
SHYAM: a system for autonomic management
of virtual clusters in hybrid clouds

Daniela Loreti and Anna Ciampolini

DISI - Department of Computer Science and Engineering
Università di Bologna,

Viale del Risorgimento 2 Bologna, Italy,
{daniela.loreti, anna.ciampolini}@unibo.it

Abstract. While the public cloud model has been vastly explored over
the last few years to face the demand for large-scale distributed com-
puting capabilities, many organizations are now focusing on the hybrid
cloud model, where the classic scenario is enriched with a private (com-
pany owned) cloud – e.g., for the management of sensible data. In this
work, we propose SHYAM, a software layer for the autonomic deploy-
ment and configuration of virtual clusters on a hybrid cloud. This system
can be used to face the temporary (or permanent) lack of computational
resources on the private cloud, allowing cloud bursting in the context of
big data applications. We firstly provide an empirical evaluation of the
overhead introduced by SHYAM provisioning mechanism. Then we show
that, although the execution time is significantly influenced by the inter-
cloud bandwidth, an autonomic off-premise provisioning mechanism can
significantly improve the application performance.

Keywords: Autonomic, Hybrid Cloud, Big Data, MapReduce

1 Introduction

Offering “the illusion of infinite computing resources available on demand” [5],
cloud computing is the ideal enabler for high computing power demanding ap-
plications. While the public cloud scenario had been well explored in the past,
many organization are now focusing on the hybrid cloud model. Combining both
on-premise (company owned) and off-premise (owned by a third party provider)
cloud infrastructures, the hybrid scenario can indeed capture a broader use-case
[19]. Recently, the exponential increase in the use of mobile devices and the
wide-spread employment of sensors across various domains has created large
volumes of data that need to be processed to extract knowledge. The pressing
need for fast analysis of large amount of data calls the attention of the research
community and fosters new challenges in the big data research area [10]. Since
data-intensive applications are usually costly in terms of CPU and memory uti-
lization, a lot of work has been done to simplify the distribution of computational
load among several physical or virtual nodes and take advantage of parallelism
[12]. Nevertheless, the execution of data-intensive applications requires a high
degree of elasticity in resource provisioning. In this scenario, a widespread choice



is to relay on a cloud infrastructure to take advantage of its elasticity in virtual
resource provisioning.

In this paper, we focus on the autonomic management of virtual machines
(VMs) in the context of hybrid clouds. To this purpose, we present SHYAM
(System for HYbrid clusters with Autonomic Management), a system for the
autonomic management of VMs in hybrid clouds able to manage virtual clusters
using both on-premise (i.e., computing nodes in a private internal cloud IC) and
off-premise (i.e. in a public external cloud EC) hardware resources. The system
is able to dynamically react to load peaks – due, for instance, to virtual machine
(VM) contention on shared computing nodes – by redistributing the VMs on
less loaded nodes (either migrating inside IC or crossing the cloud boundaries
towards EC). As a case study, we consider the execution of data-intensive appli-
cations over clusters of VMs initially deployed on IC. If a physical node hosting
a VM for data-processing becomes overloaded in terms of CPU, memory or disk
utilization, the performance of the virtual cluster may dramatically decrease,
thus slowing down the whole distributed application. In this case, if another less
loaded physical machine is available on-premise, the best solution would be to
migrate the VM on that physical node. However, the private cloud has a finite
amount of resources and it may happen that all the physical machines in IC
are too loaded to receive the VM: in this case, we can provide resources on EC
and perform application-level load redistribution; in SHYAM we automated this
mechanism. As this work tests the SHYAM system on data-intensive applica-
tions, it also explores the drawbacks and shortcomings of the hybrid scenario,
primarily due to data movement crossing on-/off-premise boundaries. Although
data-processing is significantly influenced by the limited inter-cloud bandwidth,
our work shows that an autonomic off-premise provisioning mechanism could
allow the user to significantly increase the application performance.

The paper is organized as follows. Section 2 presents the architecture of the
proposed autonomic system, illustrating the data-processing scenario and man-
agement policy adopted, as well as practical details about the implementation.
Section 3 discusses the experimental results obtained by testing our solution in
the chosen data-intensive scenario. Related work and conclusion follow.

2 Framework Architecture
We focus on a hybrid scenario composed of two separated cloud installations: the
on-premise IC, owned and managed by a private company, and the off-premise
EC, a collection of resources owned by a cloud provider and rented to customers
according to a predefined price plan. Having their own cloud management soft-
ware and offering their virtualized resources to final users (e.g., customers, com-
pany employees, etc...), both IC and EC implement the cloud paradigm at the
Infrastructure as a Service (IaaS) level.

As shown in Fig.1a, the key component of SHYAM is Hybrid Infrastructure
as a Service (HyIaaS), a software layer that allows integration between IC and
EC infrastructures. The layer interacts with both on- and off-premise cloud with
the goal of providing hybrid clusters of VMs. Each cluster is dedicated to the exe-
cution of a particular distributed application (e.g., distributed data-processing).



If there are enough resources available, all the VMs of a cluster are allocated
on-premise to minimize the costs introduced by the public cloud and the latency
of data transferred between the virtual nodes. If on-premise resources are not
sufficient to host all the VMs, a part is provisioned on IC and the others on EC.
This partitioning should be transparent to the final user of the virtual cluster,
allowing her to access all the VMs in the same way, regardless to the physical
allocation. We call hybrid cluster the result of this operation.

HyIaaS is also responsible for autonomously handling to changes in the cur-
rent utilization level of the on-premise physical machines hosting the VMs of
the cluster. To avoid the application slowdown due to the poor performance
of these VMs, HyIaaS layer is in charge of dynamically spawning new VMs on
EC and providing them to the above Application layer (Fig.1a). This layer is
responsible for installing and configuring a specific distributed application on
the newly provided VMs. SHYAM’s main goal is to unify on- and off-premise
resources while keeping a strong separation between the infrastructure and ap-
plication levels. It must be installed on IC, so that it can collect monitoring
information about the utilization level of the on-premise machines. According
to a specific user-defined policy, the HyIaaS layer can perform cloud bursting
toward EC by translating generic spawning and scale-down requests into spe-
cific off-premise provisioning and de-provisioning commands. If both IC and EC
have a centralized architecture, SHYAM makes them able to cooperate by com-
municating with their central controllers. In the following, we will use the term
compute nodes to refer all the physical machines (of IC or EC) able to host VMs
and not in charge of any cloud management task. HyIaaS layer consists of three
components (Fig.1b): the Monitoring Collector (MC), the Logic and the Trans-
lation component. MC is in charge of fetching information about the current
resource utilization level of the on-premise compute node. The Logic component
uses the information read by MC and implements a custom-defined spawning
policy. Given the current status of the on-premise cluster and additional con-
straints possibly introduced by the customer (e.g., deadline for the execution
of a certain job), the output of the Logic component is a new allocation of the
VMs over the physical nodes, possibly including new VMs spawned off-premise.

(a) (b)

Fig. 1: Fig. 1a: Hybrid cloud scenario. SHYAM is an on-premise software component
able to collect information about the current status of IC and dynamically add off-
premise resources if needed. Fig. 1b: Hybrid Infrastructure as a Service layer in detail.
Subcomponents are displayed in grey.



The Logic component has been split into two subcomponents: Node Logic and
Cloud Logic. The Node Logic (one for each compute), responsible for analyzing
the monitoring data from MC, detecting if a critical situation occurred on that
physical machine (e.g., the compute node is too loaded) and sending notifica-
tions to the Cloud Logic. The Cloud Logic (installed on IC’s controller node),
in charge of autonomously taking spawning/migration decisions given the mon-
itoring alerts received from Node Logic. The alerts from Node Logic and the
policy of Cloud Logic can be defined by the IC system administrator. The ra-
tionale behind splitting the Logic component into two parts is to minimize the
amount of information exchanged between the on-premise cloud controller and
the physical nodes hosting VMs: the Node Logic sends notifications to the Cloud
Logic only if a critical condition at node-level is detected. Having a wider vision
of the state of the cloud, the Cloud Logic can combine the received information
to implement a more elaborate policy. This should be taken into account by
the IC system administrator, as she implements the spawning/migration policy.
If the new VM allocation produced by the Logic involves EC, the Translation
component is used to convert the directives into EC-specific APIs.

2.1 Applicative scenario

HyIaaS invokes the Application Layer functionalities via a standard interface.
In particular, after HyIaaS has produced and deployed a new hybrid cluster
structure, it calls the configure operation offered by the specific Application
Layer involved, which is in charge of installing and configuring the applicative
software on the newly provided virtual nodes.

As a case study, we focus on the data-intensive scenario, in which the ap-
plication load can be distributed among several computing nodes. We adopt
MapReduce [12], a widespread programming model to simplify the implemen-
tation of data intensive distributed applications. Following this approach, the
input data-set is partitioned into an arbitrary number of parts, each exclusively
processed by a different computing task, the mapper. Each mapper produces
intermediate results (in the form of key/value pairs) that are collected and pro-
cessed by other tasks, called reducers, in charge of calculating the final results
by merging the values associated to the same key. The programs implemented
according to this model can be automatically parallelized and easily executed
on a distributed infrastructure. The MapReduce model is implemented by sev-
eral platforms: one of the most popular is Apache Hadoop [1], an open source
implementation consisting of two components: Hadoop Distributed File Sys-
tem (HDFS) and MapReduce runtime. The input files for MapReduce jobs are
split into fixed size blocks (default is 64 MB) and stored in HDFS. MapReduce
runtime follows a master-worker architecture. The master (Job-Tracker) assigns
tasks to the worker nodes. Each worker node runs a Task-Tracker that manages
the currently assigned tasks. Each worker node can have up to a predefined num-
ber of mappers and reducers simultaneously running. We execute the Hadoop
workload over a virtual cluster that can be deployed on the hybrid cloud (par-
titioned between IC and EC) in case the on-premise resources are not enough.
Therefore, the first Application Layer we implement for SHYAM is responsible



for installing and configuring Hadoop on the newly provided VMs and allows us
to evaluate the performance of operating MapReduce in a hybrid cloud setup.

2.2 Logic component policy

Algorithm 1 SPAN policy

Input: h,AL,ONmanager,OFFmanager,THRU ,∆t.

1: while true do
2: if h.getUtil() > THRU then
3: vmsToMove = selectToMove(h.getV Ms())
4: for each vm in vmsToMove do
5: d = ONmanager.getAnotherAllocation(vm)
6: if d! = null then
7: ONmanager.migrate(vm, d)
8: else
9: vmnew = OFFmanager.provideLike(vm)

10: AL.configure(vm, vmnew)
11: vmnew = ONmanager.remove(vm)
12: end if
13: end for
14: end if
15: sleep(∆t)
16: end while

We implemented a first example of policy for the Logic component executed
on every compute node of IC: the SPAN policy (Alg. 1). The algorithm aims to
maintain the load of each compute node under a parametric threshold: THRU .
It periodically checks the resource utilization of the compute node h (line 2 in
Alg. 1). If the load exceeds THRU , the procedure selects to move a subset of
the VMs currently on h (line 3 in Alg. 1). The selectToMove function is im-
plemented according to Minimization of Migrations algorithm from Beloglazov
et al. [6]. This policy ensures to always move the minimum number of VMs
that brings h utilization back under THRU . For each vm selected, if there is
another on-premise node that can host the VM, a migration is performed (line
7 in Alg. 1). Otherwise, if no IC’s compute node can host the VM, a new one
is spawned off-premise and the specific application level configuration is per-
formed (line 10 in Alg. 1). As mentioned in section 2.1, we chose Hadoop as an
example of distributed data-processing application. For this reason, the code of
AL.configure(vm, vmnew) mainly consists of two operations, as show in Alg.
2. First of all vmnew is included in Hadoop virtual cluster (cl in line 1), then
the old vm is decommissioned causing its data to be sent to other nodes of the
cluster. Focusing on the first operation (cl.include(vmnew) in line 2), we must
consider that Hadoop’s Job-Tracker (running on the master node) assigns jobs
to the workers according to the part of data currently allocated on the worker’s
portion of HDFS. Having no data initially allocated on the newly provided off-
premise workers, they will be scarcely useful for the computation, because the
Job-Tracker will not assign any task to them. Nevertheless, our solution relays
on a well known Hadoop behavior: when the on-premise vm is decommissioned



and its data are replicated, Hadoop prefers the workers with low utilization of
HDFS as destinations. Initially having 0% HDFS utilization, off-premise vmnew

is likely to be preferred and no other data balancing is needed to give vmnew

an effective role in computation. Therefore, cl.exclude(vm) in line 3 of Alg. 2
is enough to trigger the data replication process and avoid the drawbacks of
launching Hadoop Balancer process (which is high time-consuming mechanism
[1] for equally redistribute data across the workers). It also produces the benefits
of an inter-cloud VM migration (i.e., only vm’s portion of HDFS is moved to
EC) without performing the whole VM snapshot transfer.

Algorithm 2 AL.configure procedure for Hadoop virtual cluster

Input: vm, vmnew.

1: cl = vm.getV irtualCluster()
2: cl.include(vmnew)
3: cl.exclude(vm)

2.3 Implementation

We implemented HyIaaS layer by extending OpenStack Sahara [3] component
to allow cluster scaling operations in a hybrid scenario. OpenStack [2] is an open
source platform for cloud computing with a modular architecture and Sahara is
the OpenStack module specific to data processing. It allows the user to quickly
deploy, configure and scale virtual clusters dedicated to data intensive applica-
tions like MapReduce. We modified the Sahara scaling mechanism to allow the
spawning of new VMs on a remote cloud. The MC component is a simple dae-
mon process running on each compute node. It checks the CPU, memory and
disk utilization and compares them with THRU . When the virtual cluster needs
to be scaled by providing new off-premise VMs, the command is issued through
the Translation component to EC. In our test scenario, the off-premise cloud
runs another OpenStack installation, therefore the Translation component sim-
ply forwards the provisioning command to EC’s Nova component (the central
module for VM management in OpenStack infrastructure). Finally, the Appli-
cation layer configures Hadoop and launches its daemons by connecting to the
newly provided VMs.

3 Experimental Results

Our setup is composed of two OpenStack clouds to emulate IC and EC. The
on-premise cloud has five physical machines, each one with a Intel Core Duo
CPU (3.06 GHz), 4GB RAM and 225GB HDD. EC is composed of three physi-
cal machines, each one with 32 cores Opteron 6376 (1.4 GHz), 32GB RAM and
2.3TB HDD. On both IC and EC we provide adhoc VMs with two virtual CPUs,
4GB RAM and 20GB of disk. The intra-cloud bandwidth of IC and EC is 1000
Mbit/s, while the inter-cloud bandwidth (between the two) is 100 Mbit/s. Our
initial scenario is composed of 4 VMs allocated on IC. In order to characterize
the performance of the computation on the hybrid cluster, we first analyze the
time to provide one or more new Hadoop workers on EC. Fig. 2a shows the
average time to obtain a single Hadoop worker up and running as we vary the



(a) (b) (c)

Fig. 2: Fig. 2a shows the time to provide a certain number N of new off-premise VMs
with different characteristics (small, medium, large and xlarge are the default VM con-
figurations offered by OpenStack). Fig.2b compares the time to perform Hadoop word
count on a fully on-premise cluster – with (Te I) or without (Te I stress) a stressing
condition on a physical node –, with the performance on a hybrid cluster created by
the HyIaaS. Fig.2c shows the percentage gain obtained by our solution.

number of VMs spawned at a time on EC. As we expected, the trend of the
curve suggests that there is a constant overhead caused by SHYAM provisioning
mechanism, but the trend of total time is approximately linear with the number
of VMs requested. Furthermore, we can easily verify from the graph in Fig. 2a
that provisioning time is independent from the characteristics of the specific VM
spawned. Given SHYAM’s autonomic provisioning mechanism, we can evaluate
the performance of operating MapReduce in a hybrid cloud setup. To this pur-
pose, we assume to have four on-premise VMs already configured to run Hadoop
jobs and provided with a certain amount of data D on HDFS, and we consider
the time to execute a word count Hadoop job [12] over Wikipedia datasets of
different size D [4]. Fig. 2b compares the execution time trends of three scenar-
ios. The first one (Te I in Fig. 2b) represents the ideal situation of having each
Hadoop VM allocated on an on-premise dedicated physical machine. Since no
other physical or virtual load is affecting the execution, we can obtain good per-
formance (execution time is linear in D). The second scenario (Te Istress in Fig.
2b) shows the performance degradation when one of the four Hadoop workers is
running on a overloaded physical machine and no VM redistribution mechanism
is adopted. As we can see in Fig. 2b, the execution time is considerably higher
when compared to Te I because the VM on the stressed physical node sensibly
slows down the whole distributed computation. The third scenario (Te Hstress

in Fig. 2b) repeats the second scenario and adopts SHYAM redistribution with
SPAN policy. THRU and THRD are fixed at 90% and 10% respectively. In this
case, a new VM is spawned off-premise and the on-premise worker running on
the stressed machine is decommissioned (i.e., excluded from Hadoop cluster after
its data have been copied on other worker nodes). This operation causes a part of
data to cross on-/off-premise boundaries. As we can see in Fig. 2b, the adoption
of SPAN policy can considerably improve the performance for low values of D.
However, the trends show that in the third scenario the execution time is not
linear in the volume of data involved and, for high values of D, we can have a
lower execution time by avoiding the off-premise spawning. This is mainly due
to data movement across the on-/off-premise boundaries, which is usually over a



higher latency medium when compared to a fully on-premise computation. Fig.
2c shows the gain in execution time obtained with SHYAM. Although for high
volumes of data crossing on-/off-premise boundaries the gain is low, the graph
suggests that the autonomic provisioning and configuration of VMs on EC can
represent a good solution to face critical conditions of stress in private clouds.
In the case of a word count application, the graphic in Fig. 2c suggests a pseudo
linear correlation between the amount of data D and the gain obtained by pro-
viding a new off-premise VM and decommissioning the slow on-premise worker.
This property can be useful to a priori estimate the advantage of SHYAM’s cloud
bursting given a certain volume of data D to be processed.

4 Related Work
Cloud computing is currently used for a wide and heterogeneous range of tasks.
According to the classification introduced in [5], in this work we especially focus
on the cloud from the IaaS perspective, intending it as an elastic provider of
virtual resources, able to contribute to heavy computing tasks. Data-intensive
applications are an example of resource demanding tasks. A widely adopted pro-
gramming model for this scenario is MapReduce [12], whose execution can be
supported by platforms such as Hadoop [1], possibly in a cloud computing infras-
tructure. We tested our system with MapReduce applications, choosing Hadoop
as execution engine. Recently, a lot of work has focused on cloud computing for
the execution of big data applications: as pointed out in [11], the relationship
between big data and the cloud is very tight, because collecting and analyzing
huge and variable volumes of data require infrastructures able to dynamically
adapt their size and their computing power to the application needs. The work by
Chen et al. [9] presents an accurate model for optimal resource provisioning use-
ful to operate MapReduce applications in public clouds. Similarly, Palanisamy
et al. [17] deal with optimizing the allocation of VMs executing MapReduce
jobs in order to minimize the infrastructure cost in a cloud datacenter. In the
same single-cloud scenario, Rizvandi et al. [18] focus on the automatic estima-
tion of MapReduce configuration parameters, while Verma et al. [20] propose a
resource allocation algorithm able to estimate the amount of resources required
to meet MapReduce-specific performance goals. However, these models were not
intended to address the challenges of the hybrid cloud scenario, which is the
target environment of our work.

The choice of primarily relay on a small (e.g., private) cloud and then use
the extra-capacity offered by a public cloud for opportunistic scale-out has been
investigated by several authors [8, 7]. According to the classification in [19], our
work mainly deals with the hybrid cloud approach for cloud interoperability,
because the main motivation of our system is allowing cloud bursting to EC.
However, our proposal could also be classified as a Federation mechanism for
cloud aggregation because – as in federated clouds – the interoperation between
clouds is completely transparent to end-users. The works in [16] and [13] focus on
enabling cloud bursting through inter-cloud migration of VMs, which is generally
a time and resource expensive mechanism. In particular, [13] optimizes the over-
head of migration using an intelligent pre-copying mechanisms that proactively



replicates VMs before the migration. Our work doesn’t take into consideration
the VM migration, but only the dynamic instantiation of new compute nodes on
EC, thus to avoid the unnecessary movement of the whole VM snapshot across
the cloud boundaries. As we shown, this technique is particularly suitable for
the MapReduce model because the Hadoop provisioning and decommissioning
mechanism intrinsically contributes to simplify the cloud bursting process. The
hybrid scenario is also investigated in the work by Zhang et al. [21] by focusing
on the workload factoring and management across federated clouds. More sim-
ilarly to our approach, cloud bursting techniques has been adopted for scaling
MapReduce applications in the work by Mattess et al. [15], which presents an
online provisioning policy to meet a deadline for the Map phase. Differently from
our approach, [15] does not consider the time to balance data across the hybrid
virtual cluster, which, as we showed, has a consistent role in determining the
opportunity of cloud bursting towards the public cloud. Also the work presented
by Kailasam et al. [14] deals with cloud bursting for big data applications. It
proposes an extension of the MapReduce model to avoid the shortcomings of
high latencies in inter-cloud data transfer: the computation inside IC follows
the batch MapReduce model, while in EC a stream processing platform called
Storm is used. The resulting system shows significant benefits. Differently from
[14], we have chosen to keep complete transparency and uniformity in working
node allocation and configuration. However, as in [14], our system allows the
user to constrain the allocation of mappers/reducers in order to optimize the
cost of data transfer between these tasks.

5 Conclusion

In this paper we presented SHYAM, a software component to allow VM auto-
nomic management in a hybrid cloud scenario. We illustrated the architecture
and the internal structure of the system and we evaluate its performance by exe-
cuting a Hadoop data-intensive application on a virtual cluster and stressing one
of IC’s physical machines. In the given scenario, SHYAM autonomously spawns
new VMs on EC and configures them as workers of the Hadoop cluster. Our
results show that the time to provide a new off-premise worker is not influenced
by the characteristics of the VM requested and the hybrid cluster obtained can
sensibly improve the performance of a benchmark Hadoop word count applica-
tion, although the performance of the hybrid cluster decreases as the inter-cloud
bandwidth is saturated. Since this drawback could be also influenced by the kind
of application executed (e.g., word count in our case study), we plan to further
investigate SHYAM performance with different Hadoop workloads. Neverthe-
less, this work represents a first prototype of an autonomic infrastructure for
hybrid clouds able to detect critical conditions on IC and autonomously request
resources to EC.

As regards SPAN policy, we trigger the spawning/migration mechanism if the
physical machine’s CPU utilization exceeds THRU . However, the policy could
be easily modified to take into account the utilization of other resources (RAM,
disk, etc.). Furthermore, in case of spawning new VMs towards EC our approach



lacks a mechanism for bringing back on IC the off-premise VMs once the critical
condition is solved. Therefore, for the future, we plan to enrich the policy with a
similar threshold mechanism to detect underloaded hosts in IC. This mechanism
will have to be equipped with memory of the past actions taken in order to avoid
the continuous provisioning and de-provisioning of VMs (moving data back and
forth between IC and EC) due to small variations on the load of the physical
machine.

References

1. Apache hadoop, https://hadoop.apache.org/
2. Openstack: Opensource cloud computing software, https://www.openstack.org/
3. Openstack sahara, https://wiki.openstack.org/wiki/Sahara
4. Puma datasets, https://engineering.purdue.edu/ puma/datasets.htm
5. Armbrust, M., Fox, O.: Above the clouds: A berkeley view of cloud computing.

Tech. rep., Electrical Engineering and CS University of California (2009)
6. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics

for efficient management of data centers for cloud computing. Future Generation
Computer Systems 28(5), 755–768 (May 2012)

7. Bicer, T., Chiu, D., Agrawal, G.: A framework for data-intensive computing with
cloud bursting. In: IEEE International Conference on Cluster Computing (2011)

8. Cardosa, M., Wang, C., Nangia, A., Chandra, A., Weissman, J.: Exploring mapre-
duce efficiency with highly-distributed data. In: Proceedings of the Second Inter-
national Workshop on MapReduce and Its Applications. ACM (2011)

9. Chen, K., Powers, J., Guo, S., Tian, F.: Cresp: Towards optimal resource provision-
ing for mapreduce computing in public clouds. Parallel and Distributed Systems,
IEEE Transactions on 25(6), 1403–1412 (June 2014)

10. Chen, M., Mao, S., Liu, Y.: Big data: A survey. Mobile Networks and Applications
Volume 19(2), 171–209 (2014)

11. Collins, E.: Intersection of the cloud and big data. IEEE Cloud Computing (2014)
12. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.

Commun. ACM 51(1), 107–113 (January 2008)
13. Guo, T., Sharma, U., Shenoy, P., Wood, T., Sahu, S.: Cost-aware cloud bursting

for enterprise applications. ACM Trans. Internet Technol. 13(3) (May 2014)
14. Kailasam, S., Dhawalia, P., Balaji, S.: Extending mapreduce across clouds with

bstream. Cloud Computing, IEEE Transactions on (2014)
15. Mattess, M., Calheiros, R., Buyya, R.: Scaling mapreduce applications across hy-

brid clouds to meet soft deadlines. In: IEEE 27th International Conference on
Advanced Information Networking and Applications. pp. 629–636 (2013)

16. Nagin, K., Hadas, D.: Inter-cloud mobility of virtual machines. In: Proceedings of
the 4th Annual International Conference on Systems and Storage. ACM (2011)

17. Palanisamy, B., Singh, A., Liu, L.: Cost-effective resource provisioning for mapre-
duce in a cloud. Parallel and Distributed Systems, IEEE Transactions on (2015)

18. Rizvandi, N., Taheri, J.: A study on using uncertain time series matching algo-
rithms for mapreduce applications. Concurrency and Computation (2013)

19. Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environ-
ments: Challenges, taxonomy, and survey. ACM Comput. Surv. 47(1) (2014)

20. Verma, A., Cherkasova, L., Campbell, R.H.: Resource Provisioning Framework for
MapReduce Jobs with Performance Goals. Springer (2011)

21. Zhang, H., Jiang, G., Yoshihira, K.: Proactive workload management in hybrid
cloud computing. IEEE Transactions on Network and Service Management (2014)


