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The “synthetic dimension” proposal [A. Celi et al., Phys. Rev. Lett. 112, 043001 (2014)] uses atoms with M

internal states (“flavors”) in a one-dimensional (1D) optical lattice, to realize a hopping Hamiltonian equivalent
to the Hofstadter model (tight-binding model with a given magnetic flux per plaquette) on an M-sites-wide
square lattice strip. We investigate the physics of SU(M) symmetric interactions in the synthetic dimension
system. We show that this system is equivalent to particles [with SU(M) symmetric interactions] experiencing
an SU(M) Zeeman field at each lattice site and a non-Abelian SU(M) gauge potential that affects their hopping.
This equivalence brings out the possibility of generating nonlocal interactions between particles at different sites
of the optical lattice. In addition, the gauge field induces a flavor-orbital coupling, which mitigates the “baryon
breaking” effect of the Zeeman field. For M particles, concomitantly, the SU(M) singlet baryon which is site
localized in the usual 1D optical lattice, is deformed to a nonlocal object (“squished baryon”). We conclusively
demonstrate this effect by analytical arguments and exact (numerical) diagonalization studies. Our study promises
a rich many-body phase diagram for this system. It also uncovers the possibility of using the synthetic dimension
system to laboratory realize condensed-matter models such as the SU(M) random flux model, inconceivable in
conventional experimental systems.

DOI: 10.1103/PhysRevA.92.051602 PACS number(s): 67.85.−d, 21.45.−v, 37.10.Jk

Emulation of quantum systems of interest to areas from
condensed matter to high-energy physics is made possible with
cold atoms [1], as evidenced by recent developments [2–8].
Adding to the soaring interest is the realization of systems with
novel physics such as those with SU(M) (M > 2) symmetries,
and yet are exceedingly difficult to realize by conventional
experiments. SU(M) symmetric spin models have interesting
phases and phase transitions [9–16], as do Hubbard models
with SU(M) symmetry [17–20]. Several theoretical [21–28]
and experimental [29–35] works have explored systems with
SU(M) symmetry working with 6Li (M = 4) [36], 173Yb
(M = 6) [32,35], and 87Sr (M = 10) [30,31,34].

Celi et al. [37] proposed, using atoms with M-internal
states, to realize a finite strip of the Hofstadter model [38]. This
was dubbed as a “synthetic dimension” (SD) since the internal
state mimicked the coordinate along an additional spatial
dimension. Atoms with M internal states (γ = 1, . . . ,M) hop
in a one-dimensional (1D) optical lattice whose γ -independent
hopping t from a site j (xj = jd,d, lattice spacing) to its neigh-
bor preserves their internal state. The states are coherently cou-
pled by light of wave number k� such that an atom in state γ at
j can “hop” to γ + 1 at j with an amplitude �

j
γ = �γ e−ik�xj .

An atom picks up a phase factor e−ik�d upon hopping around
a plaquette [(j,γ ) → (j + 1,γ ) → (j + 1,γ + 1) → (j,γ +
1) → (j,γ )], simulating an enclosed magnetic flux. Choosing
k�d = 2π

p

q
, where p and q are relative prime integers, thus

provides an alternate realization of the Hofstadter model
(compare with Refs. [6,7]) with a p/q flux per plaquette.
Recent experimental realization [39,40] bolsters this research
direction.

*sudeep@physics.iisc.ernet.in
†umesh@physics.iisc.ernet.in
‡shenoy@physics.iisc.ernet.in

The physics of SU(M) symmetric interactions in the SD
system is an unexplored area. Previous studies [23,25–27] of
fermions with attractive SU(M) interactions in the usual 1D
lattice (no flux, i.e., p

q
= 0, �γ = 0) shows SU(M) singlet

“baryons” and their quasi-long-range color superfluidity [41].
Viewed from the SD perspective, the SU(M) interaction
manifests as “infinite ranged” (distance independent) along
the SD. For example, two atoms at site j with γ = 1 and
2 will interact with the same strength as γ = 1 and M .
This aspect, taken together with the flux p/q, raises several
intriguing open questions: What is the fate of the baryons?
How is the color superfluidity affected? Are there different
many-body states and interesting physics in this system? This
Rapid Communication addresses these questions, and points
to a plethora of possibilities of this system that would be of
wide interest.

We show that the SD system [37] can be mapped to a
system of M-flavor particles with SU(M) interactions hopping
on the lattice with an on-site SU(M) Zeeman potential (due
to �γ ) along with an SU(M) gauge field (due to flux p/q,
and �γ ) that controls their hopping. Further analysis reveals,
inter alia, the gauge field induces (i) a flavor-orbital coupling
which mitigates the “baryon breaking” effects of the Zeeman
field, and (ii) a nonlocal interaction, i.e., interaction between
particles at different j sites. A crucial outcome is that under
favorable circumstances, the SU(M) singlet baryon (�γ = 0),
which is an object localized at a site j but extended along the
synthetic dimension, is transformed into an M-body bound
state that is extended in real space (along j ), which we dub
as the “squished baryon.” This is demonstrated by analytical
arguments and detailed exact diagonalization calculations.
These results point to different many-body phases of these
systems. Our mapping further suggests opportunities of using
the SD system to simulate interesting models as the SU(M)
random flux model [42].

Model and mapping. Denoting the operator that creates a
fermion [43] at site j with hyperfine flavor γ as C

†
j,γ , the
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Hamiltonian is H = Ht + H� + HU , with

Ht = −t
∑

j

M∑
γ=1

(C†
j+1,γ Cj,γ + H.c.), (1)

H� =
∑

j

M−1∑
γ=1

(
�j

γ C
†
j,γ+1Cj,γ + H.c.

)
, (2)

HU = −U

2

∑
j,γ,γ ′

C
†
j,γ C

†
j,γ ′Cj,γ ′Cj,γ , (3)

where t is the intersite hopping amplitude, and U is the
strength of the attractive SU(M) interaction. The couplings
�

j
γ = �γ e−ik�xj , where �γ ’s depend on the details [37,39,40]

of the system.
A mapping gains further insights into the effects of

interaction. Towards this end, we introduce the notation
Ĉj = (Cj,1,Cj,2, . . . ,Cj,M )T . We introduce a local unitary
transformation Ĉj = Ŵj b̂j , where Ŵj = Diag{e−ik�γ xj }, γ =
1, . . . ,M , with k�γ = (γ − 1)k�, and b̂j = (bj,1, . . . ,bj,M )T

is another set of fermionic operators. This results in H� =∑
j b̂

†
j�b̂j , where � is a site-independent Hermitian matrix,

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 �∗
1 0 . . . 0

�1 0 �∗
2 . . . 0

0 �2 0 . . .
...

...
...

...
. . . �∗

M−1
0 0 . . . �M−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)

On diagonalization, � = SωS†, where ω = Diag{ωζ } (ζ =
1, . . . ,M) is the diagonal matrix with eigenvalues ωζ , and S
is a unitary matrix. Then, H� = ∑

j â
†
jωâj , where S†b̂j =

âj = {aj,ζ }T is a new set of fermionic operators. Clearly,
Ĉj = Uj âj , where Uj = Ŵj S is a unitary matrix. We now
have

H =−t
∑

j

(â†
j+1U†

j+1Uj âj + H.c.) +
∑

j

â
†
jωâj + HU,

(5)

where HU is the operator defined in Eq. (3) rewritten in terms
of aj,ζ owing to its SU(M) invariance. We immediately see that
in terms of the transformed states âj , the Hamiltonian can be
interpreted as that of particles in a flavor- (ζ -) dependent poten-
tial ωζ [which is a SU(M) Zeeman field], and whose hopping
is influenced by a non-Abelian gauge field U†

j+1Uj = S†�S
(� = Diag{eik�ζ d}) that produces flavor-orbital coupling. The
Zeeman field depends solely on �γ , while the gauge field has a
crucial additional dependence on the flux [44]. The SD system
is thus equivalent to SU(M)-interacting fermions experiencing
SU(M) Zeeman and gauge fields (flavor-orbital coupling) [45].

Induced interactions. We now discuss the key outcome of
the mapping. Consider the M = 2 system with 1

2 flux. A rather
unnatural limit of vanishing hopping t → 0 reveals the main
idea. The Zeeman field is ω = Diag{−�,�}. When � � U ,
the ground state is an M = 2 baryon with two particles at
the same site (Fig. 1, top left). The “baryon breaking” effect
of the Zeeman field occurs when � exceeds �c = U

2 (Fig. 1,

t = 0

Ω < Ωc Ω > Ωc

t = 0

p

q
=

1

2

Ω = Ωc

x

ζ = 2

ζ = 1

FIG. 1. (Color online) Nonlocal interaction: The top panel shows
the state of two fermions when t = 0 with M = 2, which has
ωζ=1 = −� and ωζ=2 = �. The arrows in the left bottom panel show
the hopping pattern when t �= 0 in the presence of a 1

2 flux. If the
two particles are in the neighboring sites as shown, then this baryon
can effectively hop on a dual lattice shown by crosses (bottom right)
by hybridizing with the degenerate baryon (vertical shaded bond),
gaining kinetic energy. This produces a net attractive interaction
between particles at neighboring sites with ζ = 1.

top right). The broken baryon has both particles with ζ = 1,
located at two distinct sites. Now, t > 0 with 1

2 flux produces
hopping, indicated by arrows in Fig. 1 (bottom left) that
does not conserve the ζ flavor—flavor-orbital coupling (gauge
field). The degeneracy of the broken baryon states is lifted by
the flavor-orbit-coupled hopping—two particles with ζ = 1
on neighboring sites can gain energy by hybridizing with the
degenerate baryon state (bound along the SD). This induces
a nonlocal attractive interaction between particles with ζ = 1
located on two neighboring sites. The outcome is a “squished
baryon” state that generically has a bound state character along
the synthetic and real dimension. In Fig. 1, this state is a bound
state of two particles that “resonates” between the vertical
and horizontal bonds (Fig. 1, bottom left), hopping on the
“dual lattice” indicated by crosses in Fig. 1 (bottom right). As
� � �c, the bound state is primarily made of particles with
ζ = 1—a “fully” squished baryon, a result of the attractive
interaction between near-neighbor ζ = 1 states proportional
to t2

2�−U
− t2

2�
∼ t2U

�2 . Indeed, longer-range interactions are
also similarly generated. A repulsive U results in an induced
nonlocal repulsion.

A similar physics applies to generic M . The key point is that
the scale �c and the resulting “broken baryon” state depend on
the details of �γ . For a given M and �γ , there are special fluxes
that most effectively produce nonlocal binding and baryon
squishing.

Exact diagonalization. We have investigated few-body
physics using numerical exact diagonalization. We consider
a system with Nq lattice sites (d = 1) with periodic boundary
conditions. For a system with M internal states, this provides
NqM one-particle states. So, for Np particles, the dimension
of the resulting Hilbert space is (NqM

Np
). We use translational

symmetry, with Q, the center-of-mass momentum, as a good
quantum number. If the ground state (GS) has Q = Qg ,

051602-2
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then the binding energy is Eb = Eg(Qg,U = 0) − Eg(Qg,U ),
where Eg(Qg,U = 0) is the GS energy of the same sys-
tem with U = 0. We also study the properties of GS by
computing the moment of inertia along the x direction,
Ixx = 1

d2( Np
2 )

〈∑i1>i2
(	xi1,i2 )2〉, and an average value for the

synthetic coordinate 〈ζ 〉 = 1
Np

〈∑i ζi〉, where i’s run over the
particle labels and 	xi1,i2 = (xi1 − xi2 ). We use the following
two criteria to detect an Np-particle bound state. First, the
binding energy should be positive. Second, the Ixx should
be finite and insensitive to the spatial size of the system
(Nq) [46]. The quantity 〈ζ 〉 provides a measure of squishing.
For eaxmple, with Np = M , 〈ζ 〉 = (M+1)

2 indicates the usual
SU(M)-singlet baryon, while squishing is deduced from a
value of 〈ζ 〉 < (M+1)

2 .
Results. While we choose the simplest case �γ = � to

illustrate the physical ideas, our calculations can be adapted
to specific systems. Figure 2 shows the results for M = 2. In
the absence of a flux p/q → 0, the critical Zeeman field to
break the baryon is �c = 1

2 (
√

U 2 + 16t2 − 4t). The “phase
diagram” in the p/q-� plane, shown in Figs. 2(a) and 2(b),
shows that this indeed occurs at p/q = 0. For larger �, there is
no bound state at p/q = 0. For p/q = 1

2 ( 1
2 flux), the situation

is entirely different. Ixx remains finite with the increase in
�, and 〈ζ 〉 goes to unity. The baryon evolves to the squished
baryon (see the inset). We have investigated the 1

2 -flux case in
greater depth. Figures 2(c)–2(e) clearly demonstrate that for
the 1

2 flux a bound state always exists (except when t = 0)
irrespective of a large Zeeman field—a vivid example of the
flavor-orbital coupling mitigating the baryon breaking effects
of the Zeeman field. Figures 2(f) and 2(g) further demonstrate
the squishing of the baryon by the flavor-orbital coupling.
Finally, Figs. 2(h) and 2(i) discuss the case � = �c. From
analytic considerations, the binding energy of the squished
baryon when t � U is ≈ 2t , Ixx ≈ 1

2 , and 〈ζ 〉 ≈ 5
4 . The

numerical binding energy at small t is indeed in agreement, as
are Ixx and 〈ζ 〉 [Figs. 2(h) and 2(i)].

M = 3. Here, when t = 0, �c = U√
2

with a peculiar feature.
Three distinct states are degenerate at �c. These are the usual
M = 3 baryons [27], a completely broken baryon with three
particles at different sites (“1 + 1 + 1”), and partially broken
“2 + 1” baryon which has two particles at a given site with
ζ = 1 and 2 and the third particle at a different site with ζ = 1.
Figures 3(a) and 3(b) show the phase diagram in the p/q-�/U

plane. Again, the squishing effect is clearly seen. Figures 3(c)
and 3(d) are for the case with a 1

2 flux (t/U = 0.1), which show
the squishing of the baryon continuously (most rapidly near
�c) with an increase of �. The process does not go on forever,
and at a value of � somewhat larger than �c, the baryon
completely breaks up. Therefore, the gauge field produced
by the 1

2 flux is unable to entirely prevent the pair breaking
effect. Most interestingly, the situation changes completely if
one introduces a 1

3 flux. Squishing occurs smoothly [Figs. 3(e)
and 3(f)], and in fact, we believe that there is a bound state for
all � (we cannot verify this as Ixx becomes large at large �).
Further, at �c, Eb for small t can be analytically inferred to
be proportional to t . This is due to the hybridization between
the “2 + 1” baryon hybridizing with a “1 + 1 + 1” aided by
the 1/3-gauge field (flavor-orbital coupling). This is, again, in
excellent agreement with our numerical result (not shown).
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FIG. 2. (Color online) M = 2. (a) and (b): “Phase diagram” of
two particles showing dependence of (a) Ixx and (b) 〈ζ 〉 on flux p/q

and �/U for t/U = 0.1. The insets show the type of bound state
stabilized. (c)–(i), p/q = 1

2 : Eb, Ixx , and 〈ζ 〉 are respectively shown
in (c)–(e). (f) shows the dependence of Eb on �/U for t/U = 0.1,
while (g) shows Ixx and 〈ζ 〉 for the same case. The vertical black
dotted lines show � = �c. The dependence of Eb in (h) and Ixx,〈ζ 〉
in (i) on t/U at � = �c = U/2 are shown. The dashed lines in (h)
are results of analytical considerations at small and large t/U .

M = 4. The distinct aspect here is the presence of two
critical Zeeman fields �c1 and �c2. When t = 0, the usual
4-baryon is destabilized to a state with two 2-baryons (each of
which can be located at any site) at �c1 = 2U√

5
. At �c2 = U ,

this state is again broken into a 1 + 1 + 1 + 1 state where each
particle can be at any site distinct from others with ζ = 1.
Figures 4(a) and 4(b) show the phase diagram in the p/q-
�/U plane. A 1

2 flux has a smooth change from the usual 4-
baryon to a 2 + 2 baryon (bound state of 2-baryons)—another
good example of squishing. However, the 1

2 flux is not able to
mitigate the effects of the Zeeman field; near �c2 the squished
2 + 2 baryon is broken up [Figs. 4(c) and 4(d)]. Remarkably,
for a flux of 1

4 , this transition is prevented [Figs. 4(e) and 4(f)],
and our calculations suggest a bound state for any � (checking
this requires larger computational resources). At �c1, it can be
shown that the binding energy is proportional to t2 (in order to
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FIG. 3. (Color online) M = 3. Phase diagram, (a) and (b): Three-
particle phase diagram showing the dependence of (a) Ixx and (b)
〈ζ 〉 on flux p/q and �/U for t/U = 0.1 (Nq = 18). Insets: Type of
bound state. (c) and (d), p/q = 1

2 : (c) and (d) show the binding energy,
and Ixx and 〈ζ 〉 vs �/U with t/U = 0.1. (e) and (f), p/q = 1

3 : (e)
and (f) show same quantities as (c) and (d) for 1

3 flux. The vertical
black dotted lines show � = �c.

hybridize the 4-baryon and the 2 + 2 baryon); our numerical
calculations have borne this out.

What are the general criteria required to produce squishing?
To produce squishing, the flavor-orbital coupling induced by
the flux must be able to hybridize the degenerate states that
occur at the critical Zeeman fields. For example, for M = 4,
the flavor-orbital coupling with a 1

4 flux does hybridize the
2 + 2 state with the 1 + 1 + 1 + 1 state, and hence the baryon
is squished (unlike the 1

2 flux). For a given �γ , an appropriate
flux can be chosen to achieve this.

In the many-body setting, there is clearly a rich collection of
states and crossovers to be explored. For attractive interactions,
many-body states with squished baryons are likely to hold
interesting physics. The repulsive nonlocal interactions for
repulsive U should sustain density waves [47]. The results
developed here can be used as a guide for such studies,
particularly in the dilute limit.
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FIG. 4. (Color online) M = 4. Phase diagram, (a) and (b): Four-
particle phase diagram showing the dependence of (a) Ixx and (b)
〈ζ 〉 on flux p/q and �/U for t/U = 0.1 obtained with Nq = 8. The
insets show the type of bound state stabilized. (c) and (d), p/q = 1

2 :
(c) and (d) show the dependence of the binding energy, and Ixx and
〈ζ 〉 on �/U with t/U = 0.1. (e) and (f), p/q = 1

4 : (e) and (f) show
same quantities as (c) and (d) for the 1

4 -flux case. The vertical black
dotted lines show � = �c1 and � = �c2 (�c1 < �c2).

We conclude this Rapid Communication by pointing out an
interesting possibility to use the SD system to create a class of
Hamiltonians called “random flux” models [42]. The idea is
to introduce some randomness in �

j
γ , which in turn will make

the gauge fields [Eq. (5)] also random. For a two-dimensional
square optical lattice, the Hamiltonian of the type [Eq. (5)]
realized will be similar to a “random flux” model.
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[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[2] Y.-J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V. Porto, and I.
B. Spielman, Nature (London) 462, 628 (2009).

[3] Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto,
and I. B. Spielman, Phys. Rev. Lett. 102, 130401 (2009).

[4] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai,
and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).

051602-4

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301


RAPID COMMUNICATIONS

BARYON SQUISHING IN SYNTHETIC DIMENSIONS BY . . . PHYSICAL REVIEW A 92, 051602(R) (2015)

[5] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W.
S. Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109, 095302
(2012).

[6] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and
W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).

[7] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[8] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).

[9] N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
[10] K. Harada, N. Kawashima, and M. Troyer, Phys. Rev. Lett. 90,

117203 (2003).
[11] F. F. Assaad, Phys. Rev. B 71, 075103 (2005).
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