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In this paper we introduce a multilevel specification with stochas-
tic volatility for repeated cross-sectional data. Modelling the time
dynamics in repeated cross sections requires a suitable adaptation
of the multilevel framework where the individuals/items are mod-
elled at the first level whereas the time component appears at the
second level. We perform maximum likelihood estimation by means
of a nonlinear state space approach combined with Gauss-Legendre
quadrature methods to approximate the likelihood function. We ap-
ply the model to the first database of tribal art items sold in the
most important auction houses worldwide. The model allows to ac-
count properly for the heteroscedastic and autocorrelated volatility
observed and has superior forecasting performance. Also, it provides
valuable information on market trends and on predictability of prices
that can be used by art markets stakeholders.

1. Introduction. The investigation of the relationship between the art
market and financial markets has important implications for institutions as
well as for auction houses, art merchants and individuals. In fact, also due
to the recent financial crisis, there has been a sharp increase in the so called
alternative investments that comprise funds specialising in art. These appear
to offer a highly beneficial diversification strategy with a complex correlation
with traditional assets. Hence, the study of the features of this new asset class
is important and cannot disregard the differences with respect to traditional
stocks. For instance, art items are exchanged a few times and the transaction
costs are considerable. Moreover, there is the so called aesthetic dividend
which plays a crucial role (see e.g. Goetzmann, 1993; Candela et al., 2013,
and references therein).

The study of price determination and price indexes for art items is funda-
mental to auction houses and art merchants. Besides estimating the price of
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individual items, price indexes can be used to understand market trends, to
assess the main social and economic factors that influence the art market,
to understand whether investing in art would diversify risk in a long-term
investment portfolio. For art objects, the traditional view of a long run price
related to the cost of production does not hold anymore. Some authors ar-
gue that the art market is inherently unpredictable since it is dictated by
collectors’ manias (Baumol, 1986). However, there is an ever growing con-
sensus, backed by empirical evidence, on the idea that “price fundamentals”
can be objectively identified. The hedonic regression, also known as the grey
painting method, is one of the most used approaches for modelling art prices.
It was first proposed in Rosen (1974) and further investigated and applied
in Chanel (1995); Ginsburgh and Jeanfils (1995); Agnello and Pierce (1996);
Chanel et al. (1996); Locatelli Biey and Zanola (2005); Collins et al. (2009).
According to this method, the price of an artwork item depends both on
market trends and on a set of characteristics of the item itself. Such de-
pendence is modelled through a fixed effect regression and the estimated
regression coefficients can be interpreted as the price of each feature, the so-
called shadow price. Hence, it is possible to predict the price of a given object
by summing the prices of its features. Also, a time-dependent intercept can
represent the value of the grey painting in that period, that is, the value of
an artwork created by a standard artist, through standard techniques, with
standard dimensions, etc. (Locatelli Biey and Zanola, 2005). Eventually, the
price index is built from the prices of the grey painting in different periods.

Despite its potential, the hedonic regression model has several shortcom-
ings. First, as also remarked in Goetzmann et al. (2014) only a small fraction
of the great variability of the price dynamics is explained. Second, most of
the features are categorical so that the regression equation contains many
dummy variables and the resulting models are not parsimonious. Most im-
portantly, the time dynamics is not modelled directly but through dummy
variables so that it is not possible to use the model to forecast the prices.
Moreover, since it is practically impossible to follow the selling price of each
artwork item over time, the available datasets have a structure of a repeated
cross-section where at each time point a new sample is observed.

There is an increasing interest in modelling data that have the structure
of repeated cross sections due to their ubiquitous appearance. Examples of
social surveys with such structure are the British Social Attitudes Survey1

and the UK Family Expenditure Survey2, the EU Eurobarometer Surveys3,

1http://natcen.ac.uk/our-research/research/british-social-attitudes/
2https://discover.ukdataservice.ac.uk/series/?sn=200016
3http://ec.europa.eu/COMMFrontOffice/publicopinion/index.cfm/General/index
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and all opinion surveys. They are both easier and cheaper to gather than
panels and do not suffer from some of the problems that affect the latter,
such as unbalance due to attrition or mortality. Even if in repeated cross
sections it is not possible to follow specific individuals over time, the (spatio-
)temporal dynamics is important and cannot be disregarded in that it allows
to track trends and social changes. A first, straightforward solution to ac-
count for the time dynamics is to use some form of aggregation. For instance,
many authors simply compute and work with averages over time (e.g. Box-
Steffensmeier et al., 2004; Scott and Smith, 1974; MacKuen et al., 1992).
Also, aggregations can be performed over cohorts of individuals as to ob-
tain pseudo panels, see e.g. Deaton (1985). A sensitive issue in pseudo-panel
models is the non-unique choice of the individual features used to construct
the cohorts, in that it affects the consistency of estimators. This corresponds
to the ‘weak instruments’ problem discussed e.g. in Moffitt (1993); Bound
et al. (1995). We argue that a more appropriate solution is the multilevel
approach that accounts directly for the observed heterogeneity and avoids
the loss of information due to aggregation also known as ecological fallacy
(Goldstein, 2010; Skrondal and Rabe-Hesketh, 2004). However, the treat-
ment of repeated cross-sectional data requires the extension of the classical
multilevel specification by considering individual heterogeneity within time
at the first level, and the variability over time at the second level. This spec-
ification has been adopted for the first time by DiPrete and Grusky (1990)
and Browne and Goldstein (2010) in the frequentist and Bayesian frame-
works, respectively. Along this line, Lebo and Weber (2015) adopt a simple
two-step approach where, at the first step, a time series model is applied to
pooled data; at the second step, the individual heterogeneity is captured by
means of a multilevel model applied to the “time-corrected” responses.

Motivated by the construction of a price index for auctioned items of
tribal artworks, Modugno et al. (2015) extended the multilevel approach for
repeated cross sections by incorporating an autoregressive component at the
second level of the mixed effects model. They implemented an EM iterative
algorithm that allows to obtain full maximum likelihood parameter estimates
and prediction of random effects simultaneously. This avoids data pooling
and the loss of efficiency due to considering separate specifications for the in-
dividual heterogeneity and the time component. They found a considerable
improvement over classical models in terms of prediction and forecasting but
the assumption of normality of level-1 errors was violated, probably due to
the presence of heteroscedasticity and kurtosis. They devised an ad hoc solu-
tion for deriving robust standard errors through the wild bootstrap scheme
for multilevel models introduced in Modugno and Giannerini (2015). Similar
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findings concerning the non normality and the heteroscedasticity were re-
ported for other specifications for the art market in Bocart and Hafner (2012)
and Hodgson and Vorkink (2004). In Bocart and Hafner (2012) the problem
was addressed by estimating a semiparametric time-varying volatility and
Student’s t error with skewness, whereas Hodgson and Vorkink (2004) did
not assume any parametric form for the disturbances but retained the as-
sumption of serial independence of random effects. Also, Bocart and Hafner
(2015) modeled the volatility of price indexes by means of a smooth func-
tion of time as a component of an unbalanced panel model with AR(1) time
effects. They implemented a linear Gaussian state-space representation and
estimated it through maximum likelihood combined with a Kalman filter,
and, as above, they found a violation of the normality assumption. The
evidence reported in literature indicates that the volatility of prices plays
a pre-eminent role; assuming it constant is not realistic and might cause
estimation problems.

In this paper we extend the model proposed in Modugno et al. (2015) by
including a stochastic volatility component at the second level by means of a
nonlinear state-space approach. The specification is motivated by the anal-
ysis of the first world database of tribal art prices. This allows to account
properly for the heteroscedastic and autocorrelated volatility of level-1 error
terms and brings in several advantages. Stochastic volatility (SV) models
are based on the assumption that the conditional variance of the observed
variable depends on a latent variable that captures the flow of informa-
tion arriving from the market. Similar to ARCH-type models for financial
time series, SV models allow to account properly for fat tailed distributions,
white-noise-type dependence, high and lag-decreasing autocorrelations of
squared observations. We opt for a stochastic volatility component since
ARCH-type models assume that the volatility is affected by past informa-
tion through a deterministic function. Such a specification is not viable for
repeated cross-sections.

Model estimation is performed through maximum likelihood via a non-
linear Gaussian filtering process in the spirit of Kitagawa (1987) and Tanizaki
and Mariano (1998). The task poses several computational challenges re-
lated to the presence of time-varying latent variables that must be inte-
grated out from the likelihood function so that there is no analytical solu-
tion. To this aim, Fridman and Harris (1998) proposed a non-linear Kalman
filter algorithm by expressing the likelihood function as a nested sequence
of one-dimensional integrals approximated by the Gauss Legendre numeri-
cal quadrature. Bartolucci and De Luca (2001) extended this approach by
computing analytical first and second derivatives of the approximated likeli-
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Fig 1. Boxplots of prices in (natural) logarithmic scale of the tribal art market by semester.
The amount of items sold in a given semester is reported inside the boxes.

hood. They applied a rectangular quadrature to approximate the integrals.
More recently, Cagnone and Bartolucci (2016) approximated such integrals
by using an Adaptive Gauss Hermite quadrature method. Here, we extend
the procedures discussed in Fridman and Harris (1998) and Bartolucci and
De Luca (2001) by implementing both the Gauss-Legendre quadrature and
the rectangular quadrature methods to approximate the integrals involved
in the likelihood. Eventually, we chose the Gauss-Legendre method for the
application.

2. The first database of tribal art prices. The first database of
tribal art prices was created in 2006 from the joint agreement of the depart-
ment of Economics of the University of the Italian Switzerland, the Museum
of the Extra-European cultures in Lugano, the Museo degli Sguardi in Ri-
mini, and the Faculty of Economics of the University of Bologna, campus of
Rimini. For each artwork item, there are 37 variables recorded from the cata-
logues released before the auctions. The variables include physical, historical
and market characteristics. Some of these are shown in Table 1 and most of
them are categorical. After the auction, the information on the selling price
is added to the record.
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Table 1
Subset of variables classified by type: Physical, Historical and Market.

Variable Categories

Physical

Type of object Furniture, Sticks, Masks,
Religious objects, Ornaments,
Sculptures, Musical instruments,
Tools, Clothing, Textiles,
Weapons, Jewels

Material Ivory, Wood, Metal, Gold,
Stone, Terracotta, ceramic,
Silver, Textile and hides,
Seashell, Bone, horn, Not indicated

Patina Not indicated, Pejorative,
Present, Appreciative

Hystorical

Continent Africa, America
Eurasia, Oceania

Region Central Africa, Southern Africa,
Western Africa, Eastern Africa,
Australia, Indonesia,
Melanesia, Polynesia,
Northern America, Northern Africa,
Southern America, Mesoamerica,
Far East, Micronesia,
Indian Subcontinent, Southeastern Asia,
Middle East

Illustration on the catalogue Absent, Black/white, Coloured,
Illustration width Absent, Miscellaneous,

Quarter page, Half page,
Full page, More than one page,
Cover

Description Absent, Short visual, Visual,
Broad visual, Critical, Broad critical

Specialized bibliography Yes, No
Comparative bibliography Yes, No
Exhibition Yes, No
Historicization Simple certification,

Absent, Museum certification,
Relevant museum certification

Market
Venue New York, Paris,
Auction house Sotheby’s, Christie’s
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Figure 1 shows the boxplots of logged prices aggregated by semester; the
number of items sold in each semester is reported inside the boxes. The
structure of the dataset emerges clearly from the graph: in every semester
a different group of artworks is sold; e.g. 407 items were auctioned in 1998-
1, 915 objects different from the first set were sold in 1998-2, and so on.
Hence, tribal art data has a structure like that of repeated cross-sectional
surveys and the medians (black lines) give an idea of the trend of prices
over time. In particular, note the consistent reduction in the number of auc-
tioned items starting from 2009. Despite this, the overall turnover did not
drop since the average price rose. This might indicate the adoption by mar-
ket agents of hedging strategies against the economic crisis. Overall, we have
T = 28 semesters, and nt, the number of items sold in the semester t, varies
between 73 (2011-2) and 915 (1998-2); the total sample size of sold items
(n =

∑T
t=1 nt) is 13955. There are several reasons to aggregate the data in

semesters rather than auction dates. First, auction dates are not equally
spaced in time and, in our approach, this feature is essential to model time
dependence. Treating auction dates as equally spaced would produce a se-
vere bias on model identification as well as parameter estimation. Notice
that unequally spaced observations could be modelled by adopting a com-
pletely different approach, e.g. the continuous time framework described in
Jones (1993), Ch. 3 for longitudinal data. Second, the art market of auction
houses is naturally organized in semesters, and this is why the most im-
portant art indexes (e.g. artprice index, Mei and Moses fine art index) are
semi-annual. The tribal art market makes no exception as the auction ses-
sions are mostly concentrated in May/June and November/December and
each session contains two to four auctions quite close in time. The aggre-
gation in semesters respects naturally this organization so that the results
are meaningful from the economics point of view. It would be interesting
to estimate the trend and other components at a monthly or quarterly fre-
quency. Unfortunately, the tribal art database does not allow to consider a
finer time scale. In fact, by organizing the data set in quarters we found out
that, with few exceptions, there are no data both in Q1 and in Q3.

3. The model. In Section 3.1 we briefly review the model proposed in
Modugno et al. (2015) while in Section 3.2 we extend it by introducing the
mixed effects model with stochastic volatility.

3.1. A Multilevel model with autoregressive random effects. Let yit be the
natural logarithm of the observed price for item i = 1, . . . , nt at time-point
t = 1, . . . , T and let xit be a corresponding column vector of k covariates.
Since tribal art data can be thought to have a two-level structure where
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items represent level-1 units, and time points represent level-2 units, we
consider the following random intercept model

yit = β0 + ut + x′itβ + εit, εit|xt ∼ NID(0, σ2)

where ut are time-specific random intercepts whose variance accounts for the
unobserved heterogeneity between items within each time point; β is a vector
of fixed slopes and β0 is the overall mean. In repeated cross-sectional data,
yit and yi(t+1) are not the price of the same item i observed at successive time
points since the two objects are physically different. Conditionally on the
vector of covariates xt, level-1 errors εit (the error term for a given individual
at a given time point) follows a normal distribution with constant variance.
In other words, the art market is assumed to have a constant volatility over
time. Note that εit is conditioned on the vector of the covariates xt for
all the individuals, that is, we assume strict exogeneity on the explanatory
variables (Wooldridge, 2002). Differently from panel data, in repeated cross-
sectional data the strict exogeneity assumption implies that, for each item,
the covariates are uncorrelated with the error terms.

The dynamics of ut can be modelled at the second level by extending the
above multilevel models as follows

ut = ρut−1 + ηt, ηt|xt ∼ NID(0, σ2
η),

where ηt⊥us and ηt⊥εit for all s < t and for all i. In this specification,
the random effects follow an autoregressive process of order 1. We denote
this model as ARE (Autoregressive Random Effects). Modugno et al. (2015)
introduced a full maximum likelihood estimation method via the EM algo-
rithm to fit the ARE model to the tribal art data. The ARE model improves
considerably over classical models in terms of prediction and forecasting.
However, as it will be shown in the Application section, the assumption
of normality of level-1 errors is violated, probably due to the presence of
heteroscedasticity and kurtosis. As mentioned above, the assumption of a
constant volatility of prices of art assets is not realistic and might cause
severe inference problems. In the following we extend the ARE model by
including a stochastic volatility component that accounts properly for the
heteroscedastic and autocorrelated volatility of the level-1 error process.

3.2. A Multilevel model with autoregressive random effects and stochastic
volatility. We include a stochastic volatility component at level-1 of the
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ARE model as follows

yit = β0 + ut + x′itβ + exp (ht/2)εit(1)

ut = ρut−1 + ηt(2)

ht = α+ δht−1 + σννt,(3)

for i = 1, . . . , nt and t = 1, . . . , T . As before, ut is the time dependent
random effect whereas ht is the latent variable that represents the volatility
component at time t. Both ut and ht follow a stationary autoregressive
process, so that |ρ| < 1 and |δ| < 1. Moreover, we assume that εit, ηt
and νt are mutually independent, with εit ∼ NID(0, 1), ηt ∼ NID(0, σ2

η) ,
and νt ∼ NID(0, 1) respectively. Note that we ruled out the random walk
assumption for the random effects as this corresponds to the weak efficiency
assumption for the art market, that is, it is not possible to predict future
prices on the basis of the filtration that contains past information. In the
literature, there is some evidence against this assumption ((Goetzmann,
1995; Ballesteros, 2011)). It seems that the art market tends towards greater
efficiency over time and this might be ascribed to the increasing availability
of auction information to prospective art buyers and sellers; still, it shows
windows of (non-trivial) predictability.

The assumption of stationarity for ut and ht allows to avoid the prob-
lems of unknown initial values so that we do not have to use, for instance,
a diffuse initialization. As also described in Durbin and Koopman (2012)
(Ch. 5.6.2 and 9.5), the stationary unconditional distributions are taken as
initial conditions for the two processes: u1 ∼ N

(
0, σ2

u

)
and h1 ∼ N

(
µh, σ

2
h

)
with σ2

u = σ2
η/(1 − ρ2), µh = α/(1 − δ) and σ2

h = σ2
ν/(1 − δ2). Under these

assumptions, the conditional densities result

yit|xit ∼ NID(β0 + x′itβ, σ
2
u + σ2

h∗)(4)

ut|ut−1 ∼ NID(ρut−1, σ
2
η)

ht|ht−1 ∼ NID(α+ δht−1, σ
2
ν).

where σ2
h∗ = Var(exp(ht/2)εit)) = exp(µh + 0.5σ2

h) is the variance of the
level-1 error term, assuming the stochastic volatility model for it. Thus, the
sum of the variance components σ2

u + σ2
h∗ in (4) is the variability of the

responses due to the random part of the model. The overall unconditional
variability of Y is the sum of all the variance components of the model

Var(Y ) = σ2
x∗ + σ2

u + σ2
h∗

where σ2
x∗ = T−1∑

t n
−1
t β′(x̃′tx̃t)β, being x̃t the centered variables. The

specification also implies that the associations among different items are
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explained through the autoregressive process ut. Indeed, the covariances of
the response variable within and between time result

Cov(yit, yjt|xt) = σ2
u, i 6= j

Cov(yit, yjs|xt,xs) = ρt−sσ2
u, i 6= j s < t.

We call the new specification SVARE (Stochastic Volatility and Autore-
gressive Random Effects) model. The system (1)-(3) is a nonlinear state-
space representation. Hence, model estimation can be performed by using
maximum likelihood via a non-Gaussian filtering process and poses several
non-trivial challenges that we describe and address in the following section.

4. Model estimation.

4.1. The likelihood function. We perform maximum likelihood estima-
tion based on the following likelihood function

L(θ|y,x) =

∫
h

∫
u
f(y|u,h,x)f(u,h)du dh =(5) ∫

. . .

∫ [ T∏
t=1

f(yt|ut, ht,xt)f(ut|ut−1)f(ht|ht−1)

]
duT . . . du1dhT . . . dh1

where θ = {β0,β
′, ρ, ση, α, δ, σν} is the vector of parameters, f(yt|ut, ht,xt) =∏nt

i=1 f(yit|ut, ht,xit) for t = 1, . . . , T , f(u1|u0) = f(u1) and f(h1|h0) =
f(h1).

The computation of L(θ|y,x) requires solving a 2T -dimensional integral
which is computationally unfeasible. We address the issue by applying an
iterated numerical integration procedure introduced by Kitagawa (1987) for
non-Gaussian filtering problems. The procedure is based upon rephrasing
the likelihood (5) as

L(θ|y,x) =(6) ∫ ∫
f(y1|u1, h1,x1)f(u1)f(h1)

∫ ∫
f(y2|u2, h2,x2)f(u2)f(h2) . . .

. . .

∫ ∫
f(yT |uT , hT ,xT )f(uT )f(hT )duTdhT . . . du2dh2du1dh1.

The resulting bivariate integrals can be approximated by using numerical
quadrature techniques. The most used techniques for stochastic volatility
models are the rectangular quadrature (RQ) (Bartolucci and De Luca, 2001)
and the Gauss-Legendre quadrature rule (GL) (Fridman and Harris, 1998).
The choice between the two methods should be closely related to the data
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analyzed. In fact, the results of existing literature (see e.g. Cagnone and
Bartolucci, 2016) indicate that the two methods perform similarly when
the squared coefficient of variation of the volatility is equal or greater than
1, whereas the rectangular quadrature outperforms the Gauss-Legendre for
squared coefficient of variation equal to 0.1. The application of the two
quadrature based methods to eq. (6) produces the following approximated
likelihood function

L̃(θ|y,x) = (rurh)T
nu∑
i1

wui1

nh∑
j1

whj1f(y1|u∗i1 , h
∗
j1 ,x1)f(u∗i1)f(h∗j1)(7)

nu∑
i2

wui2

nh∑
j2

whi2f(y2|u∗i2 , h
∗
j2 ,x2)f(u∗i2 |u

∗
i1)f(h∗j2 |h

∗
j1) . . .

. . .
nu∑
iT

wuiT

nh∑
jT

whiT f(yT |u∗iT , h
∗
jT
,xT )f(u∗iT |u

∗
iT−1

)f(h∗jT |h
∗
jT−1

)

where, using the Gauss-Legendre quadrature method, {u∗i }, with i = 1, . . . , nu,
and {h∗j}, with j = 1, . . . , nh, are sets of Gauss-Legendre quadrature points,
wui and whj are the corresponding weights. The constants ru and rh are
defined as

ru =

(
b− a

2

)
; rh =

(
e− d

2

)
where [a, b] and [d, e] are finite integration limits which replace the infinite
ones for the random effects and the volatility process respectively. With
the rectangular quadrature method, the quadrature points are chosen as
equidistant in the ranges [a, b] and [d, e] and the weights wui and whj are set
equal to 1 (Bartolucci and De Luca, 2001).

Under both methods, the choice of the grids and the number of evaluation
points is crucial for numerical precision. First, as proposed in Fridman and
Harris (1998), the grids for the two latent processes are centered on µu = 0
and µh = α/(1 − δ) with a width of 3σu = 3ση/(

√
1− ρ2) and 3σh =

3σν/(
√

1− δ2); this allows the grids to cover the support of the unconditional
distributions with non negligible mass. Second, the number of quadrature
points, nu and nh, are chosen according to the degree of smoothness of the
integrands, i.e. the average distance between two points is less or equal to
ση/2 for the random effect process and σν/2 for the volatility process. As we
will discuss in Section 5, in our case we chose the Gauss-Legendre quadrature
method.
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Estimation via the non-Gaussian filtering process consists in maximizing
the approximated likelihood of Eq. (7) and it is based on a recursive algo-
rithm described in the supplementary material (Cagnone et al., 2017). We
also derive optimal estimators for the unobserved-state vectors u and h by
performing filtering and smoothing, which differ in the conditioning infor-
mation set. These procedures, together with one-step-ahead prediction, are
described in detail in the supplementary material.

5. Application to tribal Art prices. In this section we illustrate the
application of our model to the first database of ethnic artworks. The re-
sponses are the logged prices for 28 semesters for the overall sample size of
13955 items. As is customary with prices, we take the natural logarithm as
to linearize the effects and obtain distributions closer to the Gaussian. We
take the fixed effects hedonic specification (FE) as the benchmark model.
For the selection of covariates we applied stepwise (forward and backward)
techniques combined with parsimony and art economics arguments. First
of all, note that tribal art is considered an anonymous art in that the geo-
graphic/ethnic provenance plays the role that the artist’s name has in West-
ern art and strongly characterizes the object. However, the variables Conti-
nent, Region and Ethnic group are nested so that they are collinear. Given
that there are 17 regions and 361 ethnic groups we decided to include the Re-
gion as a reasonable compromise between fitting capability and parsimony.
Then, we proceeded by applying stepwise forward and backward methods
with both the AIC and BIC criteria. Whilst the AIC criterion did not rule
out any variable, the BIC criterion kept 10 variables out of 14 both in for-
ward and backward procedures. Among the excluded variables there was
Historicization which art economics experts consider an important feature.
For this reason, we added it to the model.

Table 2 reports the parameter estimates for the three models: fixed ef-
fects (FE), autoregressive random effects (ARE) and stochastic volatility
with autoregressive random effects (SVARE), fitted on the same data set
with the same set of covariates. The asymptotic standard errors for the FE
and SVARE models are derived from the Hessian matrix of the likelihood
functions. The robust standard error for the ARE model are derived by
means of the wild bootstrap for multilevel models introduced in Modugno
and Giannerini (2015).

As mentioned above, we chose the Gauss-Legendre quadrature method
to approximate the likelihood of the SVARE model. In our application, the
squared coefficient of variation of the volatility is greater than 1 and, in
agreement with the results on the classical stochastic volatility models, we
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found that GL and RQ perform similarly, also in terms of both computa-
tional time and number of iterations to convergence. This is shown in Table
2 of the supplementary material (Cagnone et al., 2017) where we have es-
timated the SVARE model by varying the number of quadrature points for
the two methods. According to the rule given in Section 4.1 we first set
nu = nh = 21 and then increased them up to 61. The estimates indicate a
robust fit for all the parameters, with the exception of α. This is in agree-
ment with the results in literature that show a high mean square error for
the estimator for α (see, for example, Bartolucci and De Luca (2001)). Also,
the RQ with 61 quadrature points did not converge so that we chose the GL
method with 51 points. This is the solution with the highest log-likelihood
and the best forecasting performance among the GL results (see Table 3
of the supplementary material). Moreover, 51 points should be enough to
ensure an accurate approximation of the standard errors. Alternative es-
timation methods, like the EM algorithm or Markov chain Monte Carlo
techniques in the Bayesian context, could also be used and will be subject
of further investigations.

In order to assess whether the specifications proposed manage to model
satisfactorily the time dynamics and the heterogeneity observed, we have
implemented a series of diagnostic tests. Table 3 reports information on the
goodness of fit of the models. In particular, we have computed a version
of the R2 coefficient for mixed effects models, with and without stochastic
volatility. The R2 for the ARE and SVARE models has been generalized with
respect to the classical R2 (for fixed effects regression) to account properly
for the proportion of variability explained by the different components of
the models. Following the lines of Xu (2003), the R2 for the ARE model can
be obtained as follows

(8) R2 = 1− σ̂2

σ̂2
u + σ̂2

x∗ + σ̂2.

It expresses the proportion of the variability of Y explained by both the
random intercept and the covariates. In the same way, the coefficient of
determination for the SVARE model can be defined as

(9) R2 = 1− σ̂2
h∗

σ̂2
u + σ̂2

x∗ + σ̂2
h∗

In this case the R2 can be interpreted as the proportion of variability of Y ex-
plained by the random intercept and the covariates, assuming the stochastic
volatility model for the level-1 error term. As for the FE model, we consider
the classical adjusted R2.
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In Table 4 we present the results of some diagnostic tests and indicators
on the residuals. In particular, the first row of Table 4 shows the p-values
for the Shapiro-Wilk test for normality of the residuals of the three mod-
els; the shapiro.test function in R limits the sample size to 5000. The
results presented are the median p-values over 20000 random subsamples
of size 5000 drawn from the original sample. The last two rows show the
indexes of skewness and kurtosis b1 and b2 as in Joanes and Gill (1998)
computed on level-1 residuals. We derive the standardized residuals for the
ARE model from the best linear unbiased predictors (BLUP) of the random
effects whereas for the SVARE model we use the smoothed values for both
the random effects and the volatility. Their expressions are reported in the
supplementary material (Cagnone et al., 2017).

As concerns the time dynamics we assess the adequateness of the models
by computing the sample global and partial autocorrelation functions over
time varying quantities such as level-2 residuals. Moreover, we use the metric
entropy measure Sk defined as

(10) Sk =
1

2

∫ ∫ [
{f(Xt,Xt+k)(x1, x2)}1/2 − {fXt(x1)fXt+k(x2)}1/2

]2
dx1dx2

where fXt and f(Xt,Xt+k) denote the probability density function of Xt and
of the vector (Xt, Xt+k) respectively. The measure is a particular member of
the family of relative entropies, which includes as a special case non-metric
entropies often referred to as Shannon or Kullback–Leibler divergence. It can
be interpreted as a nonlinear autocorrelation function and possesses many
desirable properties. We use Sk as in Giannerini et al. (2015) to test for
nonlinear serial dependence and as in Granger et al. (2004) to test for serial
independence (see the supplementary material for more details). The tests
are implemented in the R package tseriesEntropy (Giannerini, 2015). In
the spirit of time series analysis, if the specification is appropriate then the
residuals behave as a white noise process and diagnostic tests can suggest
directions to improve the existing model.

Finally, Table 5 compares the prediction/forecasting capability of the
three models under scrutiny. It reports the prediction error over 100 (out
of sample) items within the time span 1998-2011, and the forecasting per-
formance over all the 73 observations of semester 2011-2. Such observations
have not been included in the model fit so that the measures reflect a gen-
uine forecasting performance The aggregate measures of prediction error are
the Mean Absolute (Prediction) Error (MAE), the Root Mean Square (Pre-
diction) Error (RMSE) and the Mean Absolute Percentage Error (MAPE),
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given by

MAE =
1

n∗

n∗∑
i=1

|ei| ; RMSE =

√√√√ 1

n∗

n∗∑
i=1

e2
i ; MAPE =

1

n∗

n∗∑
i=1

∣∣∣∣100ei
yi

∣∣∣∣ ;
where ei = yi− ŷi is the forecasting/prediction error for item i, and n∗ is the
number of predicted responses. The MAPE is scale independent and allows
to compare the performance of different models and also different data sets.
It is meaningful if the scale has a meaningful origin and it is best suited to
data sets without zeroes and without values close to zero. In our case these
conditions are fulfilled. Moreover, the MAPE takes values in the interval
[0,∞], where the minimum value zero indicates perfect fit/forecast. Hence,
it provides also a measure of absolute performance and a value below 10%
is usually taken as an indication of a very good fit.

5.1. FE and ARE models. The parameter estimates of the FE and ARE
models are very similar (first two columns of Table 2), still, there are some
differences: first, the ARE fit is more parsimonious and results in a smaller
BIC (see Table 3); also, it provides a decomposition of the total variability
of the response in between-time and within-time variability. Furthermore, in
the FE model the time dynamics is modelled through 28 dummy variables
while in the ARE model the time dynamics is fully captured through the
AR(1) specification with the two parameters, ρ and ση, see Figure 1 and 2 of
the supplementary material. The same tests performed on level-2 residuals
of the ARE model show no structure (see Figure 3 and 4 of the supplemen-
tary material). Finally, the ARE model provides a superior one-step-ahead
forecasting of the price whereas the prediction performance is the same as
that of the FE model (see Table 5). Note that the R2 for the ARE model
(0.61) is lower than that of the FE model (0.65) and this could be due to
the impact of the 28 time dummies on the coefficient which is notoriously
biased towards overfitting. Interestingly though, the better performance of
the FE model in terms of explained variability does not imply a better fore-
cast as the ARE specification manages to model the time dynamics with the
autoregressive component.

The Shapiro-Wilk test (see Table 4) points to a deviation from normal-
ity in level-1 residuals of the ARE model (whereas it does not reject the
assumption of normality for level-2 residuals). As discussed above, this is
consistent with the findings in literature and might be due to heteroscedas-
ticity. In fact, similarly to other assets, level-1 residuals show a leptokurtic
behaviour as shown in Figure 4 and by looking at the kurtosis index in Ta-
ble 4. Furthermore, we reject the assumption of homogeneity of the variance
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Table 2
Significant parameter estimates for models FE, ARE and SVARE with standard errors in

parentheses. The complete set of estimates is available in the supplementary material
(Cagnone et al., 2017). For each categorical variable the baseline category is indicated.

FE ARE SVARE
σ 1.073 (0.006) 1.074 (0.008) -
ση - 0.326 (0.057) 0.324 (0.044)
ρ - 0.833 (0.148) 0.862 (0.084)
α - - -0.018 (0.006)
δ - - 0.910 (0.055)
σν - - 0.414 (0.059)
β0 - 6.793 (0.652) 7.018 (0.112)
Type of object: baseline Furniture
- Sticks -0.143 (0.069) -0.144 (0.075) -0.238 (0.064)
- Masks 0.270 (0.057) 0.269 (0.063) 0.253 (0.052)
- Ornaments -0.306 (0.063) -0.306 (0.074) -0.232 (0.058)
- Sculptures 0.149 (0.054) 0.147 (0.058) 0.142 (0.049)
- Tools -0.173 (0.055) -0.175 (0.062) -0.167 (0.050)
- Weapons -0.240 (0.069) -0.240 (0.074) -0.212 (0.065)
Material: baseline Ivory
- Wood 0.279 (0.054) 0.280 (0.065) 0.194 (0.051)
- Gold 0.231 (0.082) 0.231 (0.101) 0.332 (0.077)
- Bone, horn -0.413 (0.091) -0.412 (0.121) -0.344 (0.089)
Patina: baseline Not indicated
- Pejorative 0.446 (0.104) 0.445 (0.106) 0.365 (0.104)
- Appreciative 0.183 (0.029) 0.182 (0.035) 0.149 (0.028)
Region: baseline Central Africa
- Southern Africa -0.473 (0.075) -0.474 (0.105) -0.462 (0.074)
- Western Africa -0.273 (0.029) -0.274 (0.032) -0.278 (0.026)
- Eastern Africa -0.355 (0.071) -0.355 (0.083) -0.382 (0.065)
- Indonesia -0.359 (0.071) -0.361 (0.073) -0.323 (0.069)
- Polynesia 0.477 (0.045) 0.477 (0.053) 0.441 (0.041)
- Northern America 0.525 (0.047) 0.525 (0.055) 0.418 (0.042)
- Mesoamerica 0.245 (0.053) 0.243 (0.061) 0.155 (0.047)
- Indian Subcontinent 0.824 (0.285) 0.815 (0.283) 0.760 (0.242)
Illustration width: baseline Absent
- Col. miscellaneous 0.979 (0.048) 0.980 (0.066) 0.964 (0.046)
- Col. quarter page 1.825 (0.048) 1.825 (0.063) 1.567 (0.046)
- Col. half page 2.224 (0.056) 2.223 (0.071) 1.943 (0.053)
- Col. full page 2.564 (0.060) 2.565 (0.077) 2.319 (0.056)
- Col. more than one 3.060 (0.065) 3.063 (0.086) 2.857 (0.061)
- Col. cover 3.375 (0.171) 3.376 (0.242) 3.122 (0.168)
- b/w miscellaneous 1.116 (0.107) 1.114 (0.092) 0.920 (0.085)
- b/w quarter page 0.834 (0.067) 0.835 (0.070) 0.673 (0.057)
- b/w half page 1.403 (0.138) 1.403 (0.129) 1.223 (0.106)
- b/w full page 2.204 (0.542) 2.204 (0.642) 1.876 (0.431)
Description on the catalogue: baseline Absent
- Short visual descr. -0.182 (0.085) -0.184 (0.102) -0.257 (0.076)
- Broad visual descr. 0.784 (0.094) 0.784 (0.110) 0.675 (0.084)
- Critical descr. 0.774 (0.094) 0.772 (0.113) 0.652 (0.084)
- Broad critical descr. 1.668 (0.103) 1.666 (0.120) 1.487 (0.092)
CABS (Yes vs No) 0.249 (0.031) 0.248 (0.033) 0.227 (0.028)
CABC (Yes vs No) 0.332 (0.024) 0.332 (0.027) 0.306 (0.022)
CAES (Yes vs No) 0.204 (0.034) 0.205 (0.038) 0.205 (0.030)
Historicization: baseline Absent
- Simple certification 0.083 (0.025) 0.083 (0.029) 0.102 (0.023)
Paris (vs New York) -0.307 (0.030) -0.302 (0.035) -0.197 (0.026)
Christie’s (vs Sotheby’s) -0.253 (0.026) -0.255 (0.030) -0.335 (0.025)
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Table 3
Loglikelihood, number of parameters, information criteria and coefficient of

determination R2 for the hedonic regression (FE), ARE and SVARE models.

FE ARE SVARE

loglik -20788.86 -20855.52 -20167.98
n. par 93 68 70
AIC 41763.73 41847.05 40475.96
BIC 42465.28 42360.01 41004.01
R2 0.65 0.61 0.70

Table 4
p-values of the Shapiro-Wilk test and indexes of skewness and kurtosis for the FE, ARE

and SVARE (level-1) residuals.

FE ARE SVARE

Shapiro-Wilk p-value <2.2e-16 <2.2e-16 8.9e-08
Skewness -0.157 -0.161 0.021
Kurtosis 1.102 1.111 0.497

across time points, tested through a non-parametric version of the Levene
(1960) rank-based test.

The plot of sARE
t , the standard deviations of level-1 residuals ε̂it in Fig-

ure 2(left) provides a visual evidence of volatility patterns. The entropy
measure Sk shown in Figure 2(right) confirms the presence of a linear se-
rial dependence (the test for nonlinearity does not reject, see Figure 6 of the
supplementary material) and the correlograms of Figure 3 indicate a AR(1)-
type dependence structure for the volatility. In the following subsection we
account for the observed heterogeneity by fitting the multilevel model with
autoregressive random effects and stochastic volatility (SVARE).

5.2. SVARE model. The point estimates of the SVARE model are in
agreement with those of the FE/ARE models. In most cases, the significance
of the parameters does not change and this indicates the overall consistency
of the multilevel approach. Nevertheless, there are important differences. In
fact, SVARE estimates account properly for the volatility and reflect more
closely the impact of the covariates on artwork prices. This is reinforced by
the standard error of the estimates which are invariably the lowest among
the three models. The most noticeable differences can be found in the coef-
ficient of the category Material-Gold: from 0.231 for the FE/ARE model to
0.332 for the SVARE model. Gold and wood are still the materials with the
highest estimated coefficients which, in the hedonic regression framework,
are interpreted as the prices of each feature, the so-called shadow prices.



18 S. CAGNONE ET AL.

Semester

sA
R
E

t

0
.8

1
.0

1
.2

1
.4

1-1998 1-2002 1-2006 1-2010
1 2 3 4 5 6 7 8

0
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4

lag k
S
k

Fig 2. Standard deviations of ARE level-1 residuals sARE
t : time plot (left) and entropy

measure of dependence (right). The confidence bands correspond to the null hypothesis of
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deviations of ARE level-1 residuals.



MULTILEVEL MODELS WITH STOCHASTIC VOLATILITY 19

-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

Standardized residuals

D
en

si
ty

N(0, 1)
SVARE
ARE/FE

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0
.2
0

0
.2
5

0
.3
0

0
.3
5

0
.4
0

Standardized residuals

D
en

si
ty

N(0, 1)
SVARE
ARE/FE

Fig 4. Density of level-1 residuals. The right panel is a zoomed detail of the peak that
highlights the kurtosis.

Also, the absolute impact of the venue reduces from 0.302 (ARE) to 0.197
(SVARE) while the auction house effect increases from 0.255 (ARE) to 0.335
(SVARE). This might indicate that the auction house is more likely to have
a significant effect on the selling price rather than the venue. In any case,
the shadow price of the auction house confirms the international leadership
of Sotheby’s in the tribal art market as in other art markets; this is known
among operators as Sotheby’s effects. Analogously, the reduced shadow price
of Paris with respect to New York is not unexpected and reflects its more
recent entrance in this market. Moreover, the most appraised objects result
masks and sculptures and these are also the most traditional. The patina,
especially when it worsens the object appearance, is a valued feature of
some tribal objects since, in many cases, it would derive from the settling
of organic liquids during sacrificial rites and thus its presence would witness
its real usage (Biordi and Candela, 2007). Also, the use of catalogues as a
marketing tool by auction houses appears important in fetching good prices.
In fact, the shadow prices tend to increase as the importance given to the
object on the catalogue through illustrations and descriptions increases. Fi-
nally, investors tend to pay more for objects with a relevant pedigree, for
example for those boasting either object-specific (CABS) or just compar-
ative (CABC) citations and for those that have been previously exhibited
(CAES).

The SVARE model provides also the key information deriving from the
volatility parameter δ̂ = 0.910, which agrees with those of models for finan-
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Table 5
Prediction/forecasting performance of the three models over 100 out-of-sample units
within the time span 1998-2011 (rows 2-4) and over 73 units of the out-of-sample

semester, 2011-2 (rows 5-7).

FE ARE SVARE

Prediction MAE 0.66 0.66 0.63
RMSE 0.82 0.82 0.79
MAPE 7.4 7.4 7.1

Forecast MAE 1.20 0.87 0.83
RMSE 1.55 1.21 1.15
MAPE 10.7 7.9 7.6

cial time series reported in literature and indicates a non-negligible volatility
persistence. Indeed, the goodness of fit of the SVARE model increases no-
ticeably as witnessed by both the information criteria and from the R2 in
Table 3.

Also for the SVARE model, the Shapiro-Wilk test of normality of level-1
residuals rejects the null hypothesis (Table 4). Nevertheless, the leptokurtic
behaviour of residuals is considerably reduced with respect to both the ARE
and FE models. This is shown in Table 4 (the skewness disappears and the
kurtosis is more than halved) and in Figure 4 where we show the densities
of level-1 residuals for the ARE and SVARE models. Note the agreement of
SVARE residuals with the standard Normal density (dotted in the figure).
See also Figure 11 and 12 of the supplementary material for a normal qq-
plot of level-1 residuals and a log-density plot for the two models. As in
the FE/ARE case, we compute the diagnostic tests of dependence on level-
2 residuals η̂t and ν̂t. Both the correlograms and the entropy measure Sk
indicate the absence of any dependence structure (see Figures 7 - 10 of the
supplementary material) so that we may argue that the SVARE specification
manages to capture the volatility dynamics. Finally, from Table 5 it emerges
clearly that the SVARE specification performs best among competitors in
terms of both prediction and forecasting. In particular, besides allowing
comparisons, the MAPE for the SVARE model (7.1%) is also an indication
of a good fit in absolute terms.

6. Conclusions. The SVARE specification provides a natural and con-
venient framework for modelling the trends in the mean and in the volatility
of artwork prices. The model does not assume that the observations form a
panel, which is clearly not the case for auction data, nor it needs repeated
sales data. The stochastic volatility component accounts (to some extent) for
the deviation from normality observed in the residuals of models without it,
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especially regarding the skewness and the kurtosis. As witnessed by the mod-
ified R2 measure, there is a gain in the explained heterogeneity with respect
to the ARE model. Also, we observe a superior forecasting ability. Of course,
the dynamic of art prices still retains a proportion of unexplained, maybe
unexplainable, variability. For instance, there might be complex interactions
with the buy-in phenomenon (Collins et al., 2009) or with the selling prob-
ability (Candela et al., 2012). Moreover, modelling the so-called superstars
would require a different class of models, possibly rooted in extreme value
theory. Last but not least, the values of tribal artworks are deemed to be pri-
vate rather than public since are more dictated by the personal judgements
of passionate collectors rather than the common consensus of some com-
munity and this complicates the modelling task. Still, the multilevel model
with stochastic volatility provides important additional information on the
predictability of the prices and, hence, on investment risks, that can be ex-
ploited by art market stakeholders for an informed decision making. This
can be best appreciated by looking at Figure 5 where we show the biannual
price indexes obtained through the FE, ARE and SVARE fits (left panel),
together with the predicted volatility values of the SVARE model, exp(ĥt/2)
(right panel). The indexes are computed with fixed base in semester b =“1-
1998” as

It =
eβ̂0t

eβ̂0b
× 100,

where, for multilevel models, the β̂0ts are the best linear unbiased predictors
(BLUP values) β̂0 + ût. With the exceptions of few time points, the indexes
for the three models are similar. However, by performing a prediction ex-
ercise with the SVARE fit on the prices of items sold in semesters 1-2001
(lowest volatility) and 1-2004 (highest volatility) we obtain a MAPE of 6%
and 33% respectively (see the right panel of Figure 5). This shows that the
information deriving from the volatility is essential to the prediction of price
dynamics and to the characterization of its complexity. The price indexes
and the volatility shown in Figure 5 also highlight the peculiarity of the tribal
art market. Indeed, both the traditional art market and financial markets
showed a level drop and clusters of high volatility after the financial crisis
of 2008, see the behaviour of the S&P500 index reported in Figure 5(left).
This is not the case with the tribal art market. In fact, the tribal art index
reached both its minimum level and highest volatility in 2004. Moreover,
after 2008, it showed a sharp increase together with mild volatility. Note
also the drop in volatility in semester 1-2009. There is no apparent depen-
dence/correlation between the tribal art market and other market segments
(e.g. traditional art, financial, gold). Hence, tribal artworks can be counted
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among the alternative investments that contribute to the diversification of
a portfolio and enhance its performance.
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SUPPLEMENTARY MATERIAL

Supplementary Material: Appendices
(http://www.to.be.inserted). The online supplement contains six technical
appendices with detailed material on the following topics:

1. Recursive algorithm for computing the likelihood;
2. Filtering, Smoothing and Prediction;
3. Application to Tribal Art prices: full table of the estimates;
4. Application to Tribal Art prices: choice of the quadrature based method;
5. Application to Tribal Art prices: entropy based diagnostic tests for

serial independence and nonlinearity;
6. Software implementation;
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