
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Halgas, Lukas and Agrafiotis, Ioannis and Nurse, Jason R. C. (2019) Catching the Phish: Detecting
Phishing Attacks using Recurrent Neural Networks (RNNs). In: 2019 World Conference on
Information Security Applications. . (In press)

DOI

Link to record in KAR

https://kar.kent.ac.uk/75746/

Document Version

Author's Accepted Manuscript

Catching the Phish: Detecting Phishing Attacks
using Recurrent Neural Networks (RNNs)

Lukáš Halgaš1, Ioannis Agrafiotis1, and Jason R.C. Nurse2

1 Department of Computer Science, University of Oxford, United Kingdom
{lukas.halgas,ioannis.agrafiotis}@cs.ox.ac.uk

2 School of Computing, University of Kent, Canterbury, United Kingdom
j.r.c.nurse@kent.ac.uk

Abstract. The emergence of online services in our daily lives has been
accompanied by a range of malicious attempts to trick individuals into
performing undesired actions, often to the benefit of the adversary. The
most popular medium of these attempts is phishing attacks, particularly
through emails and websites. In order to defend against such attacks, there
is an urgent need for automated mechanisms to identify this malevolent
content before it reaches users. Machine learning techniques have gradually
become the standard for such classification problems. However, identifying
common measurable features of phishing content (e.g., in emails) is
notoriously difficult. To address this problem, we engage in a novel study
into a phishing content classifier based on a recurrent neural network
(RNN), which identifies such features without human input. At this stage,
we scope our research to emails, but our approach can be extended to
apply to websites. Our results show that the proposed system outperforms
state-of-the-art tools. Furthermore, our classifier is efficient and takes
into account only the text and, in particular, the textual structure of the
email. Since these features are rarely considered in email classification,
we argue that our classifier can complement existing classifiers with high
information gain.

Keywords: Phishing · Machine Learning · Recurrent Neural Networks ·
Natural Language Processing · Web security.

1 Introduction

Advances in computer security have raised confidence in internet safety leading
to e-commerce, internet banking and other means of sending, managing and
receiving money online. Unfortunately, the advent of online services has been
accompanied by illicit attempts to sham such transactions to the benefit of
malicious entities. Perhaps the most popular and easy to execute attack, which
poses a threat to organisations, institutions and simple users, is phishing.

Phishing is a type of cyber-attack that communicates socially engineered
messages to humans using digital channels in order to persuade them to perform
certain activities to the attacker’s benefit [12,16]. Email is the most popular av-
enue for a phishing attack, with almost 91% of successful cyber-attacks/security

2 L. Halgaš et al.

breaches initiated by sending out spoofed emails [18]. The entire phishing opera-
tion can even be outsourced and automated [20], enabling the phishing threat to
be, as it is, ubiquitous and continuous. Research has also found that it is increas-
ingly difficult for humans to detect phishing attacks [10]. Therefore, there is a
strong argument for automated mitigation methods to keep the user’s exposure
to the attacks at a minimum.

The dynamic nature of phishing, with new trends and challenges constantly
emerging, motivates a more adaptive filtering approach. Machine learning (ML)
has been utilised, as the de-facto standard for classification purposes over many
fields, email classification included. Developing a ML-based classifier to underline
the phishing filtering, is the approach we investigate in this paper. Our classifier
analyses the text of the email and, in particular, the email’s language structure.
It follows that our work is largely orthogonal to contemporary email classification
systems which, to the best of the authors’ knowledge, do not employ natural
language processing. We propose a novel detection system for phishing emails
based on recurrent neural networks (RNNs). Our evaluation indicates that the
RNN system outperforms state-of-the-art tools.

In what follows, Section 2 presents alternative approaches to automated
detection of phishing emails and literature on current machine learning approaches.
Section 3 details our methodology and feature selection for the RNN, while
Section 4 describes the system implementation. Section 5 discusses the evaluation
of the system and Section 6 concludes the paper.

2 Current landscape on mitigation techniques to phishing

Specialised algorithms to classify email as phishing, spam (unsolicited email)
or ham (i.e., not spam) have been the focus of research since the beginning of
unsolicited email. Filtering of phishing emails is subsumed in the more general
problem of spam filtering. As such, most email classifiers, hence filters, treat
relatively harmless spam equivalently to dangerous phishing emails.

Chandrasekaran et al., propose that phishing filtering needs to be treated
separately from the bulk spam filtering [5]. Phishing emails mimic ham emails,
in that they want to raise confidence in its perfectly legitimate origin. Their
proposed classifier uses 23 style marker features including the number of words
W , number of characters C and number of words per character W/C aliased as
vocabulary richness. The authors report results of up to perfect classification,
with the accuracy dropping by 20% with the removal of the two structure
features. Although the experiment used only a small corpus of 400 emails, the
results demonstrate the importance of language, layout and structure of emails
in phishing classification.

PILFER is an ML-based phishing email classifier proposed by Fette et al. [6].
The authors identified a subset of only ten (from the hundreds of features popularly
used to classify spam) that best distinguish phishing emails from ham. PILFER
outperformed the trained version of Apache’s SpamAssassin [22] at classifying
phishing emails, with the false negative rate reduced by a factor of ten. This

Catching the Phish 3

result demonstrates that having specialised features for the task in prominence
to general email classification features improves phishing classification.

Bergholz et al. [3] build on top of this work by introducing advanced features
for phishing classification. The authors note the statistical insignificance of
classification improvement through variation of the classifying algorithm itself.
They conclude that a statistically significant improvement is possible by invention
of better features. Bergholz et al. develop two sets of advanced features based
on unsupervised learning algorithms to complement 27 basic features commonly
used in spam detection. The advanced features are the Dynamic Markov Chain
(DMC) model features, and Latent Topic Model Features: word-clusters of topics
based on Latent Dirichlet Allocation (LDA). The best results occur when the
advanced features are used in conjunction with the basic features, achieving the
state-of-the-art [3].

Toolan et al. [24] analysed 40 basic features popularly used in email classifica-
tion and ranked them based on their information gain to the classification task at
hand. The most informative features were vocabulary richness of the email body
and of the subject. Other popular features performed very poorly, indicating
that our intuitive understanding of what constitutes a phishing email may be
very wrong. This is illustrated by the failure to gain information from counting
<form> elements or finding the word ‘debit’ in the subject. We may attribute the
results to a shift in phishing trends, or to the failure of human experts to identify
good features. The authors also conclude that language modelling approaches to
phishing classification are the most promising.

3 Methodology

The classification task is to identify to which of a finite number k of categories, or
classes C = {c1, . . . , ck}, a sample x belongs, i.e., deduce a classifier or mapping,
x 7→ c. In our application to phishing, the classification is a representation of an
email to the label set {phish, ham}.

In the task of email classification for the exclusion of emails from delivery, we
emphasise on precision which is defined in Section 5, as a criterion of a successful
classification. Our rational being that it is essential to elevate the importance of
correctly classifying ham emails above classifying phishing emails as phish. This
challenge of false positives, or misclassifying ham email as phishing, is the main
reason for users’ resistance to email filters.

The machine learning approach to classification is to automatically establish
a function f that determines the desired class

ŷ = f(x) ∈ {ham, phish}

on the input of a representation x of an email. The function f is parameterized
by values θ. During the training phase, the parameter values θ are determined
to reproduce a relation between the input x and class label y in agreement with
a training set {(x0, y0), . . . , (xn, yn)} of pre-classified samples and a suitable
optimisation criterion. In this sense, the ML approach is to extrapolate this

4 L. Halgaš et al.

relation between the observed sample points and class labels to unlabelled input
x and its predicted class ŷ = f(x). To enforce the precision requirement, we
encode excess penalty for false positives in the optimisation criterion, skewing the
potential precision/accuracy trade-off towards the classification of ham emails.

3.1 Feature Identification

An input xraw representing an email as a (very long) series of binary digits,
comprising the raw source code of an email in binary format, is unwieldy for
an algorithm to detect patterns. We hence use a more compact representation
of the input as a feature vector x =

(
f1(xraw), . . . , fm(xraw)

)
. Features should

characterise an email with respect to the current classification problem. The
relative inaccuracy of ML-based spam classifiers on the seemingly similar task of
phishing classification illustrates the need for specialised features for this task.

Features are most often identified by experts, in line with their intuitive
understanding of “phishiness” or “hamness”. Toolan et al. [24] demonstrated
that such intuitively sound features often fail to inform the classification under
discussion. On the other hand, structural features have empirically been indicative
of emails being ham or phish [6]. Based on this, we therefore follow the language
modelling approaches to the challenge of phishing classification which are viewed
as the most worthwhile [24].

Natural Language Processing (NLP) is the field of Computer Science study-
ing human-machine interactions and, in particular, establishing and exploiting
language models. The rich structure and ambiguity of natural languages make
it difficult to identify and extract complex language features, such as the tone
of urgency in the email body. As explained in Section 2, Verma et al. [25] used
pre-trained WordNet hypernymy trees of sets of words conveying urgency or
action, among other characteristics, to identify sentences and hence emails as
actionable or informative.

In the unsupervised learning approach, the ML algorithm detects data patterns
in the dataset without supervision or explicit expert advice. That is, the training
of the model determines, or learns, the features itself. Bergholz et al. [4] trained
a dynamic Markov chain language model to generate ham or phishing emails. We
utilise similar NLP techniques in our system.

3.2 Deep Learning

Neural Networks (NNs) are a computational model, in the quintessential example
of a multilayer perceptron (MLP) resembling a hierarchical network of units, or
neurones. The hierarchical structure intuitively gives NNs the capacity to extract
high-level features from simple data, i.e., to disentangle and winnow the factor of
variation in the NN input. This intuition of NN structure makes NNs suitable
for the task of representation learning, or automatic feature identification.

Recurrent Neural Networks (RNNs), the deepest of all learners, are a family of
NNs specialised for processing sequential data. Like Markov chain models, RNNs
have the advantage of processing data in sequence, thus accounting for the order

Catching the Phish 5

of data. The input text is usually abstracted to a sequence of characters, words
or phrases. Undoubtedly, the order of words is valuable in language modelling.
RNNs form the backbone of current state-of-the-art language models, so an RNN
language model could form an accurate content-based classifier of emails.

It is worth mentioning that RNNs have been applied by previous works to
address the problem of classifying malicious URLs and websites. Researchers have
used various features and subsequently classified with high accuracy websites and
URLs into malware, phishing and benign [1,14,26,28]. We extend the classification
problem by considering only language models for phishing emails.

We alleviate the learning problem from language modelling to the binary clas-
sification of email to phish or ham. This classification can be trivially abstracted
to predicting y, where y = 1 if phish and y = 0 if ham. We thus get a supervised
learning problem with representation learning. This simpler task overcomes the
often-prohibitive computational cost of training a full-blown language model.
Inherently, the RNN classifier models a y ∼ Bernoulli(px) distribution using a
sigmoid output unit

px = σ(zx) :=
1

1 + exp(−zx)
=

exp(zx)∑1
y′=0 exp(y

′ zx)

where zx is the output of the last linear layer, dependent on the RNN input x.
Intuitively, this is the normalisation of the unnormalised probability distribution

p̃x(c) = exp(c zx)

log p̃x(c) = c zx

for c ∈ {0, 1}. Then px = p(y = 1 | sequence of words of email x) ∈ [0, 1] gives the
email label prediction ŷ = argmaxc∈{0,1} p(y = c | x) = 1{zx ≥ 0}.

4 Design and Implementation

Our RNN classifier labels an input email as either a legitimate email or a phishing
attempt. In this section, we describe the procedure of transforming the raw email
source into a variable size vector of integers that is input to the RNN itself.

4.1 Preprocessing for the RNN Classifier

Our binary classification RNN model takes sequences of integer values as input
and outputs a value between 0 and 1. We abstract the computer-native copy of
an email as a sequence of bytes into the high-level representation as a sequence of
symbol and word tokens, represented as unique integers. It is customary to ‘feed’
RNNs with an n-gram representation of the abstracted text. Due to the small
size of our dataset, our dictionary of n-grams would contain very few repetitive
phrases of n words for values n ≥ 2. For the balance of token expressiveness,
and vocabulary size, we choose to represent emails as sequences of 1-grams, or
single-word tokens.

6 L. Halgaš et al.

Note that our classifier only considers the text of emails in making its clas-
sification decision. Thus, effective features, such as those based on linked web
address analysis, are completely orthogonal to our classifier and thus are largely
complementary. As an initial step in preprocessing of the classified email, we
extract its text in plaintext format.

4.2 Tokenizing the Text

We seek flexibility in tokenizing the text through fine tuning the parameters of
the tokenizer, such as rules of what word or character sequences to represent
as the same token. The naïve approach of splitting on whitespace characters
does not generalise well to email tokenizing. Incautious or malicious salting, e.g.,
inconsistent whitespace or the ubiquity of special characters, form words unique
to an email. Considering such tokens would inherently lead to overfitting, based
on the presence of unique traits.

Our approach to tokenizing is that of adjusted word-splitting. First, we
lowercase all characters in the email and remove all characters the RFC 3986
standard does not allow to be present in a URL, i.e., we only keep the unreserved
a-z, 0-9, - . _ ~ and reserved : / ? # [] @ ! $ & ’ () * + , ; = characters and the
percentage sign %. Although this step is motivated by ease of later identifying
URLs for the <url> token determination, we get the benefit of restricting our
character base cardinality to 61. The 60th character, which RFC 3986 does
not allow in URL but we do not immediately replace with whitespace, is the
quote character ", which is often used in emails. Note, the 61st character is the
whitespace character.

We introduce four special tokens summed up in Table 4.2, and, nine tokens
for the special characters left, replacing dots, quotes and seven other special
characters with their respective tokens. Finally, we split the clean text into words,
serving as their individual tokens, and prepend and append the start <s> and
end <e> tokens, respectively, to the tidy sequence of tokens.

<url> replaces a URL beginning with http:// or https:// ,

<www> replaces a URL beginning with the informal www. ,

<email> stands for an email address,

groups together and replaces three or more
<threespecial> consecutive non-alphanumeric characters,

possibly separated by whitepace.

Table 1. Special tokens

The final representation of the email includes only lowercase alphanumeric
words and tokens. Using a list of allowed characters, we aggressively parse the
text, mitigating the threat of the text exhibiting unexpected behaviour.

Catching the Phish 7

4.3 Recurrent Neural Network Classifier

Our model is a simple RNN, consisting of an encoding layer, two recurrent layers,
and a linear output layer with a Softplus activation. Challenges of training deep
networks, of which RNNs are the deepest, motivate most of the design decisions
presented in this section.

We implement our recurrent layers with the long short-term memory (LSTM)
architecture [9]. LSTM is a gated recurrent neural layer architecture that, through
its carefully designed self-loops, has the capacity to learn long range dependencies.
We use a variation of the original concept with weights on the self-loop conditioned
on the context [7]. Due to its carefully crafted architecture, LSTMs are resistant to
the vanishing gradient problem [2]. As is the standard, we use the tanh nonlinear
activation on the cells’ output. We describe the choice of the size of the hidden
layer to section below, but we will choose the hidden state to be 200 variables
large.

The output h2 of the last LSTM cell of the second layer is input further up
the model. So that our model outputs a single variable pŷ ∈ (0, 1) as required.
Since we are modelling a Bernoulli probability, we use the simplest linear layer

h2 7→ wᵀh2 + b = z,

consisting of a weight vector w and bias scalar b. The final output is obtained by
mapping the linear layer output scalar through the logistic sigmoid function

pŷ = σ(z) :=
1

1 + exp(−x)
∈ (0, 1)

to obtain the estimated probability of an email being phish.

4.4 Input Sequence Preprocessing

If we let every token in the dataset to have its unique embedding vector, not
only would the encoding layer be huge, but our model predictions would not
generalise well to any emails containing unknown words. We hence reduce the
size of the dictionary considered by our model, in order to acquire round values,
to the 4 995 most common words in the training and validation sets of emails
as token sets (i.e., we do not consider repetitions of a word in a single email in
determining the occurrence count).

Every token in the dictionary is assigned a unique index value. So that our
vocabulary reduction is not too harsh, we unite tokens of similar meaning. We stem
the words using the Snowball Stemmer, a more aggressive version of the popular
Porter Stemmer [19]. We then add 5 more tokens <unkalpha>, <unknnum>, <unk>,
<cuts> and <cute> to the dictionary. The first three abstract out unknown words
to the dictionary, such as those that consist of only alphabetical or numerical
values, or fit none of first two, respectively. We describe the final two tokens in
Section 4.5 below.

8 L. Halgaš et al.

4.5 Cutout Pruning

Anomalous emails of very long sequence representations cause training inefficiency,
amongst other problems, in evaluating very long range dependencies. The problem
is that such long emails cause unnecessary ‘padding’ of other, shorter sequences,
when employing gradient-based learning in batches, reducing stability and the
speed of learning. Most notably, modern GPU architectures take time proportional
to the maximum length of a sample in the batch to evaluate batched samples, as
we do.

We hence compromise our email representation for excessively long emails via
a simple pruning procedure. The idea is to cut out a sequence of size a third of our
threshold of 1000 tokens, and ‘glue’ the beginning and ending of the email to the
cutout sequenece. The concept is to keep the beginning, most middle and ending
parts of the email, skipping the uninformative bits of ham or phish emails. To
allow our model to grasp the idea of the anomaly introduced in close-neighbour
word dependencies, we add two tokens, <cuts> and <cute>, to the dictionary to
represent a start or an end of a sequence caused by the pruning cut. Intuitively,
we think of these tokens as ‘glue’.

Emails represented as sequences of indices of their respective tokens, in the
range of the dictionary size V = 5000, are input or ‘fed’ to the RNN. The first,
encoding layer, encodes each index in sequence with its corresponding token
embedding. The embedding vectors elements are initialised as random Gaussian
N (0, 0.12) values and learned as parameters of the model.

5 Evaluation

Before presenting the results of our RNN classifier, we first introduce the email
datasets used in evaluation. Table 5 presents a summary of the datasets used.
The first dataset, SA-JN, is a combination of all 6 951 ham emails from the
SpamAssassin public corpus [22] and 4 572 phishing emails from the Nazario
phishing corpus [15] collected before August 2007. SA-JN is a popular dataset
used in related work to evaluate comparable phishing detection solutions [3,6,25].

Our second dataset, En-JN, is a combination of the Enron email dataset
combined with phishing emails from the Nazario phishing corpus. The Enron
email dataset is generated by 158 employees of the Enron Corporation, and, to
the best of the authors’ knowledge, is the only large public dataset of real-world
emails. We combine a randomly selected subset of 10 000 emails from the Enron
dataset together with all 9 962 phishing emails from the Nazario phishing corpus.

Corpus Size Ham Phishing Source
SA-JN 11 523 6 951 (60%) 4 572 (40%) SpamAssassin and Nazario
En-JN 19 962 10 000 (50%) 9 962 (50%) Enron and Nazario

Table 2. Decomposition of datasets used in evaluation.

Catching the Phish 9

As is common practice in statistical learning, we split the data samples for
training and evaluation. Separately, we sort the ham and phishing emails by
the datetime stamp extracted from the email Received or Received-Date field
(defined to be the maximum, or latest, timestamp where multiple Received or
Received-Date fields are present). Consequently, we get two sorted lists, that
we separately split into training and validation, and testing sets, with a 9-1
ration twice. The respective 81% – 9% – 10% splits respect the received datetime
stamps with the most recent 10% of the emails forming the training set. The
underlying reasoning is to approximate the real scenario of training the classifier
on present data to predict future data. We then combine the ham and phishing
sets, respecting the splits.

We evaluate our classifier against the most popular metrics in email classifi-
cations, which we introduce shortly. We then compare our language model to
other content-based classifiers.

5.1 Training

The encoding itself accounts for 5000× 200 = 1mil parameters of the model. The
challenge of training so many parameters of a network requires more advanced
optimisation algorithms. We employ the following techniques for optimisation
and regularisation of our model.

We initialize the weights of the LSTM cells to random orthogonal matrices
with gain set to 5/3 for the weights of the cell gate with tanh activations, and
set the other weights, with sigmoid activations, to orthogonal matrices with
gain 1 [21]. It is the perfect orthogonality of the weight matrices that motivated
our choice for the embedding and LSTM to share the same unit size of 200.

As suggested by Jozefowicz et al. [11], we initialize the bias of the LSTM
forget gate to 1, and initialize all other biases to 0 throughout the RNN. We
initialise the weights outside of the recurrent layers by sampling from the Gaussian
N (0, 0.12) distribution. The model contains dropout [23] of 0.2 on the embedding
layer, a dropout of 0.5 between all recurrent states on top of each other, with
no dropout in-between successive states of a recurrent layer, as proposed by
Sutskever et al. [27]. We also add dropout of 0.5 at the final output of the
recurrent layer.

The model is optimized using the Adam optimizer [13] against the binary
cross entropy loss function. We train the model with batches of size 200 samples.
The training dataset is shuffled at the beginning of every epoch. To tackle the
exploding gradient problem, we clip the gradient norm ‖g‖ [17] with threshold 1.
Finally, we stop training early, with continuation of learning [8] by training over
the validation set once.

5.2 Evaluation Metrics

Given that the datasets used for email classification vary greatly in how even their
distributions are, the obvious accuracy measure is of limited value for comparison

10 L. Halgaš et al.

to other classifiers. We hence report the standard measures of precision, recall,
the F -measure, false positive and false negative rates in addition to accuracy.

We note that email classification errors vary in importance. As an artifact
of the problem of spam email classification, it is common practice to consider
a false positive error to be more costly than a false negative misclassification.
However, this is under the assumption of aggressive filtering of positives and
harmless false negatives. In the domain of phishing emails, however, false negatives
present significant danger and less aggressive filtering methods such as alerts and
link-disabling are common.

We train the classifier over 4 epochs on the training dataset and 1 more epoch
over the validation dataset. Because the model is expensive to train, in time
and computational power, the results provided are of the single trained instance.
We evaluate the model on the test set, which had been unseen during training,
and is chronologically separated from training a validation set. This is due to
the fact that we split each dataset into training, validation and testing sets in
chronological order.

Our classifier is most directly comparable to other text-based features, or
sub-classifiers that analyse the text of the classified email only. We compare our
work with the textAnalysis sub-classifier of the PhishNet-NLP email classifier by
Verma et al. [25], and the state-of-the-art Dynamic Markov chain (DMC) model
proposed by Bergholz et al. [3]. We summarise the results in Table 3.

corpus accuracy fp-rate fn-rate precision recall F -measure
textAnalysis ?-JN 78.54 % 14.90 % 22.90 % 95.93 % 77.10 % 85.49 %
DMCtext SA-JN 99.56 % 0.00 % 4.02 % 100.00 % 95.98 % 97.95 %
our RNN SA-JN 98.91 % 1.26 % 1.47 % 98.74 % 98.53 % 98.63 %
our RNN En-JN 96.74 % 2.50 % 4.02 % 97.45 % 95.98 % 96.71 %

Table 3. Summary of our results in comparison to related work in popular metrics.

Our test dataset is well-separated from the training set. We could argue that
the classification problem we evaluated our classifier against is unrealistically hard.
Intuitively, messages arriving to a specific inbox would exhibit more pronounced
patterns, and would thus be easier to classify correctly.

Verma et al. [25] propose that textAnalysis offers a classification value very
independent from the other features, as only the text of the email is considered. For
the same reason, our classifier should not copy the labels of other features present
in classification, but rather provide an independent view on the classification at
hand.

The RNN classifier clearly outperforms the textAnalysis classifier, and has
comparable results to the state-of-the-art DMCtext feature. We note that perfect
classification is not possible in our setting, as two emails with the same token
sequence will necessarily be labelled equally. Since both, ham and phishing email
corpus contain empty emails with attachments, which have been removed, the

Catching the Phish 11

emails are identical to our classifier. This proves inseparability of the emails with
the word-sequence representation.

6 Conclusion

In this paper, we propose a novel automated system aiming to mitigate the threat
of phishing emails with the use of RNNs. Our results suggest that the flexibility of
RNNs gives our system an edge over the expert feature selection procedure, which
is vastly employed in Machine-Learning-based attempts at phishing mitigation.

We focused on the overlooked content source of email information and demon-
strated its utility when considered in phishing threat mitigation. The nature of
RNN and its training procedure make it suitable for the case of online learning
deployment. Our classifier could theoretically change over time to capture new
trends continuously and keep up accurate and precise classification throughout.
Our results have demonstrated a wealth of potential in non-trivial feature iden-
tification for classifying emails, since oru system’s performance surpasses the
state-of-the-art systems which are based on features designed by human intuition.

Finally, it is worth noting that the general criticism of supervised learning
extends to our case. Little information is provided by the RNN classifier on the
nature of emails at successful classification. The proposed solution generalises
easily to the case of inclusion of basic spam emails, and is a prospect for further
automated success.

References

1. Bahnsen, A.C., Bohorquez, E.C., Villegas, S., Vargas, J., González, F.A.: Classifying
phishing urls using recurrent neural networks. In: Proceedings of the APWG
Symposium on Electronic Crime Research. eCrime ’17, IEEE (April 2017)

2. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks 5(2), 157–166 (March
1994)

3. Bergholz, A., Chang, J.H., Paaß, G., Reichartz, F., Strobel, S.: Improved phishing
detection using model-based features. In: Proceedings of the Fifth Conference on
Email and Anti-Spam. CEAS ’08 (August 2008)

4. Bergholz, A., De Beer, J., Glahn, S., Moens, M.F., Paaß, G., Strobel, S.: New
filtering approaches for phishing email. Journal of Computer Security – special issue
on EU-funded ICT research on Trust and Security 18(1), 7–35 (January 2010)

5. Chandrasekaran, M., Narayanan, K., Upadhyaya, S.: Phishing email detection based
on structural properties. In: Proceedings of the 9th Annual NYS Cyber Security
Conference. NYSCSC ’06 (June 2006)

6. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: Proceedings
of the 16th international conference on World Wide Web. pp. 649–656. WWW ’07,
ACM (May 2007)

7. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction
with lstm. Neural Computation 12(10), 2451–2471 (October 2000)

8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge,
MA, USA (2016)

12 L. Halgaš et al.

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735–1780 (November 1997)

10. Iuga, C., Nurse, J.R.C., Erola, A.: Baiting the hook: Factors impacting susceptibility
to phishing attacks. Human-centric Computing and Information Sciences 6 (June
2016)

11. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent
network architectures. In: Proceedings of the 32nd International Conference on
Machine Learning. pp. 2342–2350. ICML ’15 (July 2015)

12. Khonji, M., Iraqi, Y., Jones, A.: Phishing detection: A literature survey. IEEE
Communications Surveys & Tutorials 15(4), 2091–2121 (April 2013)

13. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1312.6120 (2014)

14. Mohammad, R.M., Thabtah, F., McCluskey, L.: Predicting phishing websites based
on self-structuring neural network. Neural Computing and Applications 25(2),
443–458 (August 2014)

15. Nazario, J.: https://monkey.org/~jose/phishing/
16. Nurse, J.R.C.: Cybercrime and you: How criminals attack and the human factors

that they seek to exploit. In: The Oxford Handbook of Cyberpsychology. Oxford
University Press, Oxford, UK (May 2019)

17. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: Proceedings of the 30th International Conference on Machine Learning.
ICML ’13, vol. 28, pp. 1310–1318 (June 2013)

18. PhishMe, Inc.: 2016 enterprise phishing susceptibility and resiliency report (2016)
19. Porter, M.F.: Snowball: A language for stemming algorithms, https://snowballstem.

org/
20. Ramzan, Z.: Phishing attacks and countermeasures. Handbook of Information and

Communication Security pp. 433–448 (2010)
21. Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynamics

of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120 (2013)
22. SpamAssassin: https://spamassassin.apache.org/old/publiccorpus/
23. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:

Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15(1), 1929–1958 (January 2014)

24. Toolan, F., Carthy, J.: Feature selection for spam and phishing detection. In: 2010
eCrime Researchers Summit. pp. 1–12. IEEE (October 2010)

25. Verma, R., Shashidhar, N., Hossain, N.: Detecting phishing emails the natural
language way. In: 17th European Symposium on Research in Computer Security.
pp. 824–841. ESORICS ’12, Springer, Berlin, Heidelberg (September 2012)

26. Vinayakumar, R., Soman, K.P., Poornachandran, P.: Evaluating deep learning
approaches to characterize and classify malicious urls. Journal of Intelligent &
Fuzzy Systems 34(3), 1333–1343 (March 2018)

27. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 (2014)

28. Zhao, J., Wang, N., Ma, Q., Cheng, Z.: Classifying malicious urls using gated
recurrent neural networks. In: Proceedings of the 12th International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing. pp. 385–394.
IMIS ’18, Springer, Cham (July 2018)

https://monkey.org/~jose/phishing/
https://snowballstem.org/
https://snowballstem.org/
https://spamassassin.apache.org/old/publiccorpus/

