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Abstract

Systems Medicine (SM) can be defined as an extension of Systems Biology (SB) to Clinical-Epidemiological disciplines
through a shifting paradigm, starting from a cellular, toward a patient centered framework. According to this vision, the
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three pillars of SM are Biomedical hypotheses, experimental data, mainly achieved by Omics technologies and tailored com-
putational, statistical and modeling tools. The three SM pillars are highly interconnected, and their balancing is crucial.
Despite the great technological progresses producing huge amount of data (Big Data) and impressive computational facili-
ties, the Bio-Medical hypotheses are still of primary importance. A paradigmatic example of unifying Bio-Medical theory is
the concept of Inflammaging. This complex phenotype is involved in a large number of pathologies and patho-physiological
processes such as aging, age-related diseases and cancer, all sharing a common inflammatory pathogenesis. This
Biomedical hypothesis can be mapped into an ecological perspective capable to describe by quantitative and predictive
models some experimentally observed features, such as microenvironment, niche partitioning and phenotype propagation.
In this article we show how this idea can be supported by computational methods useful to successfully integrate, analyze
and model large data sets, combining cross-sectional and longitudinal information on clinical, environmental and omics
data of healthy subjects and patients to provide new multidimensional biomarkers capable of distinguishing between dif-
ferent pathological conditions, e.g. healthy versus unhealthy state, physiological versus pathological aging.
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Introduction

There is a large debate about a possible definition of Systems
Medicine (SM). One idea is to define SM as an implementation
of Systems Biology (SB) in the Medical disciplines with a particu-
lar attention to clinical applications [1], including clinical
Bioinformatics and the discrimination of pathological states
and related morbidities and comorbidities.

The extension of SB (Table 1) to the clinical practice implies
the establishment of a connection between a molecular-cen-
tered to a patient-centered world, through an organ-centered
intermediate layer. This mapping (Figure 1) requires the exten-
sive use of computational tools such as statistical, mathemat-
ical and bioinformatical techniques [1].

Within this perspective, SM is deeply related to Personalized
(PeM) and Precision Medicine (PrM) [1–3]. PeM and PrM share the
idea of the centrality of the individual patient as the common
denominator for the development of tailored approaches such
as therapies, drugs and treatments, according to the genetic
background and, more in general, to the individual microenvir-
onment [3].

The role of the microenvironment is becoming crucial in the
comprehension of a variety of pathological and patho-physio-
logical processes, such as cancer, diabetes, aging and age-
related diseases [4–6]. Indeed, SM exploits, characterizes and
quantifies the concept of microenvironment by novel analytical
methods based on omics technologies and by the development
of adequate computational models [7].

A research field where the microenvironment is playing a
central role is those of aging and age-related diseases. The

microenvironment, mainly the circulating one, has been
described as related to inflammation, contributing to the defin-
ition of inflammaging, a complex phenotype that impacts in a
variety of age-related diseases [4–6] as demonstrated by a series
of experiments, collectively called ‘parabiosis’ [8]. These results
gave birth to the concept of Communicome, defined as the set of
plasmatic proteins involved in the rejuvenation effect [8].

The parabiosis experiments can be interpreted within the
framework of the so-called ‘bystander effect’ [9]. The bystander
effect has been observed during aging progression, cancer in-
duction and other pathologies in which it is believed to explain
the systemic propagation between cells and organs [10].

In the case of human body, the most accessible fluids are the
serum and urines. The composition of these fluids can be as-
sessed by a variety of methods, aimed to identify different frac-
tions, such as metabolite concentrations, proteins and nucleic
acids. The identification of these fractions is accomplished with
omics methodologies such as metabolomics, proteomics and
deep sequencing. Thus the body fluids, including both extra-
and intracellular, belong to the individual microenvironment
(‘le milieu interior’) [11]. Our microenvironment is in dynamical
equilibrium with a variety of cells, hosting, among others, nutri-
ents and molecular messages crucially involved in the regula-
tion of the cellular populations. The microenvironment can be
considered as a particular ‘habitat’ where different cells, and in
some cases other hosted organisms, live and interact. Within
this perspective, the role of microenvironment in shaping the
other components of the body can be modeled from an ecolo-
gical point of view. The same ecological approach can be used

Table 1. Increasing complexity and spreading of inflammation

Layer BioMed hypothesis Technology Computation

Cellular Inflammation
Senescence

Epigenetic dysregulation
Microscopy

Stochastic modeling
Statistical distribution

analysis inferential testing
Organ-tissue Spreading of inflammation,

including propagation of
senescence

Sequencing
Metabolomics
Metagenomics

Bayesian methods
Ecological modeling
Diffusion models

Patient Systemic inflammation
Cancer
Aging

Imaging (PET)
Deep sequencing, including

SNP detection

Population models
Association testing (odds ratio,

logistic regression)
Texture analysis

Note. The propagation of inflammation through different layers of complexity can be disentangled by ad hoc combination of computational and technological tools,

aimed to validate the biomedical hypotheses.
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for the modeling of ecosystems that are in parabiosis with our
body such as the gut microbiota (GM), the circulating virome
(CV) and the transposable elements (TE) in our DNA [12–14],
which have coevolved with the human host and his immune
system (IS). This evolutionary-ecological framework is deeply
related to inflammaging progression, given the role of the
microenvironment, whose composition modulates the inflam-
matory process (pro- or anti-inflammatory action).

As a further computational tool, we have to mention complex
networks [15] and their extension to multiple networks: multi-
plex and multilayer networks [16, 17]. Multilayer networks can
be used for the representation and quantification of the inter-
actions arising from the internal environment of the human
body and for those coming from the external environment. The
architecture of complex networks is a natural embedding for dif-
fusion processes as a function of topological constraints such as
those observed during inflammatory processes.

The unifying biomedical hypothesis:
inflammaging as the result of communicome
and propagation

Chronic, low-grade inflammation is recognized as a main charac-
teristic of aging bodies. This phenomenon, also indicated as
inflammaging [4] is particularly important because practically all
the major age-related diseases have an inflammatory pathogenic
component [5]. Thus, age is a major risk factor for these diseases,
and because they all share inflammaging as a prominent deter-
minant, it is clear that inflammaging is a privileged target to
combat age-related diseases as a whole and not one by one [6].
According to the most recent studies, inflammaging appears to
be much more complex and entangled than we previously
thought, and a variety of interconnected tissues, organs and sys-
tems participate in producing inflammatory stimuli [4–6].

Among them we mention the IS, the adipose tissue, the
muscles and the liver. A particular attention deserves the GM,

and the variety of inflammatory stimuli sent through the gen-
eral circulation to all the body organs [18].

The general idea is that the inflammatory stimuli fueling
inflammaging can be exogenous (e.g. persistent viral infections,
diet, lifestyle, see Figure 2) [19], but probably most of them are
endogenously produced by the body and should be identified
with the self-debris resulting from the continuous turnover of
cells and tissues [4], e.g. circulating DNA and RNA (the virome)
[13], pro-inflammatory agalactosylated N-glycans [20] and pro-
inflammatory circulating microRNA (‘inflammaMIR’) [21].

There is a general consensus that the most important phe-
nomena involved in inflammaging at the cellular and molecular
level are the following:

(i) Cell senescence and its pro-inflammatory senescent-asso-
ciated secretory phenotype triggered by damaging agents (radi-
ation, viruses) and likely by the continuous exposure to the
above-mentioned self-debris [22]. It is interesting that cell sen-
escence can spread to neighboring cells (‘senescence by senes-
cence’) [23].

(ii) DNA damage, including telomeres, by Reactive Oxygen
Species (ROS) and by a variety of other agents, which in turn
triggers a DNA damage response and the production of pro-in-
flammatory compounds [24].

All these mechanisms suggest targeted therapies aimed to
reduce inflammaging: elimination of senescent cells [25], diet
enriched with omega3 fatty acids, Mediterranean diet [26] and
other nutritional strategies, including caloric restriction
(adapted to humans and taking into account genetic back-
ground) and intermittent fasting (Figure 2).

Contemporary research is highlighting the role of inflamma-
tion in cancer induction and progression. Inflammaging
seems therefore a unifying mechanism shared by different
pathological processes and not just by aging and age-related dis-
eases. The role of inflammation for cancer progression has been
hypothesized by ancient Greeks and progressively confirmed by a
number of researchers [27] The inflammatory state is sustained
by cells and molecules that shape the microenvironment

Figure 1. SM as extension of SB. The SB basic cycle (red) is composed of Biological hypotheses, Technology (mainly devoted to omics measurements) and computa-

tional tools (statistical and modeling methods). The core SB cycle is then extended by increasing its complexity in a multi-scale way; starting from the cellular-

subcellular domain, we reach the individual domain (the domain identified by a single patient and its internal structure in terms of organs and tissues). Finally, the

higher domain is constituted by collection of patients and their interactions in an epidemiological context.
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(Figure 3). Chronic inflammation affects all cancer stages: it
increases the onset risk, supporting the initial genetic mutation
or epigenetic mechanism, and it leads to cancer initiation, pro-
moting tumor progression and supporting metastatic diffusion.

The spreading character of inflammation has been quanti-
fied by the concept of Communicome, defined by [8] as the cir-
culating plasma proteins (i.e. microenvironment) with
endocrine activity, including inflammatory cytokines, hor-
mone-like proteins, growth factors and so forth. These factors
are involved in intercellular and organ communication, and
their composition changes with age and pathologies are crucial
for discriminating normal versus pathological trajectories.

Another major player in shaping the individual microenviron-
ment is the GM (Figure 3). GM is a microbial ecosystem with a
complex dynamics that derives from the interactions with com-
ponents such as the virome (the set of viruses in the host body)
and the IS [28]. The collective genome of these symbiotic micro-
organisms (called ‘Microbiome’) [29] constantly interacts with the
host genome, forming the so called ‘Metagenome’ [30]. The mi-
crobial genome is in dynamical relation with the host organism,
helping in crucial functions such as metabolic processes (e.g.
food absorption), short-chain fatty acids and vitamin production
[31], but also shaping, controlling and protecting the IS develop-
ment [32], so fueling the (co)-evolution of the host.

It is through the interaction between the different compo-
nents of the metagenome that the host health phenotype is
defined [33]. GM is linked, through an interdependence relation-
ship, to the host IS [34] and metabolism [35], becoming crucial

for a large number of physio-pathological conditions and dis-
eases. These include inflammatory and metabolic diseases, in
particular obesity [36], metabolic syndrome (MS) and type 2 dia-
betes, as well as aging [37] and cancer. Nowadays, the availabil-
ity of Next-Generation Sequencing (NGS) Methods, for the
characterization of bacterial communities, contributed to the
creation of a new research field, called Metagenomics.
Metagenomics is the set of omics measurements that quantify
the composition of the metagenome and the interactions be-
tween the host and the microbiome at multiple levels: DNA
(metagenome), RNA (meta-transcriptome), protein (meta-prote-
ome) and metabolic network (metabolome).

The ecological framework: the examples of GM
and TE

Two relevant examples of the microenvironment-related ecolo-
gical hypothesis feasibility are GM and TEs.

Regarding GM, there is a growing interest to the quantifica-
tion of biodiversity and dynamics that brings to a certain com-
position of this complex ecosystem and, moreover, for the
assessment of its homeostasis degree, its support capacity, as
well as for the prediction of its temporal evolution. From this
perspective it is clear that mathematical models have a major
role [38]. GM dynamics can be described from an ecological
point of view, with a focus on GM biodiversity, and in particular
on one of its components: the Relative Species Abundance dis-
tribution (RSA). RSA is defined within a single phylogenetic level

Figure 2. Patient data space. Personalized medicine gathers together a huge amount of data characterizing a single patient (red shape). This integrated system can be

interpreted as a network of networks. These integrated networks belong to different complexity layers, i.e. the omics layer (e.g. DNA and cells), the anatomical-func-

tional layer (e.g. skeleton, circulatory system, nervous system, lymphatic system) and finally, the environmental layer (e.g. dietary habits, diseases and drugs, social be-

haviors and sports). In particular, the anatomical-functional scale is a spatial multiplex network, i.e. nodes can be considered as specific regions in space, connected by

different functional links. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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and refers to how common or rare a species is in comparison
with other species and it is derived from a single family of stat-
istical distributions, ranging from the Log-Series to a highly
skewed and unveiled Log-Normal [39] (Figure 4). Modern ecolo-
gical theories can be distinguished in essentially two main
schools of thought: the niche assembly perspective and the dis-
persal one [40].

The niche assembly perspective states that communities are
groups of interacting species whose presence or absence and
even their relative abundance can be deduced from deterministic
‘assembly rules’ that are based on the ecological niches or func-
tional roles of each species. According to this view, species coex-
ist in an interactive balance and a stable coexistence among
competing species is made possible by niche partitioning [41].

Figure 3. The unifying BioMedical hypothesis of Inflammation as a driver of inflammaging and age-related pathological processes. The propagating (bystander) charac-

ter of inflammation and inflammaging is strictly related to the microenvironment, including the circulating one (e.g. the communicome, virome, mobilome and GM),

and its suggested interpretation from an ecological point of view.

Figure 4. RSA of one GM sample from Claesson et al. (gray histogram) fitted with a mixture of two Negative Binomials (black line). The RSA is a measure of biodiversity

and is usually represented in the form of Preston Plot, plotting the number of species that have a certain number of individuals (in log 2). The neutral model proposed

by Volkov et al. predicts a Negative Binomial distribution for the RSA and fits well the TE population. The GM RSA is rather fitted by a mixture of two Negative

Binomials, meaning that a relaxation of the neutrality assumption is needed. The GM is thus well described by a hybrid niche-neutral model, in which two neutral

niches are considered.
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On the other hand, the dispersal assembly (neutral theory)
perspective asserts that communities are open, non-equilib-
rium assemblages of species largely put together by chance, his-
tory and random dispersal [40]. Species come and go, and their
presence or absence is dictated by random dispersal and sto-
chastic local extinction. Ecological communities are structured
entirely by ecological drift (i.e. demographic stochasticity), ran-
dom migration and random speciation.

These two theories are not mutually exclusive; in fact it is
possible to identify regimes where both of them are present. In
particular, inflammaging supports both theories: the micro-
environment concept is conceivable as an ecological niche,
while the neutral theory efficiently describes and predicts RSA
shape also in presence of external perturbations (diet, lifestyle,
etc.) both for GM and TE.

TE ecosystem (the so-called mobilome) is another component
of the microenvironment, related to the CV and describable as an
ecological system living in parabiosis or symbiosis (sometimes
parasitical) relationship with the host DNA. TEs are also known
as selfish DNA or jumping genes. They are present in DNA of

eukaryotic and prokaryotic organisms [42] and often constitute a
large fraction of many genomes (45% of the human genome) [42].

TEs are DNA sequences that can change their position inside
the genome through a process called transposition (or retro-
transposition if the process is RNA mediated). This process can
be replicative, i.e. producing another copy that will be inserted
in another location in the genome (insertion), or not. The repli-
cative process will invade the host genome, increasing the gen-
ome length. TE activity may affect negatively, neutrally and
occasionally positively the host fitness, generating a mutual se-
lection owing to the interaction between host and elements liv-
ing in its genome [43]. With the improvement of genomic
sequencing techniques and the increasing of sequencing data, a
number of computational tools appeared: ‘RepBase’, ‘Repbase
Update’, ‘Pythia’, ‘CENSOR’, ‘RepeatMasker’ [44]. These data-
bases and software tools provide information on TE sequences,
copy number and their insertion coordinates in the genome.

The analogy between an ecological system and TE has been
proposed in [12]. If a copy of a TE is considered as an individual,
one TE species comprises closely genetically related TE copies

Figure 5. Single-probe versus region-centric approaches for the analysis of DNA methylation microarrays. CpG DNA methylation measured by Infinium 450 k micro-

arrays is expressed as a continuous value ranging from 0 (the CpG site is unmethylated in all the analyzed DNA molecules) to 1 (the CpG site is unmethylated in all the

analyzed DNA molecules). In the analysis of differential methylation between two groups of samples, single-probe and region-centric approaches return different re-

sults. Single-probe analysis favors genomic regions like the one reported in box A, where a unique CpG site strongly differs in its methylation value between group A

and group B. In the genomic region reported in box B, on the contrary, differences in DNA methylation values between groups A and B are smaller, but they involve sev-

eral adjacent CpG sites; this configuration is preferentially identified by a region-centric approach. In the figure, CpG sites are represented as lollipops. A colour version

of this figure is available at BIB online: http://bib.oxfordjournals.org.
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that share the same interaction with their environment. The
community of a genome contains all the copies of TEs irrespect-
ive of their subfamilies, families or classes, and it is analogous
to the biotic portion of an ecosystem. The abiotic component is
composed by the genes and various kinds of noncoding se-
quences and the intracellular environment.

It is still not clear whether TE community structure is mainly
owing to specific element–host interaction rather than stochas-
tic processes; thus, both niche and neutral theories of ecology
should and can be taken into account.

Following from the concept of ecological niche, the ‘genomic
niche’ for each TE species is inferred from its limiting factors
and its genomic traits, which are any biological feature involved
in its relationship with the genome. Traits could include prefer-
ential site attachment in the genome, strategy of replication,
propensity to undergo horizontal transfer (transfer to a new
genome out of the germ line). The neutral theory of ecology [45,
46] instead considers a dynamics driven by stochastic forces at
the level of individuals, providing an alternative explanation to
the establishment of complex TE communities.

Technologies and computational tools
Metabolomics

Metabonomics portrays a well-recognized SM approach involv-
ing the study of metabolic responses to stimuli with the aim to
understand the dynamics as well as organ-specific biochemical
responses [47, 48]. Metabolomics generates multivariate infor-
mation in cells, tissues and multi-compartmental biological
systems, which are a reflection of changes in biological proc-
esses [31, 49, 50]. By the global study of low molecular weight
compounds (<1500 Da), it provides the characterization of indi-
vidual metabolic phenotype. Because specific physiological
states, gene expression and environmental stressors can cause
changes in the steady state of a biological system, monitoring
metabolic perturbations provides a unique insight into intra-
and extracellular regulatory processes involved in the metabol-
ism [51–53]. To analyze the metabolites, compromising the
metabolome, at different concentration and in multiple cellular
compartments, different analytical technologies are jointly
used. These metabolites include intermediaries of the metabol-
ism, signaling molecules such as hormones and other second-
ary metabolites [48]. These techniques are mainly based on 1H
nuclear magnetic resonance (NMR) and mass spectrometry
coupled gas/high-performance liquid chromatography, with the
addition of ultrahigh-performance liquid chromatography sys-
tems coupled to mass spectrometry [54]. NMR-based metabolo-
mics provides efficient high-throughput analysis to holistically
profile hundreds of metabolites with no a priori selection, while
MS is characterized by its increased sensitivity, allowing precise
quantification but, owing to increased steps in sample prepar-
ation, on a reduced number of samples. The two methods are
comprehensively used to generate multivariate information,
which are then de-convoluted, by advanced statistical tools, to
provide meaningful biological readouts [55, 56]. Metabolomics
applications are today directly implemented to large popula-
tion-based studies to enhance our understanding of the role of
genetics, environmental factors and their interactions on indi-
vidual susceptibility to disease and health [57].

Epigenomics

The inclusion of epigenetic data could play a consistent role in
SM applications. The term ‘epigenetics’ defines the interplay

between the genetic background and the environment that,
through different molecular mechanisms, eventually produces
the observed phenotypes. In particular, epigenetic mechanisms
influence the expression of the genes and the penetrance of the
different allelic variants, without changing, in term of sequence,
the DNA [58]. Among the different epigenetic mechanisms such
as micro RNA, proteins ubiquitination, histone methylation and
acetylation, one of the most studied one is the methylation of
DNA.

DNA methylation occurs in specific genomic sequences, i.e.
the CpG dinucleotide motif, where a cytosine is followed by a
guanine (Fig. 5). These CpG sites are about 30 million through-
out the genome, and there are small genomic regions of about
500–2000 bp that are significantly enriched in CpG sites, which
are called ‘CpG islands’, classified as genic CpG islands and
non-genic CpG islands, if they map nearby a gene or if they map
in a gene desert region accordingly [59].

While the role of the non-genic CpG islands is still not clear,
the genic CpG islands are well-recognized functional elements,
whose methylation is often correlated with the expression of
the nearby gene. Even though this is not a stringent rule, in gen-
eral, the hypo-methylation of a genic CpG island is correlated
with the hyper-expression of the correspondent gene, and vice
versa, the hyper-methylation correlates with its hypo-
expression.

The state of the art in epigenomic technology is the NGS,
which has been successfully applied to the study of the DNA
methylation. The field of human aging has gained particularly
benefits by these technologies. Indeed, the age-related methyla-
tion changes are among one of the major molecular remodeling
phenomena that occurs during aging [60–62]. These results
strongly support the idea that DNA methylation on the whole is
deeply involved in the aging process and its related effects on
physiological fitness. This poses DNA methylation as one of the
sharpest arrows for the system medicine arch. Nevertheless
there are many issues on the use of such data and on how inte-
grate them with the other omics markers.

Next-generation sequencing

The application of NGSs has become a powerful approach for
determining DNA and RNA sequences in ‘omics’ studies (e.g.
genomics, viromics, metagenomics, transcriptomics and epige-
nomics). The NGS techniques have been widely used to profile
genetic variation of human and environmental samples, as they
permit high-resolution and high-throughput detection of DNA
and RNA polymorphisms.

The main steps of detecting DNA/RNA polymorphisms, the
also called ‘variants’, in NGS data are: quality control check,
mapping reads to a reference genome, alignment processing,
variant calling and annotation.

The quality control check aims to remove sequence artifacts
produced by sequencing platforms. It is performed by trimming
or filtering reads according to base quality scores thresholds.
The FASTX-Tool kit (http://hannonlab.cshl.edu/fastx_toolkit/) is
an example of software that offers a collection of tools for qual-
ity control on sequencing data.

The accuracy of the read mapping step has a crucial role in
variant detection, as reads that are not correctly aligned can
lead to errors in variant and genotype classification. Recently,
several fast and memory-efficient software solutions were de-
veloped, such as Bowtie2 [63], SOAPv2 [64] and BWA [65]. The
manipulation and the processing steps of indexing, sorting and
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duplicate removal of alignment files can be done by Picard
(http://broadinstitute.github.io/picard/) and SAMtools [66].

Previous studies demonstrated that the Phred-scaled quality
scores produced by the sequencing platforms may not accur-
ately reflect the true base-calling error rates [67, 68]. As the vari-
ant calling algorithms depend on these scores, to assure their
accuracy, a recalibration process can be performed by SOAPsnp
[68] and GATK [69].

Determining polymorphisms in sequencing data, also
referred as ‘variant calling’, permits the classification of allelic
genotypes and, depending on the experimental design, also per-
mits the discovery of molecular events such as somatic muta-
tions, loss of heterozygosity, mRNA editing and clonal evolution
of cancer samples. This kind of information is essential to dif-
ferentiate between ‘normal’ and tumoral tissues and can be
used for the construction of biomarker signatures useful to pro-
vide computational tools for early diagnosis of cancer risk. The
variant calling can be performed by general-purpose software
products, as GATK and SAMtools, or by software solutions de-
signed to specific purposes, like VarScan2 [70], SomaticSniper
[71], JointSNVMix [72], Strelka [73] and MuTect [74], that were
developed for the joint analysis of matched normal-cancer
samples.

The final step is the variant annotation, and so variants can
be prioritized according to their biological meaning and/or dis-
ease-causing potential. The Annovar [75] and SnpEff [76] are ex-
amples of software designs that perform gene-based
annotation of human variants, which take in account informa-
tion also present in dbSNP and 1000 Genomes databases.

The choice of tools and parameters for sequencing data ana-
lysis may have great impact on the final results and it will vary
according to the type of sample, sequencing platform and ex-
perimental design.

NGS methods are widely used in metagenomics and are
based on the taxonomic value of 16 s RNA for the microbial clas-
sification. Usually 16 s RNA are massively sequenced by various
methods (e.g. 454, ion torrent) and after that, the main step of
16 S rRNA sequencing data processing is indeed clustering.
Clustering means grouping sequences according to some simi-
larity criterion and it is exploited by two fundamental analysis:
taxonomic classification of bacteria in the sample and ecolo-
gical description of such population.

The two widely used approaches put sequences into bins
based on either their similarity to reference sequences (i.e. phy-
lotyping by reference clustering) or their similarity to other se-
quences in the community [i.e. Operational Taxonomic Units
(OTUs)] [77].

Reference clustering is of course helpful if one’s aim is taxo-
nomic classification, but it implies a loss of information that
makes it almost useless if the purpose is to give an ecological
description of the microbiota community.

The distribution of OTUs (RSA, see Figure 4) is an important
component of biodiversity. To assess the microbiota RSA from
16 S rRNA sequencing data, the process is to cluster sequences
with a de novo algorithm, thus producing the so-called OTUs.
Because 16 S rRNA gene is a highly conserved sequence of the
genome, sequences that belong to the same OTU will be phylo-
genetically closed and could be used as ‘Species’ to compute the
RSA.

Many different algorithms have been suggested to carry out
de novo clustering: BLAST [78], MOTHUR [79], QIIME [80], CD-HIT
[81] and UCLUST [82]. In particular, UCLUST is a greedy algo-
rithm that uses less memory and is even faster than CD-HIT [82,
83]. It starts with an empty database in memory and then reads

the sequences in input order. Sequences with a similarity
greater than 97% are typically assigned to the same species,
those with similarity >95% to the same genus, and those with
>80% to the same phylum. OTUs defined by a certain similarity
threshold represent therefore bacteria ‘species’ at a particular
phylogenetic level. It follows that starting from OTU’s abun-
dances, one can easily build the RSA distribution by plotting the
number of species (y-axis) that have a certain number of indi-
viduals, i.e. sequences, (x-axis), and have a measure of the
microbiota biodiversity. Because of the RSA long tail, it is usual
to consider the logarithm to base two of the x-axis, obtaining
the so-called Preston plot (Figure 4).

A remarkable result is that (see Figure 4) the RSA curves ob-
tained from microbial and TE follow the same statistical distri-
bution. In particular, a population dynamics explanation has
been given in [45] and [46], by a stochastic neutral model in
which species interaction is neglected and the resulting RSA is
described by a Negative Binomial Distribution. The parameters
of this distribution are particularly sensitive to variations such
as dietary regimes (e.g. the amount of proteins, fatty acids and
fibers), pathological conditions (e.g. obesity, MS and type 2 dia-
betes) and aging. The characterization (even in the multidimen-
sional case) of these parameters provides a further and
advanced method aimed to classify different health states.

Multilayer networks: a computational tool for
multi-scale integration and diffusion

Network theory is a major branch of the so-called complexity
science: it investigates the global topology and structural pat-
terns of the interactions among the constituents of social
groups, infrastructures, brain and biological networks [15, 84,
85]. Networks are the most natural way to model many types of
biological knowledge at different levels: from single-cell protein
interaction, transcriptional regulation and metabolic networks,
up to neuronal, IS or ecological networks involving multiple
cells or organisms.

Network approaches can be useful, in a Personalized
Medicine perspective [3], for the following purposes:

• Community detection (e.g. identification of functional modules

or patient stratification) [86, 87].
• Centrality measures for ranking network elements (nodes,

edges), from classical measures like Betweenness Centrality, to

more recent ones, also suited for dense and weighted networks

[88, 89].
• Characterization of network ensembles as null models, to iden-

tify nonrandom patterns in real networks and for multilevel net-

work analysis embedding a priori biological information [90–92].

The omics era has converged to the era of ‘big data’ for all
types of biological information: genomics, proteomics, interac-
tomics, cellomics, organomics, in vitro and in vivo imaging [3],
and it has generated a new approach to medicine, i.e. SM. The
definition of SM is deeply related to complex networks: it in-
volves a systemic view of the organism where the various build-
ing elements are considered in their interplay [16, 93, 94]. A
paradigmatic example is the networks of human diseases. The
diseasome [95] is a bipartite network that connects human dis-
eases (disease phenome) and human genes (disease genome).
The strong connectivity of molecular systems implies that a
specific dysfunction of an element propagates throughout the
network of interactions and affects the activity of other compo-
nents. Therefore, different dysfunctions can lead to the same
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effect through different pathways. The concept of ‘disease
module’ has been proposed to indicate a group of network
components whose disruption leads to a particular disease
phenotype.

Single-target therapies may fail because they are not con-
templating the underlying network characteristics during target
identification [96]. On the other side, a drug used for a disease
could reveal itself of valuable use also for other diseases
strongly connected to the original target node. Two examples of
network-based disease targeting are the ‘central hit strategy’,
that selectively focuses on central nodes/edges in the biological
network and the ‘network influence strategy’, in which several
neighbors of central nodes/edges are targeted instead [94].
These approaches require detailed knowledge of the underlying
networks and of its dynamics, as for example by controllability
approaches, i.e. the study of how specific nodes can shift the
dynamical status of a network [96–99].

Each patient status can be described by several networks, e.g.
related to its genomic, proteomic or metabolic profile. When
gene expression data are available, they can be mapped onto pro-
tein–protein networks, thus integrating general biological know-
ledge and sample-specific information at multiple levels (from
the whole network to a single gene or pathway) [100].

Further, each patient can be summarized by a vector of net-
work observables, like betweenness centrality, spectral central-
ity [88], community labels [86] or single-node entropy measures
[100], and suitable clustering/discrimination algorithms can
help to stratify or classify such samples. A possible vector is
related to the concept of diffusion of information throughout a
network. This measure has been applied to the stratification of
tumor mutations [101], the association of genes and protein
complexes with diseases [102], the identification of biomarkers
in genome-wide studies [103, 104] and the relation between viral
(Epstein Barr Virus (EBV), Human Papilloma Virus (HPV) and
Hepatitis C Virus (HCV)) targets and the corresponding cellular
response [105, 106]. Diffusion algorithms simulate the diffusion
of information from a subset of vertexes to all the others. At the
end of the process, the amount of information per vertex de-
pends both on the initial distribution of information and on net-
work topology; therefore, it permits to rank all vertexes in
relation to their network proximity to the subset of vertexes
that carry the initial information.

So far, all the different networks for the same sample have
been investigated separately. Recently, framework of ‘multi-
layer networks’ has been introduced [16, 107–109]. SM seems
naturally embedded in a multilayer network.

Multilayer networks might represent the tools to successfully
combine the interactions between the different constituents of
the cell, and the answer to the purpose of personalized medicine
to define a ‘quantified self’ or for assessing global wellness [3].
For example, a multilayer network provides novel approaches for
the combined analysis of samples in different states [109].

Integrative multi-omics approaches offer a more compre-
hensive picture, especially when embedded in a priori biological
knowledge [110], and different layers of disease-related infor-
mation can be analyzed altogether [111]. Some multilayer inte-
grative approaches, like iCluster [112] and MDI (Multiple Dataset
Integration) [113], can be applied to several types of data sets,
while others, such as Camelot [114] and CNAmet [115], were de-
veloped for specific combinations of omics. The integration
strategies can be sequential or simultaneous: sequential
approaches refine the results of one layer using further layers;
conversely, simultaneous approaches jointly analyze all layers
without imposing an a priori order.

Formally speaking [16], a multilayer graph M is described by
a set of M graphs {Ga}(called layers) and by a set of connections
between nodes of different Ga and Gb (‘interlayer connections’,
see Figure 6, red edges). ‘Intralayer connections’ connect nodes
in the same layer (Figure 6, green and blue edges). We denote
with Aa ¼ aa

ij

n o
2 RNa�Na the adjacency matrix of the network

layer Gaand by Aab ¼ aab
ij

n o
2 RNa�Nb the adjacency matrix repre-

senting interlayer connections between nodes of different Ga

and Gb. The adjacency matrix of the projection network is indi-
cated as AM (shown in Figure 6).

Multilayer networks can be distinguished in multiplex net-
works [116–119] and interacting networks of networks [120, 121].
In a multiplex network, the same set of nodes has different
types of interactions in each layer. In the latter, nodes of differ-
ent layers represent different elements of the system, as in the
cell, where metabolites, proteins and transcription factors are
distinct biological entities [109]. These systems show novel crit-
ical phenomena and dynamical processes [122–124]. Multiplex
features like degree correlation [125] determine whether a hub
in one layer is also a hub in another layer, while the overlap
quantifies how much two nodes of the network interact in sev-
eral networks at the same time. Recent application to social or
biological weighted networks [108, 109] show how novel and
relevant information can be uncovered only by exploiting the
multiplex nature of such systems. In a typical case-control de-
sign, e.g. cancer versus healthy samples, co-expression net-
works (based on sample omics measurements) are naturally
embedded in a case-control duplex [109]. This duplex naturally
stratifies in the backbone of interactions shared by both layers,
highlighting layer-specific relations and behaviors.

SM approaches can be embedded in network of networks [3]
or in multiplex networks (Figure 7), according to the model as-
sumptions and to the available observables. The single-layer
measures must be modified to take into account the multilay-
ered structure, such as for the definition of shortest paths [126].
Centrality measures [127] and Network entropy [100, 107, 109]
can be redefined onto such structures, extending their meaning
over different types of nodes or relationships. A still unexplored
field concerns the use of information in some layers as priors
for network-based statistical analysis of a single layer. This can
be exploited for network reconstruction or for multidimensional
clustering [128], with the features of one layer used as con-
straints for the other layers.

A multiplex network approach has been used to find recur-
rent subgraphs in co-expression networks from biological data

Figure 6. A representation of a generic multilayer network composed by two

graphs: G1 and G2. The interlayer connections are in red, while the intralayer

connections are in green for graph G1 and in blue for graph G2. The adjacency

matrix of the related projection network proj(M) is displayed in the lower-right

corner. A colour version of this figure is available at BIB online: http://

bib.oxfordjournals.org.
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[129]. These subgraphs can be associated with functional mod-
ules, protein complexes or transcriptional modules, for particu-
lar phenotypic conditions, confirming how phenotypes are
related to complex structures of the genetic network. In the
same context, sub-network extraction based on multi-objective
optimization of several criteria permits the identification of
modules enriched in multi-omics information [130].

Last but not least, multiplex networks are the ideal formal-
ism for time-evolving networks [131]: if the same measure-
ments are available at different stages (e.g. at disease onset,
during and after therapy), neglecting time-dependence of the
links compromises, from the point of view of the personalized
medicine, the correct reconstruction of patient’s history and
disease progression.

Conclusion and perspectives

In this article we discussed the hypothesis that inflammation/
inflammaging can be a unifying mechanism for SM. The rea-
sons are rooted in: (i) the multi-scale character of inflammaging,
that starts as a local phenomenon and subsequently propagates
at a systemic level; (ii) the involvement of the microenviron-
ment as an active medium for exchanging signals between dif-
ferent layers of biological complexity; (iii) the possibility to use
ecological modeling to describe and predict the behavior of sys-
tems such as the GM and the Mobilome; (iv) the natural embed-
ding of SM in a multilayer network formalism, capable to
integrate multi-omics data.

Future challenges will investigate ecological niche and asso-
ciation dynamics of microbiomes by using 3D cartography of
human body [132]. One important direction will be the study of
the impact of human microbiome distribution on immunity and
on the tissue-specific epigenomic marks of disease- and trait-
associated genetic variants (see [133], for a large collections
of human epigenomes). This could be done for different

populations, human mobility groups in routine [133] and shift
conditions. This integrated analysis will give ground for a better
understanding of the evolution of comorbidities and multi-mor-
bidities, particularly in presence of infectious diseases and for
finding appropriate therapies [134, 135].

We strongly believe that the combination of these concepts
and tools will be the bases for a SM focused on the comprehen-
sion of patho-physiological processes such as aging and age-
related pathologies, including cancer, and they will pave the
way toward a better understanding of the differences between
health and disease states.

Key Points

• Inflammation is a unifying Biomedical hypothesis par-
ticularly attractive for Systems Medicine as it is multi-
scale, multi-organs and propagating among multiple
spatial and temporal scales.

• Nowadays sequencing technologies are among the
most powerful methods to achieve omics information
from biological systems (Metagenome, Virome,
Mobilome).

• All biological systems are communicating, so the
Communicome is crucial, as well as its metabolomic
characterization.

• An emerging strategy for the description and predic-
tion of interconnected biological systems, including
tissues and organs, is to model them as ecosystems,
remarking the role of the environment in the propaga-
tion process.

• The human body, within the Systems Medicine vision,
can be mapped onto a multilayer network, capable to
model and quantify the endogenous and exogenous
interactions.

Figure 7. A possible multiplex architecture for SM: in a multiplex network, the same set of nodes (patients) has different types of interactions in each layer. Each layer

corresponds to a given omics measurement, and a link might be a similarity measure between two people. We represent only few layers for the sake of simplicity. The

bottom layer is divided into Genetics and Environment that may have a different role in the causation of a given phenotypical trait (e.g. clusters). A colour version of

this figure is available at BIB online: http://bib.oxfordjournals.org.
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