal adjoint of Aξ,η,ζ
n−k,k(s). Suppose θ : R3 → R is

C2(R3) and at most exponentially growing. Then we have

P0(t, s)Ai(s)θ(x, y, z)

=

∫

R3

dξdηdζ δz̄(ζ)Γ0(t, x, y; s, ξ, η)

n∑

k=0

(ξ − x̄(s))
n−k

(η − ȳ(s))
k
A

ξ,η,ζ
n−k,k(s)θ(ξ, η, ζ)

=

n∑

k=0

(Mx(t, s)− x̄(s))
n−k

(My(t, s)− ȳ(s))
k
∫

R3

dξdηdζ δz̄(ζ)Γ0(t, x, y; s, ξ, η)A
ξ,η,ζ
n−k,k(s)θ(ξ, η, ζ)

=

n∑

k=0

(Mx(t, s)− x̄(s))
n−k

(My(t, s)− ȳ(s))
k
∫

R3

dξdηdζ δz̄(ζ)θ(ξ, η, ζ)
(
A

ξ,η,ζ
n−k,k(s)

)∗
Γ0(t, x, y; s, ξ, η)

=

n∑

k=0

(Mx(t, s)− x̄(s))
n−k

(My(t, s)− ȳ(s))
k
A

x,y,z
n−k,k(s)

∫

R3

dξdηdζ δz̄(ζ)θ(ξ, η, ζ)Γ0(t, x, y; s, ξ, η)

= Gi(t, s)P0(t, s)θ(x, y, z).

The first equality follows from the definitions of P0(t, s) and Ai(s). In the second equality we have used

(3.25) and pulled the operators Mx and My out of the integral as they act on the backward variables (x, y, z).

In the third equality we have integrated by parts. In the fourth equality we have used the symmetry property

of the kernel δz̄(z)Γ0(t, x, y; s, ξ, η) to replace
(
A

ξ,η,ζ
n−k,k(s)

)∗
with A

x,y,z
n−k,k(s). We then pulled A

x,y,z
n−k,k(s) out

of the integral as it acts on the backward variables (x, y, z). The last equality follows from the definitions of

Gi(t, s) and P0(t, s). Thus, we have established P0(t, s)Ai(s) = Gi(t, s)P0(t, s), when acting on a function θ

that is C2(R3) that is at most exponentially growing.

To complete the proof we must show that terms of the form

P0(t, t1)Ai1(t1)P0(t1, t2)Ai2(t2) · · ·P0(tk−1, tk)Aik(tk)P0(tk, T )ϕ, (3.26)

are at least C2(R3) and at most exponentially growing. In fact, we will show that such terms are C∞
e (R3),

where C∞
e (R3) denotes the space of functions that are C∞(R3) with derivatives of all orders that are at

most exponentially growing. To see this, we note that P0(tk, T )ϕ = uBS(tk), where uBS is the Black-Scholes

price of a put option. As derivatives of the Black-Scholes put price with respect to z are C∞
e (R) it follows

10
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that P0(tk, T )ϕ ∈ C∞
e (R3). Now, note that C∞

e (R3) is invariant under differentiation, multiplication by a

polynomial, and transformation by the semigroup operator P0(t, s). It follows that any term of the form

(3.26) is a member of C∞
e (R3).

Remark 3.5. In fact, Theorem 3.4 holds directly for Call options as well, as derivatives of the Black-Scholes

call price with respect to z are C∞
e (R).

In the following proposition, we provide an alternative characterization of the approximating sequence

(un) as the solution of a nested sequence of PDEs. This alternative characterization, which was derived

using alternative methods in Lorig et al. (2015a), will be used in Section 4 for the analysis of the accuracy

of the approximation.

Proposition 3.6. Let ϕ be the payoff of a put option: ϕ(z) = (ek − ez)+. The sequence of functions (un)

in (3.17) solves the following nested sequence of Cauchy problems

(∂t +A0(t))u0 = 0, u0(T ) = ϕ, (3.27)

(∂t +A0(t))un = −
n∑

k=1

Ak(t)un−k, un(T ) = 0, n ≥ 1. (3.28)

Proof. The proof is by induction. By Duhamel’s principle, the solution to (3.27) and the solution to (3.28)

with n = 1 are

u0(t) = P0(t, T )ϕ, u1(t) =

∫ T

t1

dt1P0(t, t1)A1(t1)P0(t1, T )ϕ,

in agreement with (3.11) and (3.12). We now assume expression (3.12) holds for the first (n− 1) terms and

show that it holds for the nth term. Once again, using Duhamel’s principle, the solution to (3.28) is

un(t) =
n∑

k=1

∫ T

t

dt0P0(t, t0)Ak(t0)un−k(t0)

=

∫ T

t

dt0P0(t, t0)An(t0)P0(t0, T )ϕ

+

n−1∑

k=1

∫ T

t

dt0P0(t, t0)Ak(t0)

n−k∑

m=1

∫ T

t0

dt1

∫ T

t1

dt2 · · ·
∫ T

tm−1

dtm

∑

i∈In−k,m

P0(t0, t1)Ai1(t1)P0(t1, t2)Ai2(t2) · · ·P0(tm−1, tm)Aim(tm)P0(tm, T )ϕ

=

∫ T

t

dt0P0(t, t0)An(t0)P0(t0, T )ϕ

+

n−1∑

k=1

∫ T

t

dt0

∫ T

t0

dt1

∫ T

t1

dt2 · · ·
∫ T

tm−1

dtm

n−k∑

m=1

∑

i∈In−k,m

P0(t, t0)Ak(t0)P0(t0, t1)Ai1(t1)P0(t1, t2)Ai2(t2) · · ·P0(tm−1, tm)Aim(tm)P0(tm, T )ϕ

=
n∑

k=1

∫ T

t

dt1

∫ T

t1

dt2 · · ·
∫ T

tk−1

dtk

11
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∑

i∈In,k

P0(t, t1)Ai1(t1)P0(t1, t2)Ai2(t2) · · ·P0(tk−1, tk)Aik(tk)P0(tk, T )ϕ,

which agrees with expression (3.12).

Remark 3.7. Note that, by (3.16), the order zero price u0 is simply an integral of the option payoff ϕ versus

a Gaussian kernel Γ0, just as in the Black-Scholes model. From Theorem 3.4 we see that higher order terms

un can be obtained by applying the differential operator Ln to u0. The operator Ln acts on the backward

variable z, which is present only in the Gaussian kernel Γ0, producing (Hermite) polynomials in the forward

variable ζ multiplied by Γ0. Thus, every term in the price expansion is of the form

un(t, z) =

∫

R

dζ
pn(ζ)√
2πs2(t, T )

exp

(−(ζ −m(t, T ))2

2s2(t, T )

)
ϕ(ζ).

where the function pn is a polynomial. As such, computation times for approximate prices are comparable

to the Black-Scholes model.

4 Accuracy of the option-pricing approximation

The goal of this section is to establish a rigorous error bound for the Nth-order pricing approximation

described in the previous sections. We will adapt the methods from Pagliarani and Pascucci (2014), who

treat operators A(t) that are locally elliptic, to our current case, where the operator A(t) is singular (see

Remark 3.1). Our main error bound is given in Theorem 4.8 at the end of this section. In order to prove

this theorem we introduce A(t, x, y), the symmetric and positive semi-definite diffusion matrix of the (X,Y )

process:

A(t, x, y) :=
1

2

(
2a(t, x, y) f(t, x, y)

f(t, x, y) 2b(t, x, y)

)
.

We also introduce Dr(x0, y0), the Euclidean ball

Dr(x0, y0) = {(x, y) ∈ R2 : |(x, y)− (x0, y0)| < r},

which is defined for any (x0, y0) ∈ R2 and r > 0. Throughout Section 4 we assume the following:

Assumption 4.1. The function u in (3.1) solves the backward Cauchy problem

(∂t +A(t))u(t, x, y, z) = 0, (t, x, y, z) ∈ [0, T )×D,

u(T, x, y, z) = ϕ(z), (x, y, z) ∈ D,

where D is a domain in R3. It is possible, but not required, that D = R3.

Assumption 4.2.

i) Local boundedness and global regularity: the coefficients a, b, c, f belong to L∞
loc([0, T ]×D) and satisfy

a(t, ·, ·), b(t, ·, ·), c(t, ·, ·), f(t, ·, ·) ∈ CN+1(D) for any t ∈ [0, T ].

12
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ii) Local non-degeneracy: the diffusion matrix of A = A(t, x, y) is positive definite on some cylinder

[0, T ]×Dr(x0, y0). More precisely, A = Ã in [0, T ]×Dr(x0, y0) where Ã ∈ L∞([0, T ]×R2) is a matrix

of the form

Ã(t, x, y) =
1

2

(
2ã(t, x, y) f̃(t, x, y)

f̃(t, x, y) 2b̃(t, x, y)

)
,

such that Ã(t, ·, ·) ∈ CN+1
b (R2) for any t ∈ [0, T ], where CN

b denotes the space of continuously differ-

entiable functions with bounded derivatives up to order N , and

M−1|ξ|2 ≤
2∑

i,j=1

Ãij(t, x, y)ξiξj ≤ M |ξ|2, t ∈ [0, T ], (x, y), ξ ∈ R2,

for some positive constant M . We also require the existence of a function c̃ ∈ L∞([0, T ] × R2) such

that c̃(t, ·, ·) ∈ CN+1
b (R2) for any t ∈ [0, T ] and c = c̃ in [0, T ]×Dr(x0, y0).

Assumption 4.3. We assume the payoff function ϕ is that of a Put option on Z. That is, ϕ(z) =
(
ek − ez

)+
.

Remark 4.4. Assumptions 4.1 and 4.2 are satisfied by a number of well-known models including the Heston

(Heston (1993)), exponential Ornstein-Uhlenbeck (Perelló et al. (2008)) and three-halves stochastic volatility

(Carr and Sun (2007)) models.

Remark 4.5. Note that, although the diffusion matrix A of the process (X,Y ) is locally positive definite, the

diffusion matrix (3.4) of the process (X,Y, Z) remains singular. Thus, Cauchy problem (3.2) is not parabolic

at any point. This issue, which is not handled in Pagliarani and Pascucci (2014), presents a technical

challenge that must be overcome in order to establish error estimates for our pricing approximation ūn.

In order to cope with the double degeneracy of the pricing operator (recall, we have a partial degeneracy

in the (x, y) variables and a global degeneracy in the z variable), we now use an elliptic regularization

technique, which is a classical method in the theory of degenerate PDEs; see, e.g., Theorem 5.2 of Bony

(1969). Specifically, we introduce a process Zε, which is a modification of the dynamics of Z in (2.4). We

define

dZε
t := dZt −

1

2
ε2dt+ εdW z

t , d〈W x,W z〉 = 0, d〈W y,W z〉 = 0, ε ≥ 0.

We denote by Aε(t) the infinitesimal generator of the Markov process (X,Y, Zε) and by uε the solution of

Cauchy problem related to Aε(t), with final datum ϕ. Specifically

(∂t +Aε(t))uε(t, x, y, z) = 0, (t, x, y, z) ∈ [0, T )×Dε,

uε(T, x, y, z) = ϕ(z), (x, y, z) ∈ Dε,

whereDε is some domain ofR3. Thus, uε represents the price of a European Put option written on (X,Y, Zε).

Assumption 4.2-i) guarantees we can construct ūε
N , the N -th order approximation of uε, by replacing A(t)

with Aε(t) in Definition 3.3. Moreover, for any ε > 0, Aε(t) and ϕ satisfy the assumptions of Theorem 3.1

in Pagliarani and Pascucci (2014), in which local error estimates for |uε − ūε
N | are established. Below we

13
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prove that such error estimates are uniform in ε and therefore error bounds for the price approximation ūN

of options written on the Markov process (X,Y, Z) will follow in the limit as ε → 0.

It is useful at this point to introduce the process V ε, which satisfies the following SDE:

dV ε
t =

1

2

(
β(1− β)σ2(t,Xt, Yt)− ε2

)
dt+ εdW z

t .

We note that the dynamics of Zε can be written as follows

dZε
t = β dXt + dV ε

t .

Therefore, rather than considering the generator of (X,Y, Zε), we can consider the generator of (X,Y, V ε),

which (with a slight abuse of notation) we denote again by Aε(t). This operator separates into an operator

X(t), which takes derivatives with respect to (x, y), and an operator Vε(t), which takes derivatives with

respect to v. That is,

Aε(t) = X(t) + Vε(t),

X(t) = a(t, x, y)
(
∂2
x − ∂x

)
+ b(t, x, y)∂2

y + f(t, x, y)∂x∂y + c(t, x, y)∂y,

Vε(t) =
ε2

2

(
∂2
v − ∂v

)
+ a(t, x, y)β(1− β)∂v.

The first step in the proof of Theorem 3.1 in Pagliarani and Pascucci (2014) consists of extending operator

Aε(t), which is defined on [0, T ]×D, to a uniformly elliptic operator Ãε(t) on [0, T ]×R3. This can be done

by virtue of Assumption 4.2-ii). Indeed, for any ε ≥ 0, it suffices to define

Ãε(t) = X̃(t) + Ṽε(t),

X̃(t) = ã(t, x, y)
(
∂2
x − ∂x

)
+ b̃(t, x, y)∂2

y + f̃(t, x, y)∂x∂y + c̃(t, x, y)∂y,

Ṽε(t) =
ε2

2

(
∂2
v − ∂v

)
+ ã(t, x, y)β(1− β)∂v.

By Assumption 4.2, Aε(t) = Ãε(t) and X(t) = X̃(t) in [0, T ]×Dr(x0, y0)×R. Notice that Ãε(t) and X̃(t) are

uniformly elliptic operators on [0, T ]×R3 and [0, T ]×R2 respectively. Moreover, (∂t + Ãε(t)) is uniformly

parabolic and has a fundamental solution, denoted by

Γ̃ε = Γ̃ε(t, x, y, v;T, x′, y′, v′), t < T, (4.1)

which (by definition) is the solution to

(∂t + Ãε(t))Γ̃ε(t, x, y, v;T, x′, y′, v′) = 0, (t, x, y, v) ∈ [0, T )×R3,

Γ̃ε(T, ·, ·, ·;T, x′, y′, v′) = δx′,y′,v′ .

In the following lemma, we show that Γ̃ε satisfies some Gaussian estimates.

Lemma 4.6. Let i, j, h, k ∈ N0 with h+ k ≤ N + 2, and T̄ > 0. Then, under Assumption 4.2, we have

∣∣∣(x− x′)i(y − y′)j∂h
x∂

k
y Γ̃

ε(t, x, y, v;T, x′, y′, v′)
∣∣∣ ≤ c0(T − t)

i+j−h−k
2 Γ

(M,ε)
heat (t, x, y, v;T, x′, y′, v′) (4.2)
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for any x, y, v, x′, y′, v′ ∈ R, 0 ≤ t < T ≤ T̄ and ε ∈ (0, 1]. Here, Γ
(M,ε)
heat denotes the fundamental solution of

the heat operator

∂t +M(∂xx + ∂yy) +
ε2

2
∂vv,

and c0 is a positive constant that depends only on M,N, i, j and T̄ . In particular, the constant c0 is inde-

pendent of ε.

Proof. Estimate (4.2) differs slightly from the classical Gaussian estimates for parabolic equations (cf.

Friedman (1964); see also Di Francesco and Pascucci (2005), Pascucci (2011) for a more recent and gen-

eral presentation) because the operator (∂t + Ãε(t)), while parabolic, is not uniformly parabolic with respect

to ε ∈ (0, 1]. Nevertheless, the thesis can be proved by mimicking the classical argument which is based on

the parametrix method and carefully checking that the constant c0 is independent of ε. In particular, the

main ingredients in the parametrix construction are some uniform-in-ε, Gaussian estimates (see, for instance,

Proposition 3.1 in Di Francesco and Pascucci (2005)), which we now describe. For any fixed (x̄, ȳ) ∈ R2, we

denote by X̃x̄,ȳ(t) the operator obtained by freezing at (x̄, ȳ) the coefficients of X̃(t) and we set

Ãε
x̄,ȳ(t) := X̃x̄,ȳ(t) +

ε2

2
∂2
v .

Let Γ̃ε
x̄,ȳ and Γ̃x̄,ȳ be the fundamental solutions corresponding to (∂t + Ãε

x̄,ȳ) and (∂t + X̃x̄,ȳ) respectively.

Then for every x̄, ȳ, x, y, v, x′, y′, v′ ∈ R, 0 ≤ t < T ≤ T̄ and ε ∈ (0, 1], we have

M−2Γ
(M−1,ε)
heat (t, x, y, v;T, x′, y′, v′) ≤ Γ̃ε

x̄,ȳ(t, x, y, v;T, x
′, y′, v′) ≤ M2Γ

(M,ε)
heat (t, x, y, v;T, x′, y′, v′). (4.3)

Estimate (4.3) can be readily proved as in Proposition 3.1 in Di Francesco and Pascucci (2005), by noting

that Γ̃ε
x̄,ȳ = Γ̃x̄,ȳΓε where Γε is the fundamental solution of the one-dimensional heat (parabolic) operator

(∂t +
ε2

2 ∂vv). Notice that (4.3) is uniform in ε (i.e. the constants in the estimates are independent of ε).

Based on this fact, the estimate (4.2), with c0 independent of ε, follows by the parametrix method.

Lemma 4.7. Let Assumption 4.2 hold. Denote by Γ̃ε the fundamental solution in (4.1) corresponding to

(∂t + Ãε(t)). Denote by Γ̄ε
N the N th-order approximation of Γ̃ε, constructed using (x̄(·), ȳ(·)) = (x, y). Then

we have
∣∣∣Γ̃ε(t, x, y, v;T, x′, y′, v′)− Γ̄ε

N (t, x, y, v;T, x′, y′, v′)
∣∣∣ ≤ c1(T − t)

N+1
2 Γ

(M,ε)
heat (t, x, y, v;T, x′, y′, v′), (4.4)

for any x, y, v, x′, y′, v′ ∈ R, 0 ≤ t < T and ε ∈ (0, 1], where c1 is a positive constant that depends on

M,N, T but is independent of ε.

Proof. Using the uniform in ε estimate (4.2) and the ellipticity of Aε(t), we can repeat step by step the proof

of (Lorig et al., 2015a, Theorem 3.10). The key ingredient in the modified proof is to verify that, as c0 in

(4.2) does not depend on ε, neither does c1.

We are now in a position to state our main error estimate. For any ε ≥ 0, let ũε be the classical bounded

solution of Cauchy problem
(
∂t + Ãε(t)

)
ũε(t, x, y, z) = 0, (t, x, y, z) ∈ [0, T )×R3,
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ũε(T, x, y, z) =
(
ek − ez

)+
, (x, y, z) ∈ R3.

For ε = 0 we will generally omit the superscript and simply write ũ instead of ũ0.

Theorem 4.8. Let Assumptions 4.1, 4.2 and 4.3 hold. Let ūε
N , ε ≥ 0, denote the N -th order approximation

of ũε, which is constructed as in (3.11) with (x̄(·), ȳ(·)) = (x, y) and with A(t) replaced by Ãε(t). Let ūN :=

ūε
N |ε=0. Note that ūN coincides with the N -th order approximation of u when (x, y, z) ∈ (Dδr(x0, y0)×R)∩

D. Then for any δ ∈ (0, 1) we have

|u(t, x, y, z)− ūN (t, x, y, z)| ≤ c2(T − t)
N+2

2 , 0 ≤ t < T, (x, y, z) ∈ (Dδr(x0, y0)×R) ∩D.

The constant c2 depends only on δ, k,M,N and T .

Proof. Firstly, we remark explicitly that if (x, y) ∈ Dr(x0, y0) then, for any ε ≥ 0, ūε
N coincides with the

N -th order approximation of uε because A(t) ≡ Ã(t) in [0, T ]×Dr(x0, y0)×R. Then, integrating estimate

(4.4) against the payoff function we obtain

|ũε(t, x, y, z)− ūε
N (t, x, y, z)| ≤ c1(T − t)

N+1
2 , 0 ≤ t < T, (x, y, z) ∈ R3. (4.5)

By exploiting the Lipschitz regularity and boundedness of the Put payoff, we have a more refined estimate

with the power N+2
2 replacing N+1

2 in the exponent of (T − t) in (4.5). As the operator Aε(t), ε > 0, and

the payoff function ϕ satisfy the assumptions of Theorem 3.1 in Pagliarani and Pascucci (2014), we can pass

from the global error estimate for ũε to the local estimate for uε

|uε(t, x, y, z)− ūε
N (t, x, y, z)| ≤ c2(T − t)

N+2
2 , 0 ≤ t < T, (x, y, z) ∈ (Dδr(x0, y0)×R) ∩D.

By Lemma 4.6, the above estimate is uniform in ε. Therefore, we can use the maximum principle and pass

to ε = 0 as in the proof of Theorem 5.2 of Bony (1969) (see also Theorem 2.5 of Lanconelli and Pascucci

(1999)) to conclude the proof.

5 Implied volatility

In this section, we translate our price expansion for a call option with payoff function ϕ(z) = (ez − ek)+ into

an expansion in implied volatility. We emphasize that our implied volatility expansion is heurisitic; we shall

not attempt to provide a rigorous accuracy result for this expansion. For the interested reader, accuracy

results for implied volatility of the ETF (not the LETF) have been established in Lorig et al. (2015b).

To ease notation, in what follows, we shall suppress much of the dependence on (t, T, x, y, z, k). However,

one should keep in mind that prices and implied volatilities do depend on these quantities, even if this is not

explicitly indicated. We begin our analysis by recalling the definitions of the Black-Scholes call price and

implied volatility.

Definition 5.1. The Black-Scholes Call price uBS : R+ → R+ is given by

uBS(σ) := ezN(d+(σ))− ekN(d−(σ)), d±(σ) :=
1

σ
√
τ

(
z − k ± σ2τ

2

)
, τ := T − t, (5.1)

where N is the CDF of a standard normal random variable.
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Definition 5.2. For fixed (t, T, z, k), the implied volatility corresponding to a call price u ∈ ((ez − ek)+, ez)

is defined as the unique strictly positive real solution σ of the equation

uBS(σ) = u, (5.2)

where uBS is given by (5.1).

Theorem 5.3. For a European call option with payoff function ϕ(z) = (ez − ek)+ we have

u0 = uBS(σ0), σ2
0 =

2β2

T − t

∫ T

t

ds a0,0(s). (5.3)

Proof. The proof follows directly from (3.16) with ϕ(z) = (ez − ek)+.

From Theorem 5.3 we note that the price expansion (3.11) is of the form

u = ūN + δuN = uBS(σ0) +

N∑

n=1

un + δuN , (5.4)

where δuN = u− ūN . As shown in Lorig et al. (2015b) and Jacquier and Lorig (2013), the special form (5.4)

lends itself to an expansion

σ = σ0 + η, η =

N∑

n=1

σn + δσN ,

of implied volatility. To see this, one expands uBS(σ) as a Taylor series about the point σ0. For η small

enough (i.e., within the radius of convergence of the Taylor series expansion of uBS about the point σ0) we

have

uBS(σ) = uBS(σ0 + η)

= uBS(σ0) + η ∂σu
BS(σ0) +

1

2!
η2∂2

σu
BS(σ0) +

1

3!
η3∂3

σu
BS(σ0) + . . . . (5.5)

Inserting expansions (5.4) and (5.5) into equation (5.2), one can solve iteratively for every term in the

sequence (σn)1≤n≤N . We define the N th-order approximation of implied volatility as

σ̄N =

N∑

n=0

σn.

The first four terms in the sum, which are enough to provide an accurate approximation of implied volatility,

are σ0, given by (5.3), and

σ1 =
u1

∂σuBS(σ0)
, σ2 =

u2 − 1
2σ

2
1∂

2
σu

BS(σ0)

∂σuBS(σ0)
, σ3 =

u3 −
(
σ2σ1∂

2
σ + 1

3!σ
3
1∂

3
σ

)
uBS(σ0)

∂σuBS(σ0)
. (5.6)

A general expression for the nth-order term can be found in Lorig et al. (2015b); Jacquier and Lorig (2013).

As written, the expressions in (5.6) are not particularly useful. Indeed uBS(σ0) and un are Gaussian

integrals, which are not numerically intensive to compute, but do not give much explicit information about

how implied volatility depends on (t, T, x, y, z, k, β). However, using (5.1) a direct computation shows

∂2
σu

BS(σ)

∂σuBS(σ)
=

(k − z)2

τσ3
− τσ

4
,

∂3
σu

BS(σ)

∂σuBS(σ)
=

(k − z)4

τ2σ6
−
(

3

τσ4
− 1

2σ2

)
(k − z)2 +

τ2σ2

16
− τ

4
. (5.7)
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In general, every term of the form ∂n
σu

BS(σ0)/∂σu
BS(σ0) can be computed explicitly. Moreover, terms of the

form un/∂σu
BS(σ0) can also be computed explicitly. To see this, we note from Theorems 3.4 and 5.3 that

un = Ln(t, T )u0 = L̃n(t, T )u
BS(σ0),

where

L̃n(t, T ) =

n∑

k=1

∫ T

t

dt1

∫ T

t1

dt2 · · ·
∫ T

tk−1

dtk
∑

i∈In,k

Gi1(t, t1) · · ·Gik−1
(t, tk−1)G̃ik(t, tk),

G̃n(t, ti) :=

n∑

k=0

(Mx(t, ti)− x̄(ti))
n−k

(My(t, ti)− ȳ(ti))
k
an−k,k(ti)β

2(∂2
z − ∂z)u

BS(σ0).

Thus, un is a finite sum of the form

un =
∑

m

Xn,m∂m
z (∂2

z − ∂z)u
BS(σ0), (5.8)

where the coefficients (Xn,m) are (t, T, x, y)-dependent constants, which can be computed from Theorem 3.4.

Now, using (5.1), a direct computation shows

∂m
z (∂2

z − ∂z)u
BS(σ0)

∂σuBS(σ0)
=

(
−1√
2σ2

0τ

)m
Hn(w)

τσ0
, w :=

z − k − 1
2σ

2
0τ

σ
√

2σ2
0τ

, (5.9)

where Hn(z) := (−1)nez
2

∂n
z e

−z2

is the n-th Hermite polynomial. Combining (5.8) with (5.9) we have

un

∂σuBS(σ0)
=
∑

m

Xn,m

(
−1√
2σ2

0τ

)m
Hn(w)

τσ0
. (5.10)

Finally, from (5.7) and (5.10), we see that all terms in the implied volatility expansion (5.6) are polynomials

in log-moneyness λ := (k − z). Explicit expressions for (σn)n≤3 under different models will be given in

Section 6. A general expression for (σn)n≤2 in the time-homogeneous LSV setting is given below. We denote

by

λ = k − z, τ = T − t, (Xt, Yt) = (x, y),

and we choose the expansion point of our Taylor series approximation as (x̄(·), ȳ(·)) = (x, y). We have

σ0 = |β|
√

2a0,0, σ1 = σ1,0 + σ0,1, σ2 = σ2,0 + σ1,1 + σ0,2,

where

σ1,0 =
τ

4
((β − 1)σ0a1,0) +

1

2σ0
(βa1,0)λ,

σ0,1 =
τ

4σ0

(
β2a0,1 (2c0,0 + βf0,0)

)
+

1

2σ3
0

(
β3a0,1f0,0

)
λ,

σ2,0 =
τ

24σ0

(
2σ2

0a2,0 − 3β2a2
1,0

)
+

τ2

96β2

(
β2(2β(2β − 5) + 5)σ0a

2
1,0 + 4(β − 1)2σ3

0a2,0

)

+
τ

24βσ0

(
−(β − 1)

(
β2a2

1,0 − 4σ2
0a2,0

))
λ+

1

12σ3
0

(
2σ2

0a2,0 − 3β2a2
1,0

)
λ2,
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σ1,1 =
τ

12σ3
0

(
β2 (a0,1

(
β2a1,0f0,0 − 2σ2

0f1,0
)
+ σ2

0a1,1f0,0
))

+
τ2

48σ0

(
a0,1

(
β2a1,0 (2(β − 1)c0,0 − βf0,0) + 2(β − 1)σ2

0 (2c1,0 + βf1,0)
)
+ 2(β − 1)σ2

0a1,1 (2c0,0 + βf0,0)
)

+
τ

24σ3
0

(
β
(
a0,1

(
5β2a1,0 ((1− 2β)f0,0 − 2c0,0) + 2σ2

0 (2c1,0 + (2β − 1)f1,0)
)
+ 2σ2

0a1,1 (2c0,0 + (2β − 1)f0,0)
))

λ

+
1

6σ5
0

(
β2 (a0,1

(
σ2
0f1,0 − 5β2a1,0f0,0

)
+ σ2

0a1,1f0,0
))

λ2,

σ0,2 =
τ

24σ5
0

(
12β2σ4

0a0,2b0,0 − 4β4σ2
0

(
2a2

0,1b0,0 + a0,1f0,0f0,1 + a0,2f
2
0,0

)
+ 9β6a2

0,1f
2
0,0

)

+
τ2

24σ3
0

(
β2 (σ2

0

(
−2β2a2

0,1b0,0 + a0,1 (2c0,0 + βf0,0) (2c0,1 + βf0,1) + a0,2 (2c0,0 + βf0,0)
2)− 3β2a2

0,1c0,0 (c0,0 + βf0,0)
))

+
τ

24σ5
0

(
β3 (−9β2a2

0,1f0,0 (2c0,0 + βf0,0) + 4σ2
0a0,2f0,0 (2c0,0 + βf0,0) + 4σ2

0a0,1 (f0,1 (c0,0 + βf0,0) + c0,1f0,0)
))

λ

+
1

12σ7
0

(
β4 (2σ2

0

(
2a2

0,1b0,0 + a0,1f0,0f0,1 + a0,2f
2
0,0

)
− 9β2a2

0,1f
2
0,0

))
λ2.

5.1 Comparison to other implied volatility expansions

As previously mentioned, when β = 1, options written on the log LETF Z are equivalent to options written

the log ETF X. In this special case, the implied volatility expansion discussed in this manuscript reduces

to the implied volatility expansion developed in Lorig et al. (2015b). If one additionally chooses (x̄, ȳ) =

(x, y), then the implied volatility approximation given in Lorig et al. (2015b) is equivalent to the implied

volatility expansion given in Bompis and Gobet (2013). However, the expansion presented here and in

Lorig et al. (2015b) is derived using PDE methods, whereas the expansion presented in Bompis and Gobet

(2013) is developed using tools from Malliavin calculus. As of yet, the implied volatility approximation of

Bompis and Gobet (2013) have not been extended to options on LETFs.

We note that, for options written on the ETF X, extensive comparisons to other implied volatility expan-

sions have been carried out in Lorig et al. (2015b). In particular, for the Heston model, the approximation

method presented here is compared to the approximation method in Forde et al. (2012), for CEV, it is com-

pared to the approximation method of Hagan and Woodward (1999), and for SABR it is compared to the

approximation of Hagan et al. (2002). However, neither Forde et al. (2012), Hagan and Woodward (1999)

nor Hagan et al. (2002) develop approximations for implied volatilities written on the LETF Z, as we do

here.

Two other methods one might conceivably use to compute approximate options prices and implied volatil-

ities on LETFs are the heat kernel and large deviations methods, which are discussed, for example, in

Armstrong et al. (2014); Henry-Labordère (2009); Gatheral et al. (2012). Generally speaking, these meth-

ods all rely on computing geodesic distances on a Riemannian manifold whose metric is the inverse of the

covariance matrix of the underlying diffusion. It is not clear how one would compute large deviation esti-

mates and geodesic distances for the metric associated with the process (X,Y, Z) as the diffusion matrix is

singular (see Remark 3.1).
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5.2 Implied volatility and log-moneyness scaling

Let us continue to work in the time-homogeneous setting. Let σZ(τ, λ) be the implied volatility of a call

written on the LETF Z with time to maturity τ and log-moneyness λ = (k−z) and let σX(τ, λ) be the implied

volatility of a call written on the ETF X time to maturity τ and log-moneyness λ = (k−x). The expressions

above provide an explicit approximation for σZ(τ, λ) and σX(τ, λ) in a general time-homogeneous LSV setting

(for σX(τ, λ), simply set β = 1). These expressions show the highly non-trivial dependence of the implied

volatility on the leverage ratio β, and are useful for the purposes of calibration. The implied volatility surfaces

(τ, λ) 7→ σZ(τ, λ) and (τ, λ) 7→ σX(τ, λ) can potentially behave very differently. Nevertheless, for price

comparison across leverage ratios, it would practical to relate them, albeit heuristically or approximately.

To this end, we now introduce some intuitive scalings. Examining the lowest-order terms σ0 and σ1 we

observe

LETF : σZ ≈ |β|
√

2a0,0 + |β|
(

a1,0

2
√

2a0,0
+

a0,1f0,0
2(2a0,0)3/2

)
λ

β
+ O(τ), (5.11)

ETF : σX ≈
√

2a0,0 +

(
a1,0

2
√

2a0,0
+

a0,1f0,0
2(2a0,0)3/2

)
λ+ O(τ). (5.12)

Comparing σZ with σX , we see two effects from the leverage ratio β. First, the vertical axis of σZ is scaled

by a factor of |β|. Second, the horizontal axis is scaled by a factor of 1/β. In particular, this means that

if β < 0 the slopes of σX and σZ will have opposite signs. For small τ the contribution of the O(τ) terms

in the expansion will be insignificant. In light of the above observations, it is natural to introduce σ
(β)
X and

σ
(1/β)
Z , the scaled implied volatilities, which we define as

σ
(β)
X (τ, λ) := |β|σX(τ, λ/β), σ

(1/β)
Z (τ, λ) :=

1

|β|σZ(τ, β λ). (5.13)

These definitions offer two ways to link the implied volatilities surfaces σX and σZ . Viewed one way,

the ETF implied volatility σX(τ, λ) should roughly coincide with the LETF implied volatility 1
|β|σZ(τ, βλ).

Conversely, the LETF implied volatility σZ(τ, λ) should be close to the ETF implied volatility |β|σX(τ, λ/β).

In other words, from (5.11), (5.12) and (5.13), we see that for small τ

σZ(τ, λ) ≈ σ
(β)
X (τ, λ), σX(τ, λ) ≈ σ

(1/β)
Z (τ, λ). (5.14)

In Figure 1, using empirical options data from the S&P500-based ETF and LETFs, we plot σZ and σ
(1/β)
Z ,

the unscaled and scaled implied volatilities, respectively. The figure demonstrates the pronounced effect of

the scaling argument. Prior to scaling (left panel), the implied volatilities of the LETFs, SSO (β = +2) and

SDS (β = −2), have much higher values than those of the unleveraged ETF SPY (β = +1). Moreover, the

SDS implied volatility is increasing in log-moneyness. After scaling the LETF implied volatilities according

to (5.13) (right panel), they are brought very close to the ETF implied volatility and they are now all

downward sloping. In Section 6, we will compute explicit approximations for σX(τ, λ) and σ
(1/β)
Z (τ, λ) for

three models: limited CEV, Heston and limited SABR. As we shall see, although these three models induce

distinct implied volatility surfaces, for small τ the role of β in relating σX to σZ will be captured by (5.14).
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Figure 1: Left: Empirical implied volatilities σZ(τ, λ) plotted as a function of log-moneyness λ for SPY (red diamonds,

β = +1), SSO (purple circles, β = +2), and SDS (blue crosses, β = −2) on August 15, 2013 with τ = 155 days to

maturity. Note that the implied volatility of SDS is increasing in the LETF log-moneyness. Right: Using the same

data, the scaled LETF implied volatilities σ
(1/β)
Z (τ, λ) nearly coincide.

We emphasize, however, that the scaling alone is not sufficient to capture the complexity of the LETF

implied volatility surface. Indeed, as τ increases, we expect σ
(1/β)
Z to diverge from σX . This discrepancy

is due to the integrated variance contribution to the terminal value of Z, as can be seen from (2.3). Thus,

for longer maturities, an accurate approximation of the LETF implied volatility surface must include higher

terms in τ . From the general implied volatility expression, we can see that the role of β in the O(τ) terms is

complicated and does not lend itself to a simple scaling argument. For this reason the full implied volatility

expansion – not just the scaling argument – is important.

Remark 5.4. Zhang (2010) and Leung and Sircar (2015) postulate an alternative implied volatility scaling

based on stochastic arguments. Given the terminal ETF value Xτ = k, they compute the expected future

log-moneyness Zτ − z

Ex,y,z[ZT − z|XT = k] = β(k − x)− 1

2
β(β − 1)

∫ τ

0

Ex,y,z[σ
2(s,Xs, Ys)|Xτ = k] ds, (5.15)

where Ex,y,z[·] = E[·|X0 = x, Y0 = y, Z0 = z]. Zhang (2010) calls the LETF option strike corresponding to

(5.15) the “most likely” strike. They also note, from the ETF and LETF SDEs that the volatility of Z is

|β| times the volatility of X. Using the above as heuristic, the authors propose to scale implied volatilities

as follows

σZ(τ, λ) = |β|σX(τ, βλ− 1

2
β(β − 1)I(τ)),

I(τ) =

∫ τ

0

Ex,y,z[σ
2(s,Xs, Ys)|Xτ = k] ds.

In Zhang (2010) and Leung and Sircar (2015), the value of I(τ) is estimated using an average from observed

implied volatility. In contrast, the scaling proposed in (5.13) does not attempt to account for the integral in
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(5.15). Nevertheless, the effect of the integrated variance is captured by O(τ) terms in the general implied

volatility expansion.

6 Examples

In this Section, we provide explicit expressions for implied volatilities under three different model dynamics:

limited CEV, Heston and limited SABR. Special attention will be paid to the role of β, the leverage ratio.

In the examples below, we fix (x̄(·), ȳ(·)) = (X0, Y0) and we evaluate implied volatilities at time t = 0 and

maturing at time T = τ .

We note that, although Theorem 4.8 establishes the order of accuracy of our pricing approximation as

τ → 0, our numerical tests indicate that the implied volatility expansion gives an accurate approximation of

σ
(1/β)
Z for maturities of multiple years. Nevertheless, options on LETFs only currently trade with maturities

of less than 1.25 years3. Leung and Sircar (2015) have plotted the empirical implied volatilities for four

S&P500 based LETF options (β = ±2,±3), all with maturities of less than a year. Hence, in the numerical

examples below, we focus on these maturities.

6.1 Limited CEV

In the Constant Elasticity of Variance (CEV) local volatility model of Cox (1975), the dynamics of the

underlying S are given by

dSt = δSγ−1
t StdW

x
t , S0 > 0,

where, to ensure the martingale property of the process S, the parameter γ is assumed to satisfy γ ≤ 1

(Heston et al. (2007)).

Note that when γ < 1, the process S can be absorbed at zero and yet we have assumed that S remains

strictly positive. Thus, rather the consider the CEV model, we consider instead the limited CEV model

(LCEV), which was introduced in Andersen and Andreasen (2000). In the LCEV model, the ETF, denoted

here by Sε, has regularized dynamics

dSε
t = δ((Sε

t )
γ−1 ∧ εγ−1)Sε

t dW
x
t , Sε

0 ≫ ε > 0,

where ε > 0 is a fixed, arbitrarily small parameter. Because the volatility process in the LCEV model is

bounded by δεγ−1 the process Sε remains strictly positive.

The dynamics of (X,Z) = (logSε, logL) in the LCEV setting are

dXt = −1

2
δ2e2(γ−1)(Xt∨log ε)dt+ δ e(γ−1)(Xt∨log ε)dW x

t , X0 = x := logSε
0 ≫ log ε.

dZt = −1

2
β2δ2e2(γ−1)(Xt∨log ε)dt+ βδ e(γ−1)(Xt∨log ε)dW x

t , Z0 = z := logL0.

The generator of (X,Z) is given by

A =
1

2
δ2e2(γ−1)(x∨log ε)

(
(∂2

x − ∂x) + β2(∂2
z − ∂z) + 2β∂x∂z

)
.

3Delayed quotes for ETF and LETF options of all traded maturities are available on the CBOE and Yahoo Finance websites.
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Thus, from (3.3), we identify

a(x, y) =
1

2
δ2e2(γ−1)(x∨log ε), b(x, y) = 0, c(x, y) = 0, f(x, y) = 0. (6.1)

As we assume without loss of generality that x > log ε, the implied volatility approximation is independent

of ε. Using equations (5.6), (5.7) and (5.10), we compute

σ0 = |β|
√

e2x(γ−1)δ2,

σ1 = τ

(
(β − 1)(γ − 1)σ3

0

4β2

)
+

(
(γ − 1)σ0

2β

)
(k − z),

σ2 = τ

(
(γ − 1)2σ3

0

24β2

)
+ τ2

(
(2β(6β − 13) + 13)(γ − 1)2σ5

0

96β4

)

+ τ

(
7(β − 1)(γ − 1)2σ3

0

24β3

)
(k − z) +

(
(γ − 1)2σ0

12β2

)
(k − z)2,

σ3 = τ2
(
5(β − 1)(γ − 1)3σ5

0

32β4

)
+ τ3

(
(β − 1)

(
26β2 − 70β + 35

)
(γ − 1)3σ7

0

384β6

)

+ τ

(
(γ − 1)3σ3

0

16β3

)
(k − z) + τ2

(
5(2β(4β − 9) + 9)(γ − 1)3σ5

0

192β5

)
(k − z)

+ τ

(
7(β − 1)(γ − 1)3σ3

0

48β4

)
(k − z)2.

We observe that the factor (γ − 1) appears in every term of these expressions. In particular, when γ = 1,

σ0 = |β|δ and σ1 = σ2 = σ3 = 0. The higher order terms also vanish as a(x, y) = 1
2δ

2 in this case (see (6.1)).

Hence, just as in the Black-Scholes case, the implied volatility expansion becomes flat, as expected.

In Figure 2 we plot our third-order approximation of the scaled implied volatility σ
(1/β)
Z (τ, λ) in the

LCEV model with leverages β = {+2,−2} and with maturities τ = {0.25, 0.5, 1} years. For comparison, we

also plot the exact scaled implied volatility σ
(1/β)
Z (τ, λ) and the exact implied volatility of the ETF σX(τ, λ),

which are computed by Monte Carlo simulation.

Remark 6.1. Note that the coefficient a in (6.1) has a kink at x = log ε. Recall that the Nth order price

approximation result in Theorem 4.8 requires (from Assumption 4.2) that the coefficients of A be CN+1.

To be consistent with Assumption 4.2, we can consider an alternative modification of the CEV model that

bounds the volatility coefficient in such a way that it is CN+1. For example, such a modification can be

obtained by connecting two disjoint CN+1 functions with a spline of order N+2. However, we do not pursue

this here as the aim of this section is simply to provide numerical illustrations of the implied volatility scaling.

6.2 Heston

In the Heston model, due to Heston (1993), the dynamics of the underlying S are given by

dSt =
√
VtStdW

x
t , S0 > 0,

dVt = κ(θ − Vt)dt+ δ
√
VtdW

y
t , V0 > 0,

d〈W x,W y〉t = ρdt.
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Assumption 6.2. In the numerical example below, we impose the Feller condition 2κθ > δ2 so that the

volatility process V remains strictly positive and the log process Y = log V is well-defined.

Remark 6.3. We emphasize that imposing the Feller condition is not required for the accuracy results of

Section 4 nor for the implied volatility expansion of Section 5. When the Feller condition is not satisfied,

the V process may hit zero. In this case, one should carry out the approximate option price and implied

volatility computations using (X,Y, Z) := (logS, V, logL) rather than (X,Y, Z) := (logS, log V, logL).

In log notation (X,Y, Z) := (logS, log V, logL) we have the following dynamics

dXt = −1

2
eYtdt+ e

1
2YtdW x

t , X0 = x := logS0,

dYt =
(
(κθ − 1

2δ
2)e−Yt − κ

)
dt+ δ e−

1
2YtdW y

t , Y0 = y := log V0,

dZt = −β2 1

2
eYtdt+ βe

1
2YtdW x

t , Z0 = z := logL0,

d〈W x,W y〉t = ρdt.

The generator of (X,Y, Z) is given by

A =
1

2
ey
(
(∂2

x − ∂x) + β2(∂2
z − ∂z) + 2β∂x∂z

)

+
(
(κθ − 1

2δ
2)e−y − κ

)
∂y +

1

2
δ2e−y∂2

y + ρ δ (∂x∂y + β∂x∂z) .

Thus, from (3.3), we identify

a(x, y) =
1

2
ey, b(x, y) =

1

2
δ2e−y, c(x, y) =

(
(κθ − 1

2δ
2)e−y − κ

)
, f(x, y) = ρ δ.

Using equations (5.6), (5.7) and (5.10) we obtain

σ0 = |β|
√
ey, (6.2)

σ1 =
τ

8σ0

(
σ2
0(βδρ− 2κ)− β2

(
δ2 − 2θκ

))
+

1

4σ0
(βδρ) (k − z),

σ2 =
τ

96σ0

(
β2δ2

(
ρ2 + 8

))

+
τ2

384σ3
0

(
−3β4

(
δ2 − 2θκ

)2 − 2β2σ2
0

(
δ2 − 2θκ

)
(βδρ− 2κ) + 4σ4

0

(
βδ
(
βδ
(
2ρ2 − 1

)
− 5κρ

)
+ 5κ2

))

+
τ

96σ3
0

(
βδρ

(
5β2

(
δ2 − 2θκ

)
+ σ2

0(2κ− βδρ)
))

(k − z) +
1

48σ3
0

(
β2δ2

(
2− 5ρ2

))
(k − z)2,

σ3 =
τ2

768σ3
0

(
β2δ2

(
β2
(
5ρ2 + 4

) (
δ2 − 2θκ

)
+ 3ρ2σ2

0(βδρ− 2κ)
))

+
τ3

3072σ5
0

(
−3β6

(
δ2 − 2θκ

)3
+ β4σ2

0

(
δ2 − 2θκ

)2
(βδρ− 2κ) + 4β2κσ4

0

(
δ2 − 2θκ

)
(βδρ− κ)

)

+
τ3

3072σ5
0

(
2σ6

0(βδρ− 2κ)
(
βδ
(
βδ
(
5ρ2 − 6

)
− 6κρ

)
+ 6κ2

))

+
τ

384σ3
0

(
−β3δ3ρ

(
9ρ2 + 8

))
(k − z)
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+
τ2

1536σ5
0

(
βδρ

(
21β4

(
δ2 − 2θκ

)2 − 10β2σ2
0

(
δ2 − 2θκ

)
(βδρ− 2κ)

))
(k − z)

+
τ2

1536σ5
0

(
βδρ

(
4σ4

0

(
βδ
(
β
(
δ − 2δρ2

)
+ 3κρ

)
− 3κ2

)))
(k − z)

+
τ

384σ5
0

(
−β2δ2

(
β2
(
23ρ2 − 8

) (
δ2 − 2θκ

)
+
(
7ρ2 − 2

)
σ2
0(2κ− βδρ)

))
(k − z)2

+
1

96σ5
0

(
β3δ3ρ

(
8ρ2 − 5

))
(k − z)3. (6.3)

For longer maturities, the accuracy of the implied volatility expansion can be improved by setting Y = V

rather than Y = log V and choosing a time-dependent expansion point for the Y process: ȳ(t) = E[Vt|V0 =

ey]. In this case, the formulas for σ0, σ1, σ2 and σ3 remain explicit. However, as the expressions are quite

long, we omit them.

Ahn et al. (2012) noticed from the SDEs that when X has Heston dynamics with parameters (κ, θ, δ, ρ,

y), then Z has Heston dynamics with parameters

(κZ , θZ , δZ , ρZ , yZ) = (κ, β2θ, |β|δ, sign(β)ρ, y + log β2). (6.4)

The characteristic function of Xτ is computed explicitly in Heston (1993) and Bakshi, Cao, and Chen (1997)

ηX(τ, x, y, ξ) := logE[eiξXτ |X0 = x, Y0 = y] = iξx+ C(τ, ξ) +D(τ, ξ)ey,

C(τ, ξ) =
κθ

δ2

(
(κ− ρδiξ + d(ξ))τ − 2 log

[
1− f(ξ)ed(ξ)τ

1− f(ξ)

])
,

D(τ, ξ) =
κ− ρδiξ + d(ξ)

δ2
1− ed(ξ)τ

1− f(ξ)ed(ξ)τ
,

f(ξ) =
κ− ρδiξ + d(ξ)

κ− ρδiξ − d(ξ)
,

d(ξ) =
√

δ2(ξ2 + iξ) + (κ− ρiξδ)2.

As Z also has Heston dynamics, the characteristic function of Zτ follows directly

ηZ(τ, z, y, ξ) := logE[eiξZτ |Y0 = y, Z0 = z] = ηX(τ, z, y, ξ) with (κ, θ, δ, ρ, y) → (κZ , θZ , δZ , ρZ , yZ).

The price of a European call option with payoff ϕ(z) = (ez − ek)+ can then be computed using standard

Fourier methods

uHes(τ, z, y) =
1

2π

∫

R

dξr e
ηZ(τ,z,y,ξ)ϕ̂(ξ), ϕ̂(ξ) =

−ek−ikξ

iξ + ξ2
, ξ = ξr + iξi, ξi < −1. (6.5)

Note, as the call option payoff ϕ(z) = (ez−ek)+ is not in L1(R), its Fourier transform ĥ(ξ) must be computed

in a generalized sense by fixing an imaginary component of the Fourier variable ξi < −1. Using (6.5) the

exact implied volatility σ can be computed by solving (5.2) numerically.

Moreover, it is worth noting that relationship (6.4) can be inferred from our implied volatility expressions.

Indeed, the dependence on β in expansions (6.2)-(6.3) is present only in the terms β2θ, |β|δ, sign(β)ρ, y+log β2

of the coefficients. For instance, we can write the zeroth-order term σ0 =
√
ey+log β2 =

√
eyZ , and the
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coefficient of (k− z) in σ1 is βδρ/4σ0 = |β|δsign(β)ρ/4σ0 = δZρZ/4σ0, as per the notations in (6.4). Similar

verification procedures for other terms confirm relationship (6.4).

In Figure 3 we plot our third-order approximation of the scaled implied volatility σ
(1/β)
Z (τ, λ) in the

Heston model with leverages β = {+2,−2} and with maturities τ = {0.25, 0.5, 1} years. For the longest

maturity τ = 1, we use the implied volatility expansion obtained by setting setting Y = V and choosing

a time-dependent expansion point for the Y process: ȳ(t) = E[Vt|V0 = ey]. For comparison, we also plot

the exact scaled implied volatility σ
(1/β)
Z (τ, λ) and the exact implied volatility of the ETF σX(τ, λ). The

exact scaled implied volatility σ
(1/β)
Z of the LETF is computed by obtaining call prices from (6.5) and then

by inverting the Black-Scholes formula numerically. The exact implied volatility σX(τ, λ) of the ETF is

computed in the same manner.

6.3 Limited SABR

The SABR model of Hagan, Kumar, Lesniewski, and Woodward (2002) is a local-stochastic volatility model

in which the risk-neutral dynamics of S are given by

dSt = VtS
γ−1
t StdW

x
t , S0 > 0,

dVt = δVtdW
y
t , V0 > 0,

d〈W x,W z〉t = ρdt,

where, to ensure the martingale property of S, the parameter γ is assumed to satisfy γ < 1 (Lions and Musiela

(2007)).

As in the CEV model, the process S in the SABR model may be absorbed at zero, yet our assumption

is that S > 0. Thus, we consider instead the limited SABR model (LSABR). In the LSABR model, the

underlying ETF, denoted Sε, has the following regularized dynamics

dSε
t = Vt

(
(Sε

t )
γ−1 ∧ εγ−1

)
Sε
t dW

x
t , Sε

0 ≫ ε > 0,

dVt = δVtdW
y
t , V0 > 0,

d〈W x,W z〉t = ρdt,

where ε > 0 is a fixed, arbitrarily small constant. As, for a given Vt, the volatility of Sε is bounded by

Vtε
γ−1, the process Sε remains strictly positive.

In log notation (X,Y, Z) := (logSε, log V, logL) we have, we have the following dynamics:

dXt = −1

2
e2Yt+2(γ−1)(Xt∨log ε)dt+ eYt+(γ−1)(Xt∨log ε)dW x

t , X0 = x := logS0 ≫ log ε,

dYt = −1

2
δ2dt+ δ dW y

t , Y0 = y := log V0,

dZt = −1

2
β2e2Yt+2(γ−1)(Xt∨log ε)dt+ βeYt+(γ−1)(Xt∨log ε)dW x

t , Z0 = z := logL0,

d〈W x,W y〉t = ρdt.

The generator of (X,Y, Z) is given by

A =
1

2
e2y+2(γ−1)(x∨log ε)

(
(∂2

x − ∂x) + β2(∂2
z − ∂z) + 2β∂x∂y

)
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− 1

2
δ2∂y +

1

2
δ2∂2

y + ρ δ ey+(γ−1)(x∨log ε)(∂x∂y + β∂y∂z).

Thus, using (3.3), we identify

a(x, y) = 1
2e

2y+2(γ−1)(x∨log ε), b(x, y) = 1
2δ

2, c(x, y) = − 1
2δ

2, f(x, y) = ρδey+(γ−1)(x∨log ε).

As we assume without loss of generality that x > log ε, the implied volatility approximation is independent

of ε. Using equations (5.6), (5.7) and (5.10) we compute

σ0 = |β|
√

e2y+2x(−1+γ), σ1 = σ1,0 + σ0,1, σ2 = σ2,0 + σ1,1 + σ0,2,

where

σ1,0 = τ

(
(β − 1)(γ − 1)σ3

0

4β2

)
+

(
(γ − 1)σ0

2β

)
(k − z),

σ0,1 = τ

(
−1

4
δσ0 (δ − ρσ0sgn(β))

)
+

(
1

2
δρsgn(β)

)
(k − z),

σ2,0 = τ

(
(γ − 1)2σ3

0

24β2

)
+ τ2

(
(2β(6β − 13) + 13)(γ − 1)2σ5

0

96β4

)

+ τ

(
7(β − 1)(γ − 1)2σ3

0

24β3

)
(k − z) +

(
(γ − 1)2σ0

12β2

)
(k − z)2,

σ1,1 = τ

(
(γ − 1)δρσ2

0

12 |β|

)
+ τ2

(
(γ − 1)δσ3

0 (β(6β − 7)ρσ0 − 5(β − 1)δ |β|)
48 |β|3

)

+ τ

(
(γ − 1)δσ0 (δ |β|+ (2β − 1)ρσ0)

24β |β|

)
(k − z) +

(
− (γ − 1)δρ

3 |β|

)
(k − z)2,

σ0,2 = τ

(
1

24
δ2
(
8− 3ρ2

)
σ0

)
+ τ2

(
1

96
δ2σ0

(
5δ2 + 4

(
3ρ2 − 1

)
σ2
0 −

14δρσ0

sgn(β)

))

+ τ

(
−δ2ρ (δ − 3ρσ0sgn(β))

24sgn(β)

)
(k − z) +

(
δ2
(
2− 3ρ2

)

12σ0

)
(k − z)2.

We omit the expression for σ3 for the sake of brevity. However, an explicit computations shows that σ3

contains terms of orders τ2, τ3, τ(k − z), τ2(k − z), τ(k − z)2 and (k − z)3. In Figure 4 we plot our

third-order approximation of the scaled implied volatility σ
(1/β)
Z (τ, λ) in the LSABR model with leverages

β = {+2,−2} and with maturities τ = {0.25, 0.5, 1} years. For comparison, we also plot the exact scaled

implied volatility σ
(1/β)
Z (τ, λ) and the exact implied volatility of the ETF σX(τ, λ), which are computed by

Monte Carlo simulation. As with the LCEV model, the coefficients in the LSABR model have a kink at

x = log ε. The kink can be smoothed as described in Remark 6.1.

7 Conclusion

In this article, starting from ETF dynamics in a general time-inhomogeneous LSV setting, we derive ap-

proximate European-style option prices written on the associated LETFs. The option price approximation

requires only a normal CDF to compute. Therefore, computational times for prices are comparable to

Black-Scholes. We also establish rigorous error bounds for our pricing approximation. These error bounds
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are established through a regularization procedure, which allows us to overcome challenges that arise when

dealing with a generator A(t) that is not elliptic.

Additionally, we derive an implied volatility expansion that is fully explicit – polynomial in log-moneyness

λ = (k − z) and (for time-homogeneous models) polynomial in time to maturity. To aid in the analysis of

the implied volatility surface, we discuss some natural scalings of implied volatility. Furthermore, we test

our implied volatility expansion on three LSV models (limited CEV, Heston and limited SABR) and find

that the expansion provides an excellent approximation of the true implied volatility.

The markets for leveraged ETFs and their options continue to grow, not only in equities, but also in

other sectors such as commodity, fixed-income, and currency. The question of consistent pricing, as we have

investigated for equity LETF options in terms implied volatility, is also relevant to LETF options in other

sectors. Naturally, the valuation of LETF options will depend on the dynamics of the LETFs and underlying

price process, which may vary significantly across sectors (see e.g. Guo and Leung (2015); Leung and Ward

(2015) for commodity LETFs). Nevertheless, it is both practically and mathematically interesting to adapt

the techniques in the current paper to investigate the implied volatilities across leverage ratios with different

underlyings. From a market stability perspective, it is important for both investors and regulators to under-

stand the risks and dependence structure among ETFs and the price relationships of their traded derivatives.
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τ = 0.25 τ = 0.25

τ = 0.5 τ = 0.5

τ = 1.0 τ = 1.0

β = +2 β = −2

Figure 2: Exact (solid – computed by Monte Carlo) and approximate (dashed) scaled implied volatility σ
(1/β)
Z (τ, λ)

under LCEV model dynamics plotted as a function of log-moneyness λ. For comparison, we also plot the exact

implied volatility of the LCEV model σ
(1)
Z (τ, λ) = σX(τ, λ) (dotted). Parameters: δ = 0.2, γ = −0.75, x = 0. For

each leverage ratio (β = ±2), as τ increases, the solid and dotted lines diverge, while the dashed and solid lines

remain so close they are nearly indistinguishable.
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τ = 0.25 τ = 0.25

τ = 0.5 τ = 0.5

τ = 1.0 τ = 1.0

β = +2 β = −2

Figure 3: Exact (solid – computed by Fourier inversion) and approximate (dashed) scaled implied volatility

σ
(1/β)
Z (τ, λ) under Heston model dynamics plotted as a function of log-moneyness λ. For comparison, we also plot the

exact implied volatility of the Heston model σ
(1)
Z (τ, λ) = σX(τ, λ) (dotted). Parameters: κ = 1.15, θ = 0.04, δ = 0.2,

ρ = −0.4, y = log θ. For β = ±2, as τ increases, the dotted lines start to deviate from the solid lines, but the dashed

and solids lines remain so close they are nearly indistinguishable.
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τ = 0.25 τ = 0.25

τ = 0.5 τ = 0.5

τ = 1.0 τ = 1.0

β = +2 β = −2

Figure 4: Exact (solid – computed by Monte Carlo) and approximate (dashed) scaled implied volatility σ
(1/β)
Z (τ, λ)

under LSABR model dynamics plotted as a function of λ. For comparison, we also plot the exact implied volatility

of the LSABR model σ
(1)
Z (τ, λ) = σX(τ, λ) (dotted). Parameters: δ = 0.5, γ = −0.5, ρ = 0.0 x = 0, y = −1.5. As

expected, as τ increases, the solid and dotted lines diverge, while the dashed and solid lines remain close.
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