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Abstract

We report the present knowledge about RPHM21, a novel male-specific mitochondrial protein with

a putative role in the paternal inheritance of sperm mitochondria in the Manila clam Ruditapes

philippinarum, a species with doubly uniparental inheritance of mitochondria (DUI). We review all

the available data on rphm21 transcription and translation, analyze in detail its female counterpart,

RPHF22, discuss the homology with RPHM21, the putative function and origin, and analyze their

polymorphism. The available evidence is compatible with a viral origin of RPHM21 and supports

its activity during spermatogenesis. RPHM21 is progressively accumulated in mitochondria and nu-

clei of spermatogenic cells, and we hypothesize it can influence mitochondrial inheritance and sex-

ual differentiation. We propose a testable model that describes how the acquisition of selfish fea-

tures by a mitochondrial lineage might have been responsible for the emergence of DUI, and for

the evolution of separate sexes (gonochorism) from hermaphroditism. The appearance of DUI

most likely entailed the invasion of at least 1 selfish element, and the extant DUI systems can be

seen as resolved conflicts. It was proposed that hermaphroditism was the ancestral condition of bi-

valves, and a correlation between DUI and gonochorism was documented. We hypothesize that

DUI might have driven the shift from hermaphroditism to gonochorism, with androdioecy as transi-

tion state. The invasion of sex-ratio distorters and the evolution of suppressors can prompt rapid

changes among sex-determination mechanisms, and DUI might have been responsible for one of

such changes in some bivalve species. If true, DUI would represent the first animal sex-determin-

ation system involving mtDNA-encoded proteins.
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The common concept that animal mitochondrial genome (mtDNA)

content and architecture are highly conserved is mostly due to a

biased sampling: over 94% of the completely sequenced mtDNAs

present in GenBank belongs to vertebrates (of which 85% are mam-

malian and 77% are human; Breton et al. 2014). Recently, the diver-

sity of analyzed taxa has started to increase and several exceptions

to the ‘usual’ gene content have been documented, showing that

‘non-canonical’ mtDNA genes are more common than previously

imagined (see Breton et al. 2014 for a review). In most cases, the

evidence of a protein product is still missing, so putative novel genes

are predicted by: (1) the existence of an open reading frame (ORF),

(2) sequence conservation, and (3) absence of nonsense mutations.

Very often, ontology and function of these ORFs are unknown, so

they are referred to as ORFans (Fischer and Eisenberg 1999).

Bivalve molluscs have an extremely fast-evolving mitochondrial

genome, showing high-sequence polymorphism and divergence,

variable architecture, high proportion of unassigned regions, and

widespread presence of ORFans (Gissi et al. 2008; Ghiselli et al.
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2013). That said, the most noteworthy feature of bivalve mitochon-

drial biology is the doubly uniparental inheritance (DUI) of mito-

chondria (Skibinski et al. 1994a, 1994b; Zouros et al. 1994a,

1994b) reported, so far, in about 50 species. In animals, DUI is the

only known evolutionarily stable exception to the common strictly

maternal inheritance (SMI) of mitochondria. Under DUI, mitochon-

dria follow two distinct inheritance paths: 1 type of mitochondria is

inherited through females (F type), the other through males (M

type). The zygote receives both the mtDNA types then, if the embryo

develops into a female, the M type is lost (degraded or diluted), and

the adult will be homoplasmic for the F type. Conversely, if the em-

bryo develops into a male, the M type is retained, it becomes the

predominant mtDNA type in the gonad, and sperm will be homo-

plasmic for the M type. The somatic tissues of males show variable

proportions of M and F type, depending on tissue and species

(Ghiselli et al. 2011). It has to be noted that DUI is not a case of

biparental inheritance, since each mtDNA lineage experiences a uni-

parental transmission. F and M mtDNAs are highly differentiated,

with an amino acid divergence up to 50% (see Zouros 2013 for a

thorough review of DUI). DUI represents an exceptional model for

studying multiple aspects of mitochondrial biology (Passamonti and

Ghiselli 2009; Milani et al. 2011; Breton et al. 2014), and since its

discovery, the main focus has been to unveil the origin and the mo-

lecular mechanism behind it. The data gathered so far are consistent

with DUI being originated from SMI by modification of the molecu-

lar machinery of SMI (Breton et al. 2007; Zouros 2013; Milani and

Ghiselli 2015), but the underlying factors are still unknown. A fair

amount of research was done on the mitochondrial genomes of DUI

species to identify elements that could be responsible for, or involved

in, the modification of the inheritance mechanism, and some good

candidates have been spotted. Lineage specific mtORFans were

identified in all the analyzed DUI species: fORFans specific to the F

mtDNA, and mORFans specific to the M mtDNA have been found

in the families Unionidae (Breton et al. 2009; Breton et al. 2011a),

Mytilidae (Breton et al. 2011b), and Veneridae (Ghiselli et al. 2013;

Milani et al. 2013a). Given the absence of identifiable homologs in

databases, the function of these mtORFans has to be inferred by the

presence of short regions showing similarity with known structural

motifs. An in silico meta-analysis (Milani et al. 2013a) has high-

lighted some interesting patterns: features shared by MORFs (we

refer to the translations of fORFs and mORFs as FORF and MORF,

respectively) point to a role in the targeting of M-type mitochondria

to germ line precursor blastomeres through interactions with the

cytoskeleton. Moreover, both FORF and MORF features point to a

role in nucleic acid binding and transcription regulation, and, most

strikingly, all the analyzed mtORFans showed signatures that are

consistent with a viral origin. Up to now, evidence for a protein

product has been provided for only three mtORFans: RPHM21, spe-

cific to the M mtDNA of the Manila clam Ruditapes philippinarum,

and the F and M mtORFans (here reported as Vel-FORF and Vel-

MORF) specific to the freshwater mussel Venustaconcha ellipsifor-

mis (Breton et al. 2009, 2011a). Immunoelectron microscopy and

confocal microscopy showed that Vel-FORF and RPHM21 are

localized in both mitochondria and nucleus (Breton et al. 2011a;

Milani et al. 2014a). Milani et al. (2014a) found similarities be-

tween RPHM21 and MK3, a member of modulators of immune rec-

ognition (MIRs), which are viral proteins involved in immune

recognition functioning as ubiquitin ligases (Coscoy and Ganem

2003). RPHM21 and MK3 show structural similarities, are both

localized in mitochondria and nucleus, and share putative functions

such as reorganization of cytoskeleton, cell migration, cell cycle

control, chromatin remodeling, and transcriptional control (Kurz

et al. 2002; Ronkina et al. 2007, 2008; Milani et al. 2013a, 2014a).

Following these observations, Milani et al. (2014a) proposed that:

(1) M-specific elements may have a role in preventing the recogni-

tion of male-transmitted mitochondria by the degradation machin-

ery, thus allowing their survival in male embryos, and their

preferential transmission to the progeny; (2) these elements might

also function as transcriptional regulators.

The aim of this article is to report the present knowledge about

RPHM21, proposed to be one of the factors responsible for paternal

inheritance of sperm mitochondria in R. philippinarum. The evi-

dence collected so far strongly supports the activity of this protein

during spermatogenesis, and we hypothesize that the viral sequence

provided infected mitochondria with the ability to escape the deg-

radation process in early embryos, invading the germ line, and being

preferentially transmitted to the progeny. In the present work we:

(1) review all the available data on rphm21 transcription and

translation, providing new in situ hybridization and confocal data;

(2) analyze in detail the F-type specific mtORFan RPHF22, discuss-

ing its homology with RPHM21, its putative function, and its origin;

(3) analyze the M-type and F-type polymorphism; (4) propose a

testable model that describes how the acquisition of selfish features

by a mitochondrial lineage (through endogenization of a viral se-

quence in its mtDNA) might have been responsible for the emer-

gence of an aberrant mitochondrial inheritance system, and for the

evolution of separate sexes (condition usually referred to as gono-

chorism in animals and dioecy in plants) from hermaphroditism.

Materials and Methods

Real-Time qPCR data
A comparative analysis of rphm21 transcript amount obtained with

Real-Time qPCR on young and adult male specimens was per-

formed to highlight possible differences between tissues and develo-

pmental stages. The target (129 bp sequence) was quantified using

the primers Rph_SYBR_orf21_ forward TCTGTGAAAGGAAA

CCCATGTGAG and Rph_SYBR_orf21_ reverse ACTAATAATAA

TTGGAGCCGAATAAACTTG (Milani et al. 2014b, 2015). In

total, data from 112 male samples were used: 28 juveniles (whole

bodies), 16 gonads from gametogenic adults (adults during gonad

maturation), 20 gonads of ripe adults (adults with mature gametes),

24 adductor muscles, and 24 mantles. Details about experimental

design and quantification method are available in Milani et al.

(2014b, 2015). Statistical analyses and plots were performed with R

3.1.1.

Microscopy
Mature adult specimens (gonads and surrounding tissues of 5 indi-

viduals, 3 males, and 2 females) were used for in situ hybridization

with rphm21 riboprobes and immunological localization of

RPHM21 in tissues to document the presence and localization of

transcript and protein in tissues. A digoxigenin (DIG)-labeled ribop-

robe antisense to rphm21 transcript was obtained using the Roche

in vitro transcription labeling protocol (Roche DIG RNA labeling

kit). Cryosections of gonads of 10–20mm were used for in situ hy-

bridization, following the method in Milani et al. (2013b, 2014a).

Samples were observed with a Nikon Eclipse 80i microscope and

images were captured using NIS-Elements D3.2 software.

An anti-RPHM21 antibody was used to immunolocalize the

male-specific mitochondrial protein, following the method in Milani

688 Current Zoology, 2016, Vol. 62, No. 6

Deleted Text: one 
Deleted Text: in order 
Deleted Text: i
Deleted Text: i
Deleted Text: i
Deleted Text: paper 
Deleted Text: i
Deleted Text: i
Deleted Text: i
Deleted Text: iii
Deleted Text: iv
Deleted Text: five 
Deleted Text: three
Deleted Text: two
Deleted Text: in order 
Deleted Text: D


et al. (2014a). Nuclei were stained with 1 mM TO-PRO3

(Molecular Probes). Some sections were incubated with a monoclo-

nal anti-alpha-tubulin (clone DM1A; Sigma) (method as in Milani

et al. 2011) to stain microtubules and to better show the structure of

both male and female acinus (i.e., the structural unit of bivalve

gonad; a gonad is formed by thousands of acini). Imaging was re-

corded by a confocal laser scanning microscope (Leica confocal SP2

microscope), using Leica software.

In silico analyses on RPHM21 and RPHF22
We performed in silico analyses to better characterize the novel

mitochondrial elements RPHM21 and RPHF22 because they were

reported not to show a clear sequence similarity with known pro-

teins. The tertiary structure of RPHM21 and RPHF22 was predicted

using I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER;

Zhang 2008). The best model in pdb format was used as input for

the Chimera 1.8.1 software (Pettersen et al. 2004) to obtain the 3D

structure.

Alignments between RPHM21 and RPHM22 were performed

with TM-COFFEE (http://tcoffee.crg.cat/apps/tcoffee/do:tmcoffee;

Chang et al. 2012), which is specifically designed to align transmem-

brane proteins, and with HMMER 3.1b2 (Finn et al. 2011).

HMMER uses profile hidden Markov models (profile HMMs; Eddy

1998) to perform alignments. Profile HMM converts an alignment

into a position-specific scoring system that is particularly efficient in

searches for remote homology. To obtain specific-profile HMMs for

RPHM21 and RPHF22, we obtained an amino acid sequence align-

ment for each protein using Clustal Omega (Sievers et al. 2011), and

then we used the hmmbuild tool of the HMMER 3.1b2 package.

We then aligned the 2 proteins using hmmalign bidirectionally

(RPHM21 profile HMM vs. RPHF22 and vice versa).

Interproscan5 (http://www.ebi.ac.uk/Tools/pfa/iprscan5; Jones

et al. 2014) was used to search InterPro signatures in RPHM21 and

RPHF22.

Polymorphism analysis was performed on F and M mitochon-

drial genes for which the number of sequences available was �10,

namely: atp6, cox3, nd3, nd4, nd5, nd6 (F type n¼12; M type

n¼11), rphm21 (n¼16), rphf22 (n¼20). We combined data ob-

tained by Sanger sequencing (F type: AB065375, AF484332-36,

KC243324-31; M type: AB065374, AF484337-40, KC243347-53)

with data obtained from a single nucleotide polymorphism (SNP)

analysis performed on RNA-Seq data (BioProject PRJNA68513,

Ghiselli et al. 2012). SNPs were called from gonad transcriptomes of

6 males and 6 females. Details about SNP calling procedure are in

Ghiselli et al. (2013). To obtain alignable FASTA sequences from

the VCF file containing the SNP informations, we first prepared the

reference FASTA by building an index with the Samtools faidx tool

(Li et al. 2009), and creating a sequence dictionary with the

CreateSequenceDictionary program from PicardTools (http://broad

institute.github.io/picard). Then we used the

FastaAlternateReferenceMaker command from the program

GenomeAnalysisTK of the GATK distribution 3.4-46 (McKenna

et al. 2010). Later, we used ClustalW to align the FASTA files con-

taining the alternative alleles obtained from the SNP calling with the

Sanger sequences. Nucleotide and amino acid p-distances, number

of synonymous substitutions for synonymous sites (synonymous

polymorphism, pS), and number of nonsynonymous substitutions

per nonsynonymous sites (nonsynonymous polymorphism, pN)

were calculated using MEGA 5 (Tamura et al. 2011) with the fol-

lowing settings: 1,000 bootstrap replicates, transi-

tionsþtransversions, complete deletion, Kumar method.

Results

Real-Time qPCR
This analysis was performed in male individuals only; sex in juven-

iles was assigned by the presence of the M-type genome, while in

adults by microscope examination of gonadic tissue. Real-time

qPCR data indicate that rphm21 transcript abundance increases

from the time of gonad formation (juveniles) to the fully mature

gonad of ripe adults (Figure 1). rphm21 transcript amount is lower

and uniform in the 2 somatic tissues analyzed (Figure 1).

In situ hybridization
Figure 2 shows the morphology of male and female acini.

Consistently with what was previously described (Milani et al.

2014a), rphm21 transcripts are localized in male gonads (Figure 3).

Many more spermatozoa are produced in male acini compared to

eggs in female acini (50:1, spermatozoa:eggs per z-section at the

confocal microscope; Figure 2). In male acini, the transcript is pre-

sent in early spermatogenic cells along the acinus wall (Figure

3A,B), then, during spermiogenesis, it accumulates in spermatozoa

that fill the acinus lumen when gonads are mature. The transcript is

not detected in female acini (Figure 3C).

Immunohistochemistry
In the male gonad, anti-RPHM21 labels a clear spot at one side of

the nucleus of spermatocytes and spermatids (Figure 3D). Anti-

RPHM21 staining is also present in spermatozoa that fill the acinus

(Figure 3D), showing the staining both in the sperm mitochondrial

midpiece and in the nucleus (Figure 3D, box). The nuclei of sperma-

togenic cells appear with different color, depending on the different

proportion of colocalizing fluorescence signals (TO-PRO3, in green,

Figure 1. rphm21 transcript amount. (A) Violin plots of rphm21 transcript

amount obtained by Real-Time qPCR. Sample sizes: 28 juveniles, 16 gonads

from gametogenic adults, 20 gonads of mature adults, 24 adductor muscles,

and 24 mantles. Y-axis: log10 copy number relative to the nuclear endogenous

control (18S) (see Milani et al. 2014b, 2015 for details). (B) Statistical signifi-

cance of transcript amount differences; p-values obtained with Wilcoxon

Rank-Sum test.
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and anti-RPHM21, in red). RPHM21 protein is not detected in fe-

male acini and eggs (Figure 3E).

In silico analyses
I-TASSER proposed 5 models for RPHM21 and RPHF22. The C-

score for the inferred proteins was in the range [�4.31, �4.96] and

[�1.96, �5. 00], respectively. The 10 threading templates used by I-

TASSER to model RPHF22 and RPHM21 are reported in Table 1.

The results of InterProScan 5, TM-COFFEE, and HMMER are

shown in Figure 4A–D. 3D models of RPHM21 and RPHF22 ob-

tained using structures predicted by I-TASSER are shown in Figure

4E,F.

Polymorphism analysis (Table 2) shows that both rphm21 and

rphf22 are quite conserved, and that, compared with other mito-

chondrial genes, their synonymous and nonsynonymous polymorph-

ism is low. rphm21 has the lowest nonsynonymous polymorphism

of all (both F and M mtDNAs) the analyzed genes (pN¼0.003,

95% CI [0.000, 0.007]).

Discussion

Lineage-specific mitochondrial elements and DUI
In the absence of proper functional studies, the role of RPHM21

and of other DUI mtORFans can be inferred only through in silico

predictions and bioinformatics analyses. In the last years, several

works have provided new insights about these novel mitochondrial

elements (Breton et al. 2011a, 2011b, 2014; Ghiselli et al. 2013;

Milani et al. 2013a, 2014a, 2015), but clear evolutionary and func-

tional patterns have not emerged yet. The difference among these

elements might be the result of divergent evolution after a common

origin, or it might be indicative of an independent origin; in the

latter case the genes involved in DUI would be taxon-specific.

Accordingly, and alternatively to what hypothesized earlier (see

Zouros 2013), it was recently proposed that DUI might have

evolved multiple times through the endogenization of different viral

elements in the mitochondrial genome of some bivalve species

(Milani et al. 2013a), thus explaining the scattered distribution of

DUI in the class Bivalvia (Zouros 2013) and the higher difference in

amino acid sequence among the above-mentioned lineage-specific

mitochondrial elements when compared to standard mitochondrial

proteins (see Figure 5 in Milani et al. 2013a). If so, DUI in different

species could be achieved by different modifications of SMI, and the

genes involved could be nonhomologous.

M-type specific RPHM21
The sequence of rphm21 was reported to be quite conserved

(Ghiselli et al. 2013), and the new analysis performed on additional

sequences (both from Sanger sequencing and RNA-Seq SNP calling)

confirms this observation. Both the nucleotide and amino acid p-dis-

tances are among the lowest of all the analyzed mitochondrial genes

(see Table 1) and the synonymous–nonsynonymous polymorphism

indicates negative selection (pS¼0.011, 95% CI [0.001, 0.021]; pN

0.003, 95% CI [0.000, 0.007]). All the data collected so far show

that rphm21 transcript is more abundant in gonads of ripe adults,

when compared with juveniles and gametogenic adults (Figure 1),

and that rphm21 transcript is localized in gametes, as the protein

RPHM21 (Figure 3). The transcript is already present in early sper-

matogenic cells, alongside the acinus wall where spermatogonia are

located, and it remains detectable in spermatozoa, as shown by the

riboprobe labeling the acinus lumen (Figure 3A–C). The protein ap-

pears to be produced and stored in the cytoplasm portion in which

the mitochondrial midpiece forms, as shown by the red spot at one

Figure 2. Gonadic structure of Ruditapes philippinarum. (A) Two adjacent male acini at confocal microscope showing many spermatozoa (s; around 500 gametes

per z-section). Magnification of sperm nuclei, in light blue, in the inset. (B) Two adjacent female acini (dashed ovals) at confocal microscope showing up to 10

eggs per section (1 egg is lined with a solid oval). The nucleus of some eggs is indicated by an arrow. (A, B scale bar¼47.62mm; A inset scale bar¼16.26mm).

s¼ spermatozoa; sc¼ spermatogenic cells along the acinus wall; n¼egg nucleus; cyt¼egg cytoplasm; ct¼ connective tissue. Microtubules in green; TO-PRO3

nuclear dye in blue.
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Figure 3. Localization of rphm21 products. (A–C) rphm21 transcript localization with in situ hybridization in male (A, B) and female (C) gonadic tissue of the

Manila clam Ruditapes philippinarum. (A) Male immature acinus in which rphm21 riboprobe labels spermatogenic cells along the acinus wall (positive signal in

black). (B) Male mature acinus in which spermatozoa stored in the acinus lumen are deeply stained with rphm21 riboprobe. (A, B scale bars¼ 100mm). (C) No

staining is present in eggs (C scale bar¼50 mm). n¼egg nucleus; cyt¼egg cytoplasm; ct¼ connective tissue. (D, E) RPHM21 protein localization in male and fe-

male gonadic tissue, respectively. (D) In the male gonad, anti-RPHM21 (in red) labeled a clear spot at 1 side of the nucleus of spermatocytes and spermatids

(arrow and arrowhead, respectively). Anti-RPHM21 staining is strong in mature spermatozoa in the acinus lumen in both mitochondrial midpiece and nucleus

(yellow due to the colocalization of the nuclear dye, in green, and the antibody, in red). Initially, in spermatocytes the nuclei are visible in green, and no RPHM21

appears to be stored in the nucleus; in spermatids the nuclei are brownish as indicating RPHM21 storing (clearly seen in the bottom of the image going from the

right to the left). (D scale bar¼15.77mm). (E) Eggs do not show anti-RPHM21 detectable staining. The smaller nuclei of somatic cells surrounding acini are also

visible. (E scale bars¼ 75mm). RPHM21 immunolabeling in red; TO-PRO3 nuclear dye in green.

A-C: optical microscope. D, E: confocal microscope.
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side of the nucleus visible in some spermatocytes/spermatids (Figure

3). Initially the protein is not detectable in the nucleus (as shown by

the green nuclear labeling in spermatocytes in Figure 3D bottom

right), but as soon as the spermatogenic cells proceed with the differ-

entiation process, RPHM21 appears to be progressively accumu-

lated in the nucleus (as shown by the brown–green color of nuclei,

that eventually turn to yellow in spermatozoa). RPHM21 storing in

nuclei may indicate an increasing activity during spermatogenic cell

differentiation, and the protein accumulation in spermatozoa might

indicate a function after fertilization, during embryonic develop-

ment. Indeed, given the mentioned dual localization (nuclear and

mitochondrial), RPHM21 may be also involved in transcriptional

regulation, enhancing, or repressing nuclear genes involved in mito-

chondrial inheritance and sexual differentiation. In this concern, re-

cent analyses in R. philippinarum documented the presence of

RPHM21 in a subset of male primordial germ cells (Milani et al.

2015). The fact that all the spermatozoa analyzed so far contain

RPHM21 led to the hypothesis that only the fraction of germ cells

expressing the male-specific mitochondrial element can differentiate

in mature gametes, or are greatly advantaged in the process. It is

also noteworthy that RPHM21 protein appears to be expressed

since the first stage of embryo development: as observed, it is locali-

zed along the first cleavage furrow in 2-blastomere embryos, in the

same position in which M-type mitochondria and germ line deter-

minants are located (Milani et al. 2011, 2014a). The process of

sperm mitochondria elimination/maintenance might include the acti-

vation/repression of nucleases that might act in mtDNA degrada-

tion. These nucleases were demonstrated to be responsible for

depleting Drosophila melanogaster mtDNA from developing sperm,

thus promoting maternal inheritance of mtDNA (DeLuca and

O’Farrell 2012). Interestingly, viral nucleases mainly found in the

nucleus, but also targeted to mitochondria, appear to participate

with mitochondrial endonucleases in mtDNA degradation (Duguay

and Smiley 2013).

F-type specific RPHF22
Ruditapes philippinarum female-specific mitochondrial ORF rphf22

is not deeply analyzed until now. Previous analyses using an algo-

rithm for detecting remote homology produced a fairly good amino

acid alignment between RPHM21 and the predicted protein

RPHF22 (Milani et al. 2013a). Indeed, the 2 sequences, despite not

showing high identity, are more similar to each other than to other

sex-specific mtORFans found in other bivalves. rphf22 is shorter

and with a lower amount of transcripts in female gonads in respect

to the quantity of rphm21 transcripts in male gonads (Ghiselli et al.

2013), but its amino acid sequence appears to be quite conserved in

the females analyzed so far (Table 2), and never shows any nonsense

mutation. If we assume that rphm21 and rphf22 are actually the

same endogenized element that diverged following the separation

that occurred between the 2 mitochondrial genomes, we can specu-

late that in the 2 sexes the element progressively diverged and may

be acquired of different sex-specific functions. Data consistent with

the origin from the same endogenized element for RPHM21 and

RPHF22 are: (1) the predicted structure: C-terminus containing heli-

ces and a N-terminus cytoplasmic region (Figure 4); (2) sequence

similarity especially in the predicted transmembrane region (Figure

4 and Milani et al. 2013a); (3) presence of a polyserine domain in

the same protein position (the domain is absent in the other analyzed

mtORFans). Instead of a polyserine, in the species of the Mytilus

edulis complex a poly-lysine domain is present. Both the domains

support the possibility of association with membranes (Howard

et al. 2004; Bouaouina et al. 2012). Interestingly, polyserine do-

mains were proposed to be involved in the targeting of proteins to

the nucleus (Wolf et al. 2013), and are also required for a normal

viral gene expression (Bates and DeLuca 1998).

A model for the evolution of DUI and gonochorism
In the present article, first, we focused on the characterization, ori-

gin, and possible function of RPHM21 and RPHM22 and their

Table 1. Threading templates used by I-TASSER to model RPHF22 and RPHM21

Template RCSB protein data bank Description Classification

RPHF22

1 3J5P TRPV1 ion channel Transport protein

2 3DM8 Putative Isomerase Unknown function

3 3UJM NTF2-like domain (Rasputin protein) Signaling protein

4 1U5O Nuclear transport carrier NTF2 Transport protein

5 2JNE YfgJ modeled with 2 Znþ2 bound Metal binding protein

6 4TPS Sporulation inhibitor of DNA replication (SirA) Replication

7 3UJM NTF2-like domain (Rasputin protein) Signaling protein

8 2VXR Botulinum neurotoxin serotype G-binding domain Toxin

9 3VNE Ebolavirus protein VP24 Viral protein

10 4TPS Sporulation inhibitor of DNA replication (SirA) Replication

RPHM21

1 2ACW UGT71G1 complexed with UDP-glucose Transferase

2 2NPI Clp1-ATP-Pcf11 complex Transcription

3 1MKF Viral chemokine binding protein (gammaherpesvirus 68) Immune system

4 3DFR Dihydrofolate reductase Oxido-reductase

5 3TU5 Actin complex with gelsolin segment 1 Structural protein/actin-binding protein

6 3DBA cGMP-bound GAF a domain Hydrolase

7 4H51 Putative aspartate aminotransferase Transferase

8 3FL7 Ephrin A2 ectodomain Transferase signaling protein

9 4EE6 Novel phenazine prenyltransferase EpzP Transferase

10 4CR4 26S proteasome Hydrolase
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Figure 4. Structural analysis of RPHM21 and RPHF22. (A, B) Protein domains detected with InterProScan 5: RPHM21 (A) and RPHF22 (B) both show transmem-

brane domains in their N-terminus, whereas the C-terminus is cytoplasmic. (C) Similarities in domain localization detected with TM-COFFEE alignment. (D)

HMMER detected good alignment of profile HMMs in correspondence of the transmembrane domains. (E, F) 3D models of RPHM21 (E) and RPHF22 (F) obtained

using structures predicted by I-TASSER.
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likely derivation from the same selfish element. Starting from the as-

sumption that the 2 elements have the same origin, we formulate a

model on how selection on selfish mitochondria may have resulted

in the appearance of DUI.

There is a strict correlation between the presence of DUI and

gonochorism, indeed, hermaphrodites closely related to DUI species

do not have DUI and show extensive mutations in the mitochondrial

fORFs; as a consequence of this observation, a role of DUI lineage-

specific mtORFs in the maintenance of gonochorism was hypothe-

sized by Breton et al. (2011a). However, we still do not know if the

strict correlation between mitochondrial inheritance and sex is actu-

ally causal or coincidental. Here we propose a model that describes

a scenario under which DUI and gonochorism might have evolved

together in some bivalve species.

Step 1

In a population of hermaphrodite bivalves, a virus infects some

mitochondria and confers them the ability to avoid degradation in

embryos, and to be preferentially transmitted through generations

(segregation distortion).

Step 2

Infected mitochondria end up both in male and female germ lines,

but we could expect that they spread more efficiently through sperm

for the following reasons:

a. males produce more gametes than females. Actually, in R. phil-

ippinarum, as visible in cross sections of male and female acini,

many more spermatozoa are produced in male acini compared

to eggs in female acini (spermatozoa:eggs ratio indicatively 50:1;

Figure 2). According to some authors, the majority of retroviral

insertions are acquired by the male germ line due to the rela-

tively high number of cell divisions involved in the production of

sperm in comparison to eggs (Katzourakis et al. 2007);

b. even though eggs contain more mitochondria than sperm, the

mtDNA copy number in R. philippinarum gonads is much

higher in males than in females (at least 1 order of magnitude,

see Ghiselli et al. 2011);

c. the integration of viral elements is easier in presence of a high

replication rate, a condition that well matches mitochondrial

proliferation during spermatogenesis. In fact, proliferating cells

usually experience higher mitochondrial replication, with the

only notable exception of the early stages of embryo develop-

ment (Yamano and Youle 2011; Milani et al. 2012; Mishra and

Chan 2014). This mitochondrial proliferation may be even

stronger for germ cells, when a proper distribution and quality

control of mitochondria is needed more;

d. the high incidence of mitochondrial fusion and fission during

cell replication can be an additional mechanism allowing the

element to spread in the mitochondrial population (Mitra 2013;

Mishra and Chan 2014).

All that considered, given its specific feature, the spermatozoon

appears to be more suited to incorporate and transmit mtDNA car-

rying the integrated element.

Step 3

The frequency of infected sperm increases in the population. If we

assume that the viral sequence allows mitochondria containing it to

survive and to be preferentially transported to the germ line (a be-

havior clearly visible for sperm mitochondria in R. philippinarum,

Milani et al. 2012, and in other DUI species, Zouros 2013) and

transmitted to the progeny, in the subsequent generations the viral

element can widely spread in the population.

Step 4

The infection allowed both maternal and paternal inheritance of

mitochondria. In this condition, mitochondria are under selection

Table 2. Polymorphism of M-type and F-type mtDNAs

gene pD nt 95% CI pD nt 95% CI pD aa 95% CI pD aa 95% CI

F type M type F type M type

atp6 0.016 0.012–0.020 0.019 0.013–0.025 0.019 0.011–0.027 0.020 0.010–0.030

cox3 0.018 0.014–0.022 0.021 0.015–0.027 0.025 0.015–0.035 0.026 0.016–0.036

nd3 0.013 0.007–0.019 0.006 0.002–0.010 0.021 0.009–0.033 0.013 0.000–0.027

nd4 0.015 0.011–0.019 0.013 0.009–0.017 0.022 0.016–0.028 0.015 0.009–0.021

nd5 0.008 0.006–0.010 0.016 0.012–0.020 0.012 0.008–0.016 0.014 0.008–0.020

nd6 0.019 0.013–0.025 0.018 0.012–0.024 0.025 0.013–0.037 0.025 0.011–0.039

rphf22 0.009 0.003–0.015 NA NA 0.014 0.004–0.024 NA NA

rphm21 NA NA 0.006 0.002–0.010 NA NA 0.007 0.001–0.013

gene pS 95% CI pS 95% CI pN 95% CI pN 95% CI

F type M type F type M type

atp6 0.029 0.015–0.043 0.031 0.017–0.045 0.011 0.005–0.017 0.012 0.006–0.018

cox3 0.031 0.017–0.045 0.037 0.021–0.053 0.013 0.007–0.019 0.015 0.009–0.021

nd3 0.016 0.004–0.028 0.005 0.000–0.013 0.011 0.003–0.019 0.006 0.000–0.012

nd4 0.027 0.017–0.037 0.021 0.013–0.029 0.012 0.008–0.016 0.008 0.004–0.012

nd5 0.013 0.005–0.021 0.034 0.024–0.044 0.005 0.003–0.007 0.008 0.004–0.012

nd6 0.037 0.019–0.055 0.020 0.006–0.034 0.012 0.006–0.018 0.013 0.005–0.021

rphf22 0.020 0.002–0.038 NA NA 0.007 0.001–0.013 NA NA

rphm21 NA NA 0.011 0.001–0.021 NA NA 0.003 0.000–0.007

Note: pD nt¼ nucleotide p-distance; pD aa¼ amino acid p-distance; 95% CI¼ 95% confidence interval; pS¼ synonymous polymorphism (number of synonym-

ous substitutions per synonymous site); pN¼ nonsynonymous polymorphism (number of nonsynonymous substitutions per nonsynonymous site); NA¼ not avail-

able. Only genes with�10 sequences available were utilized in the analyses.
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also for male functions, such as spermatogenesis and—most impor-

tantly for a broadcast spawning species—sperm swimming. So now

mutations that increase male fitness have a high selection coefficient

and can spread quickly in the population.

Step 5

Emergence of males and transition from hermaphroditism to andro-

dioecy. Gonochorism can evolve when a unisexual mutant (i.e., car-

rying a female- or male-sterility mutation) invades the population

and the remaining hermaphrodites specialize in the complementary

unisexual type (Charlesworth and Charlesworth 1978). Theoretical

models show that this transition can occur through 2 intermediate

transitory stages: gynodioecy (femalesþhermaphrodites), and

androdioecy (malesþhermaphrodites). In animals, the transition

from hermaphroditism to androdioecy is much more common

(Weeks 2012). Unisexual mutants can be maintained in hermaphro-

dite populations if they gain a strong fitness advantage over the

hermaphrodites (Charlesworth and Charlesworth 1978, Equation

10), and this can be achieved either by avoiding self-fertilization

(thus inbreeding depression), or through a more efficient resource al-

location: spermatozoa are cheaper to produce, so the reproductive

success of males is size-independent, namely given the same energy

allocated in reproduction, male relative fitness is higher

(Charlesworth and Charlesworth 1978; Weeks et al. 2006; Weeks

2012).

Going back to our model, we think that in R. philippinarum 2

main factors contributed to the increase in male fitness that allowed

the establishment of androdioecy: (1) bivalves show the kind of re-

source allocation discussed above, for example, in most hermaphro-

dite species, younger/smaller individuals are males, and they switch

to females when they grow older/bigger (Wright 1998); (2) consider-

ing what we mentioned in Step 2, we expect a longer permanence of

the selfish element in male germ cells than in female germ cells, so

infected mtDNA will coevolve mostly with male-specific alleles and

male-biased genes. This suggests that males with infected mitochon-

dria (now under selection for male functions, see Step 4) may have

an even higher fitness in respect to other males. That said, the evolu-

tion of androdioecy and eventually separate sexes can occur even in

the absence of resource reallocation, if segregation distortion is pre-

sent (Billiard et al. 2015).

Step 6

Evolution of gonochorism from androdioecy. The proportion of

males increases in the population, until their initial fitness advantage

is neutralized by the disadvantage of a male-biased population. In

this condition, the selective pressure on egg production would be

strong, and male-sterility mutation in hermaphrodites highly

favored.

Step 7

Evolution of one or more restorer genes that counteract the action

of RPHM21. The coevolutionary interactions of the nuclear genome

with cytoplasmic sex-ratio distorters can lead to the evolution of

compensatory genes, to restore a balanced sex ratio (Hurst 1992).

Such genes might induce monogeny, which is a condition where all

offspring of each individual female are either exclusively male or ex-

clusively female (Werren and Beukeboom 1998). Interestingly, DUI

species show sex-biased lineages (Kenchington et al. 2002; Ghiselli

et al. 2012; Machordom et al. 2015): independent of the sire, there

are females producing exclusively or almost exclusively female

offspring, females producing almost exclusively male offspring, and

females producing intermediate proportions of the 2 sexes. In the lit-

erature about genomic conflicts, the restorer genes are usually nu-

clear, and that might be the case also for R. philippinarum, but then

this would not explain the persistence of 2 lineage-specific elements

(RPHM21 and RPHF22). Indeed, if RPHM21 was the segregation

distorter, and a restorer system evolved from nuclear genes, most

likely RPHF22 would have pseudogenized, remaining a genic relict.

This is not what we observe, since RPHF22 sequence is well con-

served, as suggested by polymorphism data (pS¼0.020, 95% CI

[0.002, 0.038]; pN¼0.007, 95% CI [0.001, 0.013], see also Table

2). RPHF22 might have become part of the restorer mechanism,

interacting with nuclear elements to counteract RPHM21.

We propose 3 different scenarios.

a. The viral element also kept infecting mtDNA transmitted

through eggs, but the slower replication in the female germ line

led to a less efficient insertion ratio and a consequently slower

diffusion in the population, so the process of differentiation

from the original sequence would have been slowed down as

well. Interestingly, I-TASSER generated a better model for

RPHF22 compared with RPHM21 (�1,96 versus less than �4,

respectively, see ‘Results’ section), because of a higher structural

similarity found with known protein sequences.

b. The viral element was first endogenized in sperm-transmitted

mtDNA, starting DUI, and then, by recombination (an event

that was documented multiple times in DUI species, see Zouros

2013), it invaded the original mitochondrial lineage that was still

transmitted maternally. At this point the 2 elements diverged by

evolving sex-specific features.

c. RPHF22 originated from a different viral element, but with simi-

lar features.

Given the fast-evolving nature of viral sequences, the fast-evolv-

ing nature of mtDNA in bivalves, and also given the long divergence

time between F and M mtDNAs in R. philippinarum, it will be very

difficult (if not impossible) to resolve this issue.

How to test the model
In follow-up work, we will test our working hypotheses using math-

ematical models and simulations. This approach will show which

biological and evolutionary parameters are compatible with our

model (e.g., number of male and female gametes, number of cell

divisions in gametogenesis, mtDNA copy number, selection coeffi-

cient on infected mitochondria, relative fitness, etc.), and will greatly

help us to understand if it is realistic and consistent with the avail-

able data. The ongoing increase of bivalve genomic resources will

also help to better understand the mechanisms of germ line estab-

lishment, gametogenesis and mitochondrial inheritance, thus provid-

ing fundamental knowledge to test our suppositions. Another

approach that would answer the question of the role of RPHM21

and RPHF22 would be the manipulation of their transcription/ex-

pression (e.g., over/under expression, knock-out, RNAi), but this is

a medium-term goal, since such techniques still need to be developed

for bivalve molluscs. Last, to answer more general questions about

the evolution of DUI, a more comparative approach will be neces-

sary, but this will require the overcoming of the intrinsic challenges

of comparative analyses (see, for example, Dunn et al. 2013; Roux

et al. 2015).
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Conclusions

The origin of DUI most likely entailed the invasion of at least one

selfish genetic element, and the extant DUI systems can be seen as

resolved conflicts (Passamonti and Ghiselli 2009). Specifically, we

think that the acquisition of selfish features by a mitochondrial line-

age could have started the genetic conflict that originated DUI, and

that this process could have happened in independent events for sin-

gle bivalve species, as described by the model in R. philippinarum.

Under this light it is interesting to point out the similarities between

the DUI system and one of the most studied cases of genomic con-

flicts, the cytoplasmic male sterility (CMS) in plants (reviewed in

Chase 2007). CMS is responsible for gynodioecy, it consists of a

condition under which a plant is unable to produce functional pol-

len, and it is determined by mitochondrial ORFs derived either from

mitochondrial gene-coding and gene-flanking sequences, or from se-

quences of unknown origin. The 2 most striking CMS features that

could be applied also to the model for DUI origin proposed here are

the selfish nature of mitochondria, and the influence of a mitochon-

drial ORF on germ line development. Also, CMS is a clear example

of nuclear–cytoplasmic sex determination, a scenario hypothesized

also for DUI (Breton et al. 2007; Passamonti and Ghiselli 2009;

Zouros 2000; Yusa et al. 2013). It was proposed that hermaphroditi-

sm was the ancestral condition of bivalves (Davison 2006), and a cor-

relation between DUI and gonochorism was documented (Breton

et al. 2011a). The invasion of sex-ratio distorters and the evolution of

suppressors can prompt rapid transitions among sex-determination

mechanisms (Bachtrog et al. 2014), and DUI might have been respon-

sible for the shift from hermaphroditism to gonochorism in some

bivalve species. If true, DUI would represent the first animal sex-deter-

mination system involving mtDNA-encoded proteins, paralleling

CMS in plants.

But why do only bivalves have DUI? Is bivalve mitochondrial

genome more prone to foreign sequence insertion/endogenization?

Or is the nuclear genome more permissive to such kind of biological

novelties? First of all, it is possible that modifications of SMI are

present in other organisms, but they have not been discovered yet.

That said, we think that bivalve molluscs have several features that

could favor the emergence of a system like DUI. First, it is known

that bivalve mitochondria can function in absence of oxygen, by

switching to an anaerobic energy metabolism. This “anaerobically

functioning mitochondria” appear to be widespread in species that

often have to face hypoxic or anoxic conditions (Müller et al. 2012).

For example, the blue mussel Mytilus edulis (actually a DUI species)

can enter an oxygen-independent cytosolic energy metabolism path-

way, producing adenosine triphosphate (ATP) with only Complex I

and V (Müller et al. 2012). It is tempting to speculate that a more

relaxed selection, at least on some complexes, allows a greater

mtDNA polymorphism and even heteroplasmy. Another feature we

think might have favored the emergence of DUI in bivalves is the ab-

sence of sexual chromosomes and of any sex-specific phenotype (if

not the presence of eggs or spermatozoa in the gonads at maturity)

which may be key feature for the evolution of this mitochondrial in-

heritance mode.

At the moment it is not known whether in DUI species the pres-

ence of lineage-specific mitochondrial proteins (or RNAs) in germ

cells can drive the gonad development toward 1 specific sex, or if

their segregation into male (female) germ cells is simply a conse-

quence of being a male (female). If the scenario proposed here will

be proved correct, DUI will became another example of how a selfi-

sh element (in this particular case a segregation distorter of viral

origin) can profoundly affect the biology of an organism, and even-

tually its evolution.
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Breton S, Doucet-Beaupré H, Stewart DT, Piontkivska H, Karmakar M et al.,

2009. Comparative mitochondrial genomics of freshwater mussels

(Bivalvia: Unionoida) with doubly uniparental inheritance of mtDNA: gen-

der-specific open reading frames and putative origins of replication.

Genetics 183:1575–1589.

Breton S, Stewart DT, Shepardson S, Trdan RJ, Bogan AE et al., 2011a. Novel

protein genes in animal mtDNA: a new sex determination system in fresh-

water mussels (Bivalvia: Unionoida)? Mol Biol Evol 28:1645–1659.

Breton S, Ghiselli F, Passamonti M, Milani L, Stewart DT et al., 2011b.

Evidence for a fourteenth mtDNA-encoded protein in the female-transmit-

ted mtDNA of marine mussels (Bivalvia: Mytilidae) PLoS ONE 6:e19365.

Breton S, Milani L, Ghiselli F, Guerra D, Stewart DT et al., 2014. A resource-

ful genome: updating the functional repertoire and evolutionary role of ani-

mal mitochondrial DNAs. Trends Genet 30:555–564.

Chang JM, Di Tommaso P, Taly JF, Notredame C, 2012. Accurate multiple se-

quence alignment of transmembrane proteins with PSI-Coffee. BMC

Bioinform 13(4 Suppl): S1.

Charlesworth B, Charlesworth D, 1978. A model for the evolution of dioecy

and gynodioecy. Am Nat 112:975–997.

Chase CD, 2007. Cytoplasmic male sterility: a window to the world of plant

mitochondrial-nuclear interactions. Trends Genet 23:81–90.

Coscoy L, Ganem D, 2003. PHD domains and E3 ubiquitin ligases: viruses

make the connection. Trends Cell Biol 13:7–12.

Davison A, 2006. The ovotestis: an underdeveloped organ of evolution.

BioEssays 28:642–650.

DeLuca SZ, O’Farrell PH, 2012. Barriers to male transmission of mitochon-

drial DNA in sperm development. Dev Cell 22:660–668.

Duguay BA, Smiley JR, 2013. Mitochondrial nucleases ENDOG and EXOG

participate in mitochondrial DNA depletion initiated by Herpes Simplex

Virus 1 UL12.5. J Virol 87:11787–11797.

Dunn CW, Luo X, Wu Z, 2013. Phylogenetic analysis of gene expression.

Integr Comp Biol 53:847–856.

Eddy SR, 1998. Profile hidden Markov models. Bioinformatics 14:755–763.

Finn RD, Clements J, Eddy SR, 2011. HMMER web server: interactive se-

quence similarity searching. Nucleic Acids Res 39:W29–37.

Fischer D, Eisenberg D, 1999. Finding families for genomic ORFans.

Bioinformatics 15:759–762.

696 Current Zoology, 2016, Vol. 62, No. 6

Deleted Text: two 
Deleted Text: -
Deleted Text: ; Zouros 2000
Deleted Text: ly
Deleted Text: s
Deleted Text: one 
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )


Ghiselli F, Milani L, Passamonti M, 2011. Strict sex-specific mtDNA segrega-

tion in the germline of the DUI species Venerupis philippinarum (Bivalvia

Veneridae). Mol Biol Evol 28:949–961.

Ghiselli F, Milani L, Chang PL, Hedgecock D, Davis JP et al., 2012. De Novo

assembly of the Manila clam Ruditapes philippinarum transcriptome pro-

vides new insights into expression bias, mitochondrial doubly uniparental

inheritance and sex determination. Mol Biol Evol 29:771–786.

Ghiselli F, Milani L, Guerra D, Chang PL, Breton S et al., 2013. Structure,

transcription, and variability of metazoan mitochondrial genome: perspec-

tives from an unusual mitochondrial inheritance system. Genome Biol Evol

5:1535–1554.

Gissi C, Iannelli F, Pesole G, 2008. Evolution of the mitochondrial genome of

Metazoa as exemplified by comparison of congeneric species. Heredity

101:301–320.

Howard MB, Ekborg NA, Taylor LE, Hutcheson SW, Weiner RM, 2004.

Identification and analysis of polyserine linker domains in prokaryotic pro-

teins with emphasis on the marine bacterium Microbulbifer degradans.

Protein Sci 13:1422–1425.

Hurst LD, 1992. Intragenomic conflict as an evolutionary force. Proc R Soc B

248:135–140.

Jones P, Binns D, Chang HY, Fraser M, Li W et al., 2014. InterProScan 5: gen-

ome-scale protein function classification. Bioinformatics 30:1236–1240.

Katzourakis A, Pereira V, Tristem M, 2007. Effects of recombination rate on

human endogenous retrovirus fixation and persistence. J Virol

81:10712–10717.

Kenchington E, MacDonald B, Cao L, Tsagkarakis D, Zouros E, 2002.

Genetics of mother-dependent sex ratio in blue mussels (Mytilus spp.) and

implications for doubly uniparental inheritance of mitochondrial DNA.

Genetics 161:1579–1588.

Kurz T, Pintard L, Willis JH, Hamill DR, Gönczy P et al., 2002. Cytoskeletal
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