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Abstract 

Solid solutions of 0.35(Ba,Ca)(Zr,Ti)O3-0.65(K0.5Bi0.5)TiO3 (BCZT-KBT) having 

various Ca and Zr contents were synthesized by solid state reaction. The sintered 

ceramics exhibited interesting features comprising core-shell type microstructures and 

relaxor ferroelectric behaviour. The influence of air-quenching on structure and 

electrical properties has been systematically investigated. The results indicate that the 

compositional heterogeneity in the shell regions, for the slow-cooled state, was 

reduced by air quenching. Improvements are evident in ferroelectric tetragonal phase 

content, accompanied by increased polarisation values and depolarisation 

temperatures. Comparing the results obtained for two BCZT compositions, it was 

demonstrated that the stability of the ferroelectric tetragonal phase in slow-cooled 

BCZT-KBT samples was improved for the ceramic with lower Ca and Zr 

concentrations, denoted x=0.06, comparing with that for higher levels, denoted 

x=0.15. Furthermore, the electric field-induced ferroelectric state in the quenched 

ceramic with x=0.06 was found to be more stable during heating, yielding an 

enhanced depolarisation temperature.  

 

 

Keywords: Lead-free ceramics; Ferroelectrics; Core-Shell; Relaxors. 

 

 

1 Introduction  

Relaxor ferroelectric materials are classified as ferroelectrics, but display additional 

or different functional behaviour in comparison with normal ferroelectrics. They are 

characterised by random occupation of one or more ions in the equivalent site within 
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the unit cell [1]. This disordered distribution generates unique structural and 

functional properties [2]. Based on crystal structure, oxide relaxors can be divided 

into two types, which are either the tungsten-bronze structure, 

(A1)2(A2)4(C)4(B1)2(B2)8O30 or the perovskite structure, ABO3. The A- and B-sites 

within the perovskite structure can be occupied by more than one type of ion, denoted 

(A/A//)(B/B//)O3, [3, 4]. They are also commonly formed from complex perovskites, 

where the A- or B-sites contain ions having different valence states [5]. 

PbMg1/3Nb2/3O3 (PMN) and Pb(Zn1/3Nb2/3)O3 (PZN) are typical examples of complex 

lead-based perovskites while BaTiO3-BaSnO3 is a lead-free relaxor that was first 

reported by Smolensky [6]. However, research has generally focused on lead-free 

materials in recent years, due to environmental concerns [7, 8]. Furthermore, the 

existence of polar clusters or polar nanoregions (PNRs) in relaxors is considered as 

their most important characteristic structural feature[9]. It is believed that this feature 

is the key to understanding the origin of relaxor ferroelectric properties [10]. Based on 

the stability of dipoles within PNRs, the relaxors can have two different states. One is 

a non-ergodic state, in which the transformation from polar nanoregions (PNRs) to 

ordered ferroelectric domains under application of an external excitation is 

irreversible. The other is the ergodic state which is associated with a more reversible 

transformation between PNRs and ordered ferroelectric domains [11, 12]. The main 

external excitations are: electric field, mechanical load and temperature, any of which 

could induce metastable ferroelectric order in relaxors. However, the stability of an 

induced transformation after removal of the external excitation depends on the nature 

of the PNRs.  

The ergodic state in relaxors represents the main reason for their reported ‘giant’ 

electro-mechanical response [13, 14]. Therefore, many researchers have attempted to 

induce the ergodic relaxor state intentionally by compositional modification such as 

the addition of dopants [15-19]. Bismuth-based perovskite relaxors such as BNT 

(Bi0.5Na0.5TiO3) and related materials are prime examples of such behaviour [13, 14]. 

This characteristic was also observed in K0.5Bi0.5TiO3-doped (Ba,Ca)(Zr,Ti)O3, 

BCZT-KBT [20]. Large electromechanical strains of up to 0.43% (Smax/Emax= 621 

pm/V) have been generated in xBi(Mg0.5Ti0.5)O3–(0.75−x)PbTiO3–

0.25(Bi0.5Na0.5)TiO3 ternary solid solutions at the MPB region with 0.50 < x < 0.51, 

where the coexistence of tetragonal and pseudocubic phases was reported, leading to 

an ergodic relaxor ferroelectric state [21]. 

Several recent studies [22-24] reported that the compositionally-induced transition 

from long-range ordered ferroelectric to pseudocubic relaxor phases was accompanied 

by the development of core-shell type microstructure, with ferroelectric domains in 

the core regions being embedded within a relaxor ferroelectric shell. Calisir [25] 

observed that the type of ionic substitution also has a profound influence on 

microstructure. Both isovalent and donor substitutions of La3+, for Bi3+ and Ba2+ 

respectively, were investigated in the solid solution 0.75BiFeO3-0.25BaTiO3 

(75BFBT). The results showed that 1 mol% donor substitution of La3+ for Ba2+ in 

75BFBT ceramics induced the formation of core-shell type microstructures 

comprising BiFeO3–rich core and BaTiO3–rich shell regions. In contrast, more 
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homogeneous microstructures with well-ordered ferroelectric domain patterns were 

clearly observed throughout the grains for the case of isovalent substitution of La3+ for 

Bi3+. Application of an electric field induces phase transitions in both the core and 

shell regions. However, the core remains in a poled state after field removal, while the 

shell is characterized by a reversible transformation. Therefore, the development of 

such core–shell structures was considered to play a significant role in achievement of 

a high reversible electromechanical strain [21, 26]. For example, an electric field-

induced strain of ~0.3% at 4 kV/mm was reported for Bi1/2Na1/2TiO3–SrTiO3 ceramics 

having a core-shell structure by Acosta [26]. Based on these findings, it was proposed 

that the proper design of a core–shell material could lead to modifications of strain 

output, hysteresis, temperature stability and fatigue behaviour. 

In recent publications, it has been reported that heat treatment of bismuth-based 

perovskites by thermal quenching (rapid cooling) could induce structural 

transformations, relaxation of the lattice strain and randomisation of the defect dipole 

orientations, leading to improved thermal stability of ferroelectric properties [27-29]. 

It was found that use of a quenching process increased the depolarization temperature, 

Td, of BNT ceramics from 173 °C to 223 °C [30] and improved the remanent 

polarisation, Pr, of MnO2-modified  0.75BiFeO3–0.25BaTiO3 ceramics from 0.06 to 

0.31 C m-2 [31]. 

In the present study, novel compositions based on 0.35BCZT-0.65KBT solid 

solutions were prepared using solid state reaction. Two BCZT compositions were 

used, based on the formula (Ba1-xCax)(Ti1-yZry)O3, with different Ca and Zr contents. 

These BCZT compositions were selected on the basis of their attractive piezoelectric 

properties due to the coexistence of the orthorhombic and tetragonal phases that 

resulted from the optimized substitution of the Ba- and Ti-sites with low and high 

levels of Ca, Zr ions respectively, as reported previously [32-34]. We also aim to 

investigate how variations in the stoichiometry of the BCZT component influence the 

phase stability of the solid solution, BCZT-KBT, under heating and application of an 

electric field. This contribution focuses on the influence of quenching on structure and 

ferroelectric behaviour of these ceramic materials, with the aim of increasing the 

depolarisation temperature and controlling the ferroelectric properties by modifying 

the thermal processing parameters. We propose that chemical homogeneity could be 

improved by this type of heat treatment, which leads to enhanced ferroelectric 

switching characteristics and increased depolarisation temperatures. On the other 

hand, higher reversible field-induced strain values can be obtained for ceramics in the 

slow-cooled state due to the presence of PNRs in an ergodic state in the shell regions.  

2 Experimental procedures 

Based on the formula Ba1-x Cax (Ti1-y Zry) O3, two BCZT solid solutions with x=0.06, 

y=0.07 [32] and x=0.15, y=0.1[33, 34] were prepared in the form of polycrystalline 

ceramics using the solid state reaction method. Barium carbonate (BaCO3, Alfa Aesar 

Co. 99% purity), calcium carbonate (CaCO3, Sigma Aldrich ≥ 99.0 % purity), 

titanium dioxide (TiO2, Huntsman A-HR 99% purity), and zirconium oxide (ZrO2, 

Magnesium Elektron E-101) were used as raw materials. The raw powders were 
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weighed according to the stoichiometry of the selected compositions. They were 

vibro-ball milled with propan-2-ol for 24 h using zirconia balls, 5 mm in diameter, as 

milling media. After drying, the mixed powders were calcined at 1300 °C for 4 h in a 

covered alumina crucible. A pure K0.5Bi0.5TiO3 powder was prepared, in parallel, 

using potassium carbonate (K2CO3, Fluka ≥ 99.0 % purity), bismuth oxide (Bi2O3, 

Alfa Aesar 99.0 % purity) and titanium dioxide (TiO2, Huntsman A-HR 99% purity) 

as raw materials. After weighing, ball-milling in the above manner and drying of 

powders, the mixture was calcined at 950 °C for 4 h.    

Afterward, the calcined BCZT powders were mixed separately with KBT and 2 wt% 

of excess bismuth oxide in order to compensate for any loss via volatilization during 

subsequent sintering at elevated temperatures. This specific level of excess bismuth 

oxide was selected on the basis of results obtained from an investigation into the 

effects of the bismuth oxide excess on the properties of BCZT-KBT ceramics, which 

demonstrated that, using the present processing procedures, 2 wt.% of excess Bi2O3 

was the optimal content to produce ceramics free of second phases.  

The mixed powders were ball-milled for 72 h, followed by drying and mixing with 2 

wt% polyethylene glycol solution (PEG 1500) as a lubricant and binder. 

Subsequently, the mixed calcined powders including binder were uniaxially pressed in 

a 10 mm diameter cylindrical steel die into pellets having a thickness ~1.5 mm, under 

a pressure of 150 MPa for 40 s. The pellets were placed inside a covered alumina 

crucible for sintering on a thin layer of zirconia sand (baddeleyite) to avoid any 

interfacial reactions between the ceramic disks and the supporting alumina base. The 

pellets were heated up first to 500 °C, with 1 h dwell time to burn-out the organic 

additive; thereafter the temperature was raised to 1125 °C with a 3 h dwell for 

sintering.  The heating/ cooling rate was 5 °C min-1.  

The bulk densities of the sintered samples were measured by the Archimedes method 

using water as the immersion medium. For structural and electrical characterization, 

the surfaces of the sintered samples were ground using 1200-grade SiC paper to 

obtain parallel and smooth faces. Then, the samples were annealed at 500 °C for 

30 min to minimise any residual stresses that could be induced during preparation. 

These ceramics are denoted slow-cooled (SC) samples. Some of these samples were 

subsequently heated to 1000 °C for 1 h and then quenched in air; these are denoted 

quenched (Q) samples.     

The sintered ceramic pellets were coated with silver paste (C2000107P3, Gwent 

Electronic Materials) for electrical measurements.  The painted samples were dried in 

an oven at 85 °C for 20 min for each face and then heat treated at 550 °C for 30 min 

to densify the electrodes and ensure intimate contact with the ceramic surfaces. 

Polarization-electric field (P-E) ferroelectric hysteresis measurements were made 

using a system based on a HP33120A function generator (Hewlett-Packard, Palo Alto, 

CA) in conjunction with an HVA1B high voltage amplifier (Chevin Research, Otley, 

UK) [35]. A burst-mode waveform comprising 4 sinusoidal cycles was employed, 

with a maximum electric field level up to 6 MV m-1. The samples were immersed in 

silicone oil during these measurements to avoid electrical arcing. For SXPD studies 
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on the poled ceramics, specimens were instead electroded using an air-dried silver 

paint (AGG3691, Agar scientific), which was removed after poling using acetone. 

The quenched samples that were produced by this process are denoted quenched-

poled (QP). 

The measurement of strain-electric field, x-E, loops was carried out as a function of 

temperature under an alternating bipolar electric field using an AixACCT TF 2000 

Ferroelectric Analyzer, using a triangular waveform with a frequency of 1 Hz. Strain 

was calculated from the electric-field displacement, which was measured using a laser 

interferometer (SIOS MeβTechnik, GmbH, Type SP-S 120).  

Variations in the low-field dielectric properties of the sintered samples as a function 

of temperature and frequency were determined using an automated dielectric 

measurement system comprising an LCR-meter (Hewlett-Packard Precision LCR 

Meter, HP 4284A) connected to the electroded sample by pure silver probes. Samples 

were heated in a furnace with a heating rate of 2 °C min-1. The parallel capacitance, 

Cp, and the dielectric loss tangent, tan δ, were measured over the temperature range 

from 25 to 350 °C, at frequencies from 1 kHz to 100 kHz.  

For depolarization temperature, Td, measurements, the thermally stimulated 

depolarization current (TSDC) method was employed to determine the Td directly, as 

described in a previous study [36]. In this approach, the depolarisation current, Idep, 

for a poled sample is measured during heating; these values are divided by the cross-

sectional surface area, A, to obtain the depolarisation current density, Jdep . The latter 

is plotted as a function of temperature to identify the temperature at which the 

sharpest change in polarisation occurs, and this represents the Td. Therefore, in the 

present work, the poled ceramic pellets were placed into a temperature-controlled tube 

furnace (Carbolite MTF 1200). The measurements were taken at a heating rate of 

2 °C min-1 and the temperature was recorded with a thermocouple placed next to the 

pellet. The pyroelectric current was determined using a current amplifier [35]. The 

electric charge released was calculated by integration of the current over time and 

converted into a change in remanent polarisation, ∆P, calculated in terms of the 

surface charge density. 

High resolution synchrotron x-ray diffraction (SXPD) measurements were performed 

at beamline I11, Diamond Light Source Ltd., UK [37]. The slow-cooled, quenched 

and quenched-poled samples were crushed and ground to fine powder using a pestle 

and mortar. Then, the powder samples were packed into 0.3 mm diameter borosilicate 

glass capillaries. Due to the high bismuth content, a photon energy of 25 keV was 

selected in order to reduce the effects of specimen absorption; the wavelength of 

0.494216 Å was calibrated using NIST 640C SiC powder. The angular range was 

scanned from 5 to 90º 2θ and the diffracted intensities were recorded using the 

beamline’s wide-angle position sensitive detector (PSD) [38]. Full-pattern refinement 

was carried out using Topas software, version 5.0[39], using structural models derived 

from previous research on BCZT, for cubic [40] and tetragonal [41] structures, and 

modified according to the compositions employed in the present work.  
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The sintered pellets were mounted and ground using 800, 1200 and 2500 grade SiC 

paper and then polished initially using 6, 1 and 0.25 micron diamond paste, followed 

by final polishing with dilute OPS (Oxide Polishing Suspension). Afterwards, they 

were chemically etched by immersing into a solution of (4% HCl +1% HF+ 95% 

distilled water) for 20 seconds. Microstructures of chemically-etched and carbon-

coated surfaces of slow-cooled and quenched-poled samples were characterised by 

scanning electron microscopy (Philips XL30 FEG-SEM). 

3 Results and discussion.  

3.1 Structure and ferroelectric behaviour at room temperature 

3.1.1 Crystal structure 

The SXPD results obtained for 0.35BCZT-0.65KBT-2wt% Bi2O3 ceramics with 

x=0.06 and x=0.15 are shown in Figure 1. For both compositions, a perovskite 

structure is evident, indicating the formation of the solid solution between BCZT and 

K0.5Bi0.5TiO3. The tolerance factor (t) was calculated as 0.9871 and 0.9835 for x=0.06 

and x=0.15 ceramics, respectively. According to these results, it can be predicted that 

the tetragonal phase should be more stable in the former case. It is apparent that peak 

splitting occurs clearly in some grain families, such as {200}pc, {211}pc and {220}pc 

(using the pseudo-cubic setting), particularly for the quenched and quenched-poled 

samples, indicating the presence of lower symmetry perovskite type phases.      
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Figure 1. Room temperature SXPD patterns of BCZT-KBT ceramics; (a) x=0.06 and (b) x=0.15, 

in various states; slow-cooled (SC), quenched (Q) and quenched-poled (QP). 

In order to determine the influence of quenching and poling on the crystal structure, 

full pattern fitting was carried out using P4mm tetragonal and Pm3̅m cubic structures. 

Figure 2 illustrates selected peak profiles showing the pseudo-cubic {111}pc and 

{200}pc reflections as characteristic split peaks. A summary of the crystallographic 

parameters determined from this analysis is given in Table 1. 
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Figure 2. Experimental, calculated and difference data obtained by full pattern refinement of 

SXPD patterns showing {111}pc and {200}pc reflections of BCZT-KBT ceramics in various states; 

slow-cooled (SC), quenched (Q) and quenched-poled (QP) for (a)-(c) x=0.06 and (d)-(f) x=0.15. 

Analysis of the diffraction patterns for the slow-cooled ceramics, presented in Figure 2 

(a) and (d), indicates the coexistence of a tetragonal phase along with a dominant 

cubic phase. However, the occurrence of pronounced peak broadening for x=0.06 

indicates a higher tetragonal phase fraction (36%) in comparison with the case for 

x=0.15 (15%). The identification of a high cubic phase fraction in the present study is 

consistent with previous reports of the solid solutions between BT- and Bi-based 

perovskites. For example, it was found that the incorporation of approximately 

10 mol% of either Bi(Mg0.5Ti0.5)O3 or Bi(Zn0.5Ti0.5)O3 into (Ba0.8Ca0.2)TiO3 induced a 

structural transformation from tetragonal to pseudo-cubic [42, 43]. For the binary 

system, (1-x)BaTiO3–xBiScO3 (x=0.0-0.5), it was reported that the tetragonal 

distortion disappeared beyond 5 mol% BiScO3, due to a change of structure from 

tetragonal to pseudocubic [24]. Interestingly, it was also observed that core-shell 

features occurred in the microstructure of ceramics with more than 3 mol% BiScO3, 

resulting from difficulty of homogenisation during sintering.  
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It was also reported by Calisir [31] that the addition of 1 mol% MnO2 into the 

calcined composition of 0.75BiFeO3–0.25BaTiO3 induces structural and 

microstructural changes due to the emergence of a pseudo-cubic (Pm3̅m) phase 

besides the  rhombohedral (R3c) phase and chemical heterogeneity in the form of 

core–shell grain microstructures. The formation of such core–shell structures can be 

attributed to kinetic factors and differences in reactivity between the constituents 

during sintering; the phase formed first makes the core and that forming later 

constructs the shell. Alternatively, thermodynamic immiscibility between solid 

solution constituents is another important factor which could lead to further nanoscale 

segregation in the shell regions during slow cooling [31]. 

Table 1. Cubic and tetragonal coexisting phases, phase fractions, lattice parameters and GOF of 

BCZT-KBT ceramics with x=0.06 and x=0.15, at room temperature. Numeric values in 

parentheses denote the uncertainty in the last significant digit(s). 

Composition State 
Phases 

present 

Phase 

fraction (%) 

Lattice parameter 
(c/a)T GOF* 

a (Å) c (Å) 

x=0.06 

SC T-C 
T= 36.2(7) 

C= 63.8(7) 

aT=3.9562(03) 

aC=3.9677(32) 

cT= 4.0102(03) 

- 
1.0136 2.12 

Q T-C 
T= 49.6(7) 

C= 50.4(7) 

aT= 3.9509(02) 

aC= 3.9720(31) 

cT= 4.0192(03) 

- 
1.0173 1.85 

QP T-C 
T= 76.1(7) 

C= 23.9(7) 

aT= 3.9474(01) 

aC= 3.9705(02) 

cT= 4.0215(01) 

- 
1.0188 1.81 

x=0.15 

SC T-C 
T= 15.3(6) 

C= 84.7(6) 

aT= 3.9719(02) 

aC= 3.9699(04) 

cT= 3.9840(02) 

- 
1.0030 2.68 

Q T-C 
T= 19.6(6) 

C= 80.4(6) 

aT= 3.9506(03) 

aC= 3.9686(06) 

cT= 4.0137(03) 

- 
1.0160 2.08 

QP T-C 
T= 36.5(7) 

C= 63.5(7) 

aT= 3.9512(03) 

aC= 3.9710(03) 

cT= 4.0166(03) 

- 
1.0166 1.65 

*Goodness of fit (GOF) is the value of Rwp/Rexp. 

After quenching, as shown in Figure 2 (b) and (e), clear splitting of the {200}pc peak 

was observed for the ceramic with x=0.06, which is associated with tetragonal 

distortion and an increase of the tetragonal phase fraction from 36% to 50%.  The 

coexisting cubic phase is indicated by the central {200}pc cubic peak, as shown in 

Figure 2(b). In contrast, for the ceramic with x=0.15, there was little change after 

quenching, comparing Figure 2(d) and (e) with respect to enhancement of tetragonal 

phase indicated by the shoulders around the {200}pc peak. These observations suggest 

that the Ca and Zr contents of the BCZT component play an important role in 

controlling the stability of the ferroelectric tetragonal phase in the BCZT-KBT solid 

solution, both for slow-cooled and quenched samples. The effect of quenching on 

structural characteristics was observed previously in various perovskite-type solid 

solutions. Muramatsu [30]  reported that the lattice distortion of the rhombohedral 

phase in lead free (Bi0.5Na0.5)TiO3 (BNT) ceramic was enhanced following the 

quenching process and was strongly dependent on the quench temperature. It was also 

reported by Lee [44] that the application of a quenching process for 0.67Bi1.05FeO3-

0.33BaTiO3 ceramics, causes increases in all lattice parameters for both rhombohedral 

and tetragonal phases.  

In related research, Kim [27] investigated the effects of annealing and quenching on 

ferroelectric properties and structural evolution of 0.80BiFeO3–0.20BaTiO3 solid 

solutions to reveal the role of heat treatment in enhancement of their properties. The 

optimum results were achieved by quenching from 800 °C in water. It was observed 
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that a single, broad {110}pc peak in the slow-cooled sample became clearly split after 

quenching, indicating the presence of the rhombohedral structure. By examination of 

crystallographic parameters, an increasing A-O bond-length was observed due to 

rapid cooling, while the B-O bond-length was maintained in all the slow-cooled, 

annealed, and quenched samples. It was suggested that the relaxation of the lattice 

strain due to the heat treatment was the main cause of the significant enhancement in 

ferroelectric behaviour.  

The application of an electric field up to 6 MV m-1 led to further changes in the 

diffraction peak profiles, as shown in Figure 2(c) and (f). It is evident that the 

intensity of the {200}pc cubic peak decreased further and the splitting of the {200}pc 

tetragonal peak became  more clearly evident in both ceramics due to an increase of 

tetragonal phase fraction, from 50% to 76% for x=0.06 and from 20% to 37% for 

x=0.15. Similar effects of quenching and poling were observed by Su [45] in 

0.75BiFeO3-0.25BaTiO3 ceramics. It was reported that splitting of the {111}pc peak, 

associated with rhombohedral distortion, occurred after quenching and further 

changes in the relative peak intensities developed after poling due to ferroelectric 

domain switching. Furthermore, the slow-cooled sample in the present study showed a 

poorly developed domain structure, whereas a well-aligned ferroelectric domain 

pattern was clearly observed in the quenched sample. Similar domain reorientation 

effects cannot be observed in these SXPD results, due to the randomly-oriented nature 

of the particles in the crushed powder samples, but the improved stability of the 

ferroelectric phase as a result of the poling process is clearly evident. 

3.1.2 Microstructure  

The microstructures of the BCZT-KBT ceramics with x=0.06 and x=0.15 in slow- 

cooled and quenched-poled states are illustrated in Figure 3. The dominant feature in 

the slow-cooled samples is the core-shell type microstructure, as shown in Figure 3(a) 

and (c). The identification of core and shell regions in these ceramics was discussed in 

our previous investigation [20] in terms of tetragonal ferroelectric BCZT-rich cores 

with pseudo-cubic relaxor ferroelectric KBT-rich shell regions. On the other hand, 

clearly defined ferroelectric domain structures were observed throughout the grains in 

the quenched-poled sample with x=0.06, as shown in Figure 3(b). These features can 

also be seen in some grains for the ceramic with x=0.15, Figure 3(d).  
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Figure 3. Backscattered electron (BSE) images of chemically-etched surfaces of BCZT-KBT 

ceramics in various states; slow-cooled (SC) and quenched-poled (QP) for (a)-(b) x=0.06; (c)-(d) 

x=0.15. 

3.1.3 Ferroelectric properties 

Figure 4 shows the P-E and J-E loops, measured at room temperature, of the slow-

cooled and quenched states for both ceramics, with x=0.06 and 0.15. The slow-cooled 

sample with x=0.06, shown in Figure 4(a), has a slightly pinched P-E loop indicated 

by two peaks in the J-E curve with remanent polarisation, Pr, of 0.12 C m-2 and 

coercive field, Ec, of 1.9 MV m-1. A slightly higher Pr of 0.14 C m-2 and substantially 

larger Ec of 3.7 MV m-1 was obtained for the corresponding quenched sample; these 

variations in properties are attributed to the higher proportion of the long-range 

ordered ferroelectric tetragonal phase in the quenched ceramic. For x=0.15, the 

influence of quenching on the P-E loops was even more dramatic; the loop of the 

slow-cooled sample with x=0.15 was slim and tilted with a very low Pr value of 

0.04 C m-2, while that of the quenched sample had a typical near-rectangular 

appearance with a Pr value of 0.18 C m-2, as shown in Figure 4(b). 

(a)

(b)x=0.06(QP)

x=0.06(SC)

(d) x=0.15(QP)

(c) x=0.15(SC)

Core

Shell
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Figure 4. Room temperature P-E hysteresis loops of slow-cooled (SC) and quenched (Q) BCZT-

KBT ceramics for (a) x=0.06 and (b) x=0.15. 

The occurrence of such pinched, or slim, P-E loops is a result of restriction of 

ferroelectric domain switching, which might be attributed to several causes [46]. For 

instance, hindering of domain wall movement can occur due to domain wall pinning 

by oxygen vacancy-cation defect dipoles [47, 48], or to existence of antiferroelectric 

phases [14, 49]. In relaxor ferroelectrics, it could arise as a result of ergodicity 

phenomena, in which the transformation between PNRs and ordered ferroelectric 

domains exhibits complete or partial reversibility [12, 13]. Generally, the presence of 

polar nanoregions is a typical characteristic of relaxor ferroelectrics [2, 9]. Another 

reason could be related to the presence of core-shell type microstructures [31], in 

which two different solid solutions having different ferroelectric properties could exist 

such as in the BiFeO3-BaTiO3 system [50, 51] where rhombohedral ferroelectric 

BiFeO3-rich cores with pseudo-cubic relaxor ferroelectric BaTiO3-rich shell regions 

were observed. Two possible mechanisms to restrict domain switching in such 

materials were proposed by Calisir [31]. One possibility is that ferroelectric domain 

switching in the core could be constricted elastically by the nanodomain-structured 

shell, if it was relatively inactive. Alternatively, the electric field-induced phase 

transformation and domain switching in the shell region could be elastically 

constrained by a ferroelectric core having a high coercive field.     

In this study, as mentioned in our previous work [20], the constricted P-E loops were 

attributed to the presence of reversible polarisation switching in PNRs in addition to 

the chemical heterogeneity that was observed in the form of core-shell grain 

structures, comprising tetragonal ferroelectric BCZT-rich cores with pseudo-cubic 

relaxor ferroelectric KBT-rich shell regions. Therefore, two factors could influence 

ferroelectric behaviour in this study, which are the ferroelectric phase fraction 
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(represented by the core) and the nature of PNRs within the shell (ergodic or 

nonergodic). Thus, for slow-cooled samples, the higher polarisation values for the 

ceramic with x=0.06, relative to that with x=0.15, are attributed firstly to the higher 

percentage of the tetragonal ferroelectric phase which was around 36 % compared 

with 15 %, as shown in Table 1. Secondly, since the shell regions contain PNRs with 

different responses under an electric field, we can propose that they are mostly 

irreversible PNRs (non-ergodic state) in the ceramic with x=0.06 and mostly 

reversible PNRs (ergodic state) in the ceramic with x=0.15. 

On the other hand, after quenching the ceramic with x=0.06 has a more-rectangular P-

E loop and higher coercive field. Furthermore, opening of the P-E loop was observed 

as can be seen in J-E curve, which exhibits two well-defined singular peaks that 

indicate polarisation reversal due to ferroelectric domain switching around a distinct 

coercive field. Also, the quenching process causes a dramatic increase in remanent 

polarisation and coercive field in the ceramic with x=0.15. These results indicate 

enhancement of domain switching in the quenched samples. Furthermore, the high 

values of coercive field in these samples, which are consistent with that of KBT, 

indicate that the shell region is the more active component in these materials, since the 

shell is KBT-rich.   

3.1.4 Strain-electric field response  

High field x-E loops of the slow-cooled and quenched states for both ceramics are 

illustrated in Figure 5. The results demonstrate the same trends as those observed in 

the P-E loops and are consistent with our interpretation of the structural changes 

induced by the quenching process. For x=0.06, shown in Figure 5(a), both slow-cooled 

and quenched ceramics exhibit x-E curves with a typical butterfly-type form showing 

substantial levels of hysteresis together with both positive and negative variations in 

strain relative to the remanent state. Maximum positive strains, xmax, of 0.144% and 

0.068% were obtained at an electric field of 6.0 MV m-1 for the slow-cooled and 

quenched ceramics, respectively. It is also worth noting that the slow-cooled specimen 

has a lower coercive field in comparison with that of the quenched ceramic, in 

agreement with the P-E loops reported above. The high strain of the slow-cooled 

specimen is attributed to the presence of reversible PNRs (ergodic state) within the 

shell, whereas the lower xmax and high Ec for the quenched ceramic are consistent with 

typical ferroelectric behaviour, which results from transformation of non-ergodic 

regions (that developed after quenching) into the long-range ordered ferroelectric 

state.       

On the other hand, for x=0.15, shown in Figure 5(b), only the quenched sample shows 

positive and negative strain variations in the x-E curve. For the slow-cooled sample, a 

predominantly quadratic but hysteretic x-E relationship was obtained, similar to those 

reported for NBT-BT-KNN ceramics [13]. However, both the slow-cooled and 

quenched ceramics exhibited similar xmax values of 0.12% and 0.13% respectively. 

These observations are consistent with the above explanation of reversible 
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polarisation switching due to the presence of PNRs in an ergodic state within the shell 

regions for the slow-cooled ceramic.      

 
Figure 5. Room temperature strain-electric field loops of slow cooled (SC) and quenched (Q) 

BCZT-KBT ceramics for (a) x=0.06 and (b) x=0.15. 

The same data is re-plotted in Figure 6 to demonstrate the relationships between strain 

and polarisation. x-P plots presented in Figure 6 (a) and (c) reveal a nearly parabolic 

response, which in the case of quenched samples is marked by some degree of 

hysteresis. Interestingly, no visible hysteresis of the strain with respect to the 

polarisation is observed for the slow-cooled x=0.15 sample, Figure 6(c), despite 

significant hysteresis in the x-E response as shown in Figure 5(b). Essentially, the 

strain closely follows a quadratic electrostrictive dependence on the polarisation. x-P2 

plots were constructed to calculate room-temperature electrostrictive coefficients, Q33, 

as illustrated in Figure 6(b) and (d) for x=0.06 and x=0.15, respectively. It is worth 

noting that x is linearly proportional to P2 and quenched ceramics exhibit slightly 

larger Q33 values than their slow-cooled counterparts, as listed in Table 2. Indeed, the 

quenched x=0.15 ceramics exhibit Q33 values as large as 0.035 m4 C-2, which 

according to recent literature [52] may be referred to as a giant electrostrictive 

coefficient, in comparison with conventional Pb-based ferroelectric relaxors, which 

exhibit Q33 in the order of 0.02 m4 C-2. In previous work, ultrahigh electrostrictive 

coefficients in Pb-free NBT-based ceramics have been observed near a thermotropic 

phase boundary, which is a thermally-induced boundary between two competing 

ergodic and non-ergodic relaxor phases [52]. This is consistent with a shell region 

encompassing non-ergodic PNRs embedded in an ergodic relaxor shell, as described 

in detail in the next section. 
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Figure 6. x-P and x-P2 relationships at room temperature of slow-cooled (SC) and quenched (Q) 

BCZT-KBT ceramics for (a-b) x=0.06 and (c-d) x=0.15. 

Table 2. Comparison of the d33 and Q33 values for BCZT-KBT ceramics, with x=0.06 and 0.15, in 

slow-cooled and quenched states. The values of d33* represent the effective high-field piezoelectric 

coefficient. 

 

x=0.06 x=0.15 

SC Q SC Q 

d33 (pC N-1) 40 82 6.5 86 

d33
* (pm V-1), xmax/Emax  240 113 202 220 

Q33 (m
4 C-2) 0.031 0.04 0.03 0.035 

3.1.5 Proposed model of quenching effect  

In the present work, our explanation of the quenching effect on structure and 

ferroelectric properties is based on improvements in compositional homogeneity, 

leading to the formation of non-ergodic PNRs within the ergodic relaxor shell. To 

clarify this concept, a schematic representation of the evolution of PNRs within the 

shell regions after quenching and under application of an electric field is proposed for 

the ceramics with x=0.06 and 0.15, shown in Figure 7(a) and (b) respectively. These 

schematic diagrams are based on the observations of crystal structure, microstructure 

and ferroelectric properties described above. 

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.00

0.03

0.06

0.09

0.12

0.15

x=0.15

x
3
 (

%
)

P
2
 (C

2
 m

-4
)

  SC

  Q

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.00

0.03

0.06

0.09

0.12

0.15

x=0.06

x
3
 (

%
)

P
2
 (C

2
 m

-4
)

 SC

  Q

-0.2 -0.1 0.0 0.1 0.2

-0.05

0.00

0.05

0.10

0.15

  

 P (C m
-2
)

x
3
 (

%
)

  SC

  Q

x=0.06

-0.2 -0.1 0.0 0.1 0.2

-0.05

0.00

0.05

0.10

0.15

x=0.15

  

 P (C m
-2
)

x
3
 (

%
)

  SC

  Q

(a) (c)

(b) (d)

ACCEPTED M
ANUSCRIP

T



-16- 

 

For slow-cooled samples, the presence of larger ferroelectric core regions in the 

ceramic with x=0.06 is supported by the higher fraction of tetragonal phase as shown 

in the SXPD results, whereas the existence of non-ergodic PNRs within the ergodic 

relaxor shell is indicated by observations of well-saturated P-E loops and a well-

defined switching field. On the other hand, for quenched samples, it is proposed that 

the quenching process induces the formation of non-ergodic regions within the 

ergodic relaxor shell, supported by an increase of the tetragonal phase fraction in both 

ceramics after quenching, as shown by the SXPD results shown in Figure 2(b) and (e). 

This improvement is attributed to enhancement of compositional homogeneity by 

retention of the chemically homogenous high temperature state. In contrast, we 

suppose that the slow-cooled samples are characterised by the development of 

nanoscale compositional heterogeneity in the shell regions as a result of immiscibility, 

giving rise to the formation of PNRs having an ergodic nature. 

The last two sketches illustrate the effect of poling on the quenched samples. Based 

on the further increase of tetragonal phase content in both ceramics, from SXPD 

results and the dramatic enhancement of ferroelectric switching in the quenched 

samples, it is proposed that non-ergodic PNRs (developed after quenching) transform 

into the long-range ordered ferroelectric state. However, the higher cubic phase 

fraction, together with a slightly pinched P-E loop, for the quenched-poled sample 

with x=0.15 indicates that the fraction of ergodic PNRs is higher than that for x=0.06.      

 

Figure 7. Schematic representation of the core–shell evolution after quenching and after 

application of an electric field for BCZT-KBT ceramics with (a) x=0.06 and (b) x=0.15. 

From the above observations, it is evident that the ceramic with x=0.06 (lower 

percentage of Ca and Zr dopants) exhibits a more stable ferroelectric tetragonal phase 
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in the slow-cooled state. Furthermore, it exhibited more pronounced responses to the 

quenching and poling process, where further stabilisation of the ferroelectric 

tetragonal phase was obtained. Therefore, we can conclude that the stoichiometry of 

the BCZT component plays an important role in ferroelectric phase stabilisation.  

3.2 Temperature-dependent variations in structure and properties 

3.2.1 Crystal structure  

The results of temperature-dependent in-situ SXPD measurements for BCZT-KBT 

powders in both quenched and quenched-poled states are illustrated in Figure 8  in 

terms of the evolution of {200}pc peak profiles over the temperature range 20 to 

200 °C, using an Oxford Cryosystems 700 plus series liquid nitrogen cryostream. 

Whole-pattern fitting was carried out over a range of different temperatures, 

represented by the fitted profiles at 120 °C and 200 °C, illustrated in Figure 9.  

The coexistence of tetragonal and cubic phases at room temperature was confirmed 

for both compositions, in quenched and quenched-poled states, as illustrated above in 

section 3.1.1. The relative fraction of each phase evolved during heating, as shown in 

Figure 10. For the quenched sample with x=0.06, the tetragonal phase content, 

determined as approximately 50 % at RT, decreased to 44% and 23% at around 120 

and 200 ºC, respectively. Also, in the quenched-poled state, the field-induced 

tetragonal phase fraction of 76% at RT slightly decreased to 72 % at 120 ºC, then 

gradually to 45 % at 200 ºC. On the other hand, for the quenched sample with x=0.15, 

the predominant cubic phase content of 80 % at RT remained stable up to 120 ºC, then 

increased to 92 % at 200 ºC.  Furthermore, the field-induced tetragonal phase fraction 

of 37 % at RT, in the quenched-poled state,  remained stable up to 100 ºC, then 

decreased gradually to 22 % and 13 % at around 120 and 200 ºC, respectively. A 

summary of the phase fractions and lattice parameters determined from this analysis is 

provided in the Electronic Supplementary Information. 

In view of the results presented in Figure 10, it is anticipated that the field-induced 

ferroelectric phase for the quenched ceramic with x=0.06 should remain stable during 

heating up to ~140 °C, Figure 10 (b), and up to ~100 °C for x=0.15, Figure 10(d). 

Therefore, the thermally-induced structural transformations could influence the 

temperature-dependent dielectric and ferroelectric properties of quenched and 

quenched-poled ceramics, as shown below in Figure 11 and Figure 12. 

For the quenched sample with x=0.06, presented in Figure 8 (a), it is evident that the 

{200}c  peak develops progressively during heating due to the gradual transformation 

from tetragonal to cubic structure. The gradual growth in the cubic phase fraction is 

shown in Figure 10 (a), increasing from 50% (at RT) to 77% (at 200 °C).  However, 

for the quenched-poled state, shown in Figure 8(b), the clear splitting of the {200}pc 

peak at RT after AC poling indicates the field-induced cubic-tetragonal phase 

transformation, resulting from the non-ergodic nature of the PNRs after quenching. 

Thus, the tetragonal phase is dominant with a phase fraction around 76%, which 

remains stable up to 140 °C then decreases gradually to 55% at 190 °C; this confirms 
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the stability of the non-ergodic behaviour up to 140 °C as demonstrated by the P-E 

loops during heating, as shown in Figure 12(b) below. Consequently, the cubic phase 

is dominant at 200 °C, as shown in Figure 10 (b). The structural transformations from 

tetragonal to cubic in both quenched and quenched-poled states for x=0.06 were 

incomplete at 200 °C.                 

In comparison, for the quenched sample with x=0.15, Figure 8 (c), at low 

temperatures there is a sharp {200}pc peak with high intensity at RT in addition to a 

shoulder on the right side, which is attributed to the (200)T peak. This indicates the 

dominance of the cubic phase, even room temperature. After poling, as shown in 

Figure 8(d), (002)T/(200)T peaks are present beside the {200}pc peak, which indicates 

that the electric field-induced phase transformation occurred due to the  presence of 

non-ergodic PNRs after quenching. During heating, this field-induced ferroelectric 

tetragonal phase remained stable up to ~100 °C at which its fraction was around 33%. 

Beyond this temperature, it decreased gradually, as shown in Figure 10 (d) due to the 

emergence of the ergodic state during heating, associated with the transformation to 

the pseudo-cubic relaxor ferroelectric phase. This behaviour is consistent with the 

presence of an inflection in the εr-T measurements at ~100 °C, Figure 11 (f).     
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Figure 8. Evolution of {200}pc diffraction peak profiles for quenched (Q) and quenched-Poled 

(QP) BCZT-KBT powders as a function of temperature for (a)-(b) x=0.06, (c)-(d) x=0.15.   
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Figure 9. The experimental, calculated and difference data obtained by full pattern refinements 

showing {200}pc diffraction peak profiles for quenched (Q) and quenched-Poled (QP) BCZT-KBT 

powders at temperatures of 120ºC and 200ºC for (a)-(b) x=0.06, (c)-(d) x=0.15. 
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Figure 10. Evolution of phase fractions for quenched (Q) and quenched-poled (QP) BCZT-KBT 

powders as a function of temperature for (a)-(b) x=0.06, (c)-(d) x=0.15. Note that error bars are 

smaller than symbol size. 

3.2.2 Dielectric permittivity 

The temperature-dependent dielectric properties of the BCZT-KBT ceramics in 

various states are shown in Figure 11. The r-T curves of slow-cooled specimens for 

both compositions exhibit classic frequency-dispersive relaxor behaviour having one 

broad peak at a maximum temperature Tm ~250 ºC and ~200 ºC at 100 kHz for x=0.06 

and x=0.15, respectively, as shown in Figure 11(a) and (d). However, the slow-cooled 

sample with x=0.15 exhibits more diffuse and dispersive behaviour than that for 

x=0.06. After quenching, two peaks were observed in the εr-T curves at ~210 ºC and 

~300 ºC, which are tentatively attributed to separate transitions in the shell and core 

regions respectively [31]. The εr-T and tanδ-T relationships presented in Figure 11 (c) 

and (f) illustrate the effects of poling on the quenched samples. For x=0.06, a reduced 

frequency dependence was observed up to ~200 ºC, whereas, for x=0.15 an additional 

anomaly was observed at ~100 ºC, which is associated with the depolarisation 

temperature, as shown below in section 3.2.5. 

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

 Cubic

 Tet.

P
h

a
s

e
 F

ra
c

ti
o

n
 %

Temperture (

C)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100
 Cubic

 Tet.

P
h

a
s

e
 F

ra
c

ti
o

n
 %

Temperature (

C)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

 Cubic

 Tet.

P
h

a
s

e
 F

ra
c

ti
o

n
 %

Temperature (

C)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

 Cubic

 Tet.

P
h

a
s

e
 F

ra
c

ti
o

n
 %

Temperture (

C)

x=0.06 (Q) x=0.15 (Q)

x=0.06 (QP) x=0.15 (QP)

Temperature (ᵒC)

Temperature (ᵒC)

Temperature (ᵒC)

Temperature (ᵒC)

(a)

(b)

(c)

(d)

ACCEPTED M
ANUSCRIP

T



-22- 

 

 

Figure 11. Temperature-dependence of dielectric permittivity and loss of BCZT-KBT ceramics in 

various states; slow-cooled (SC), quenched (Q) and quenched-poled (QP) for (a)-(c) x=0.06 and 

(d)-(f) x=0.15. 

3.2.3 Ferroelectric hysteresis 

The influence of heating on the ferroelectric properties of the slow-cooled and 

quenched samples is illustrated by the results presented in Figure 12. It is evident that 

progressive constriction occurs in the P-E loops of slow-cooled samples upon heating 

which indicates the development of a reversible electric field-induced transformation 

from nanopolar to long-range ordered ferroelectric state, as shown in Figure 12(a) and 

(c). On the other hand, for the quenched samples this behaviour was observed only in 

the ceramic with x=0.15. In contrast, the ferroelectric switching characteristics for 

x=0.06 were enhanced with increasing temperature, with both the remanent and 

saturation polarisation values increasing due to reduction of the coercive field and 

enhancement of domain switching behaviour. 

R
el

at
iv

e 
p

e
rm

it
ti

vi
ty

Lo
ss

 t
an

ge
n

t

Temperature (⁰C)

0 50 100 150 200 250 300 350
0

2000

4000

06-Q.

 

0.0

0.1

0.2

0.3

0.4

0.5

(b) (Q)

0 50 100 150 200 250 300 350
0

2000

4000

06-Q-P

 

0.0

0.1

0.2

0.3

0.4

0.5

(c) (QP)

0 50 100 150 200 250 300 350
0

2000

4000

06-S.Cool

 

 1 kHz 

 10 kHz

 100 kHz 

0.0

0.1

0.2

0.3

0.4

0.5

(a) (SC)

0 50 100 150 200 250 300 350
0

2000

4000

15-Q.

 

0.0

0.1

0.2

0.3

0.4

0.5

(e) (Q)

0 50 100 150 200 250 300 350
0

2000

4000
15-Q-P

 

0.0

0.1

0.2

0.3

0.4

0.5

(f) (QP)

0 50 100 150 200 250 300 350
0

2000

4000
15-S.Cool

 

 1 kHz 

 10 kHz

 100 kHz 

0.0

0.1

0.2

0.3

0.4

0.5

(d) (SC)

ACCEPTED M
ANUSCRIP

T



-23- 

 

 

Figure 12. P-E loops of slow-cooled (SC) and quenched (Q) BCZT-KBT ceramics (a)-(b) x=0.06, 

(c)-(d) x=0.15 at different temperatures.  

3.2.4 Strain-electric field response  

In-situ S-E loops for quenched BCZT-KBT, acquired in the 20 to 140 C temperature 

range, are illustrated in Figure 13. For x=0.06, the coercive field decreases and the 

maximum achievable strain increases with increasing temperature. This again 

supports an enhancement of domain switching with increasing temperature. A slight 

decrease in the negative strain with increasing temperature can be ascribed to a 

concomitant decrease in the tetragonal phase, as shown in Figure 10(a). On the other 

hand, the variations in the S-E relationship for x=0.15 are remarkably different; with 

increasing temperature the ferroelectric-like response is gradually reduced and at 

100C is replaced by a largely reversible ergodic relaxor-type response with reduced 

hysteresis due to the significant decrease in the tetragonal phase content. 

 

Figure 13. Temperature-dependence of strain-electric field loops for quenched BCZT-KBT 

ceramics with (a) x=0.06 and (b) x=0.15. 
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Nevertheless, the large strain and the constricted appearance of the P-E loops, Figure 

12(d), is consistent with emergence of the ergodic state during heating, which is 

accompanied by a transformation to the pseudo-cubic relaxor ferroelectric phase. The 

aforementioned is corroborated by the x-P plots given in Figure 13. For x=0.15, the 

degree of hysteresis in the x-P curves slightly decreases, as shown in Figure 13(b). 

Furthermore, the maximum polarisation shows little temperature- dependence 

whereas the strain changes dramatically. In contrast, the results for x=0.06 show 

significant variations in both the maximum polarisation and strain with temperature. 

Consequently, this has an impact on the temperature-dependence of the 

electrostrictive coefficients, determined using data extracted from the x-P2 

relationships plotted in Figure 14. Indeed, Q33 for x=0.06 exhibits enhanced 

temperature stability in comparison with the case for x=0.15, as summarised in Figure 

15(a). 

 

Figure 14. Temperature-dependence of x-P and x-P2 relationships for quenched BCZT-KBT 

ceramics with (a-b) x=0.06 and (c-d) x=0.15. Note that the x3 values in (a) and (c) are offset 

vertically by an arbitrary amount for clarity. 
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Figure 15. Temperature-dependence of (a) electrostrictive coefficient and (b) maximum strain of 

quenched BCZT-KBT ceramics for x=0.06 and x=0.15. 

 

3.2.5 Thermal depolarization  
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samples were poled in a silicone oil bath at room temperature by applying  an AC 
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curve of the poled samples [36]. It is evident that the quenching process increased Td 
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for the slow-cooled sample. These observations are consistent with those of the phase 

transformations identified by SXPD due to the close correlation between the 

emergence of cubic phase and depolarisation during heating.  
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Figure 16. Thermal depolarization results for slow-cooled (SC) and quenched (Q) BCZT-KBT 

ceramics for (a) x=0.06 and (b) x=0.15. 

In order to investigate the influence of the poling procedures, the quenched ceramic 

with x=0.06 was poled at room temperature using a DC electric field of 6.0 MV m-1, 

for 5 min. Subsequently, the thermal depolarisation behaviour was measured, as 

shown in Figure 17. It is evident that both Pr and Td were enhanced for the DC-poled 

ceramic, yielding enhancements in Pr, from 0.13 to 0.22 C m-2, and Td, from 160 to 

190 °C.  

 

Figure 17. Influence of poling method on thermal depolarization behaviour for slow-cooled (SC) 

and quenched (Q) BCZT-KBT ceramic with x=0.06. 
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4 Conclusions 

The structure and dielectric/ferroelectric properties of 0.35BCZT-0.65KBT ceramics 

with x=0.06 and 0.15, in the slow-cooled, quenched and quenched-poled states were 

investigated at RT and during heating. Chemical heterogeneity was observed in the 

form of core-shell grain microstructures, with emphasis on the presence of PNRs in 

the relaxor ferroelectric shell regions. Evaluation of the structure-property 

relationships demonstrated that the quenching process induces a transformation to 

long-range ordered ferroelectric domains and the formation of nonergodic PNRs 

within the ergodic relaxor ferroelectric shell, which transform irreversibly into the 

long-range ordered tetragonal ferroelectric phase after poling.  

It is proposed that ferroelectric ordering in the shell regions is enhanced in the 

quenched state, relative to that of the slow-cooled state, due to the retention of the 

more chemically-homogeneous high temperature state by the quenching process. 

However, the field-induced ferroelectric state transformed back to the relaxor-like 

behaviour during heating in accordance with a gradual structural transformation from 

tetragonal to pseudocubic structure, which was confirmed by temperature-dependent 

in-situ SXPD measurements. A good correlation was established between structural 

evolution and the results of temperature-dependent dielectric, ferroelectric, and 

depolarization measurements. Generally, it was demonstrated that the lower 

percentage of Ca and Zr dopants (represented by the ceramic with x=0.06) stabilises 

the ferroelectric tetragonal phase in slow-cooled samples. Furthermore, the electric 

field-induced ferroelectric state for x=0.06 is more stable during heating than that for 

x=0.15. However, further research is necessary in order to improve fundamental 

understanding of the mechanism(s) responsible for the improvement of properties in 

BCZT-KBT ceramics due to quenching.  
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