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Chagas disease is a tropical illness caused by the protozoan Trypanosoma cruzi. The disease affects populations of the Americas
and has been spread to other continents due to the migration process. The disease is partially controlled by two drugs,
Benznidazole and Nifurtimox. These molecules are active in the acute phase of the infection but are usually ineffective during
the symptomatic chronic phase. Several research groups have developed novel candidates to control Chagas disease; however,
no novel commercial formulation is available. In this article, we described the anti-T. cruzi effects of phenothiazinium dyes
in amastigote and trypomastigote forms of the parasite. Methylene Blue, New Methylene Blue, Toluidine Blue O, and 1,9-
Dimethyl Methylene Blue inhibited the parasite proliferation at nanomolar concentrations and also demonstrated low toxicity
in host cells. Moreover, combinations of phenothiazinium dyes indicated a synergic pattern against amastigotes compared to
the Benznidazole counterparts. Phenothiazinium dyes levels of reactive oxygen species (ROS) and decreased the mitochondrial
potential in trypomastigotes, indicating themechanism of action of the dyes inT. cruzi. Our article offers a basis for future strategies
for the control of Chagas disease using low-cost formulations, an important point for endemic underdeveloped regions.

1. Introduction

Trypanosoma cruzi is the etiologic agent of the Chagas
disease, endemic in the Americas. Chagas disease afflicts ∼
6 million to 7 million people and nowadays has spread to
North America, Europe, Asia, and Oceania due to migration.
The disease has two distinct phases; the acute phase is asymp-
tomatic or causes unspecific symptoms. The chronic phase,
when symptomatic, may lead to cardiac and/or digestive
degeneration [1].

Despite the effort of several groups to develop novel
therapies [2], there are only two commercial drugs for Chagas
disease control, Benznidazole and Nifurtimox [3]. Moreover,
several cases of treatment failure have been described [4],
demanding new active and safe drugs. In this article, we

investigated the anti-T. cruzi effect of phenothiazinium dyes,
a low-cost family of drugs with potential against malaria
[5]. Methylene Blue (MB), the most used phenothiazinium
dye, has been applied against malaria since the XIX century,
representing the first report of treatment with a synthetic
molecule [6]. Due to the reversible side effects (green sclera
and urine), MB was replaced by alternative antimalarial
molecules, such as quinine, artemisinin, and chloroquine
[7]. Nowadays MB has been revived for control of malaria,
cancer, cyanide poisoning, and methaemoglobinaemia and
recently in the treatment of patients with Alzheimer’s disease
[8].

In this study, we evaluated the potential of the phe-
nothiazinium dyes for the control of T. cruzi in vitro. We
also determined several synergic formulations composed by
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phenothiaziniumdyes and/or Benznidazole. ROSproduction
and mitochondrial activity in treated cultures were assayed
by flow cytometry, in order to investigate some aspects of the
mechanism of action of phenothiazinium dyes in T. cruzi.
The screening of low-cost compounds is a key factor for the
control of the Chagas disease in endemic regions, most of
them being in a delicate economic state.

2. Material and Methods

2.1. T. cruzi Culture. T. cruzi (Tulahuen strain) was main-
tained in cultures of LLCMK2 cells and cultivated in RMPI
supplemented with 10% fetal bovine serum (FBS) at 37∘C, 5%
CO2. The parasites used in proliferation and flow cytometry
assays were genetically modified to express the enzyme 𝛽-
galactosidase (T. cruzi-LacZ [9]). To illustrate the inhibition
of parasite proliferation, a T. cruzi expressing GFP (G-GFP
strain [10]) was used.

2.2. Compounds. Methylene Blue (MB), NewMethylene Blue
(NMB), Toluidine Blue O (TBO), and 1,9–Dimethyl Methy-
lene Blue (DMMB) were purchased from Sigma-Aldrich and
diluted in PBS at 5mg/ml. Benznidazole (BZ) andMenadione
(MN) was purchased from Sigma-Aldrich and diluted at 5
mg/ml in dimethyl sulfoxide (DMSO).

2.3. Amastigote Growth Inhibition Assay. LLCMK2 cells were
distributed in 96-well plates (5×104 cells/ml) and infected
with T. cruzi-LacZ at a multiplicity of infection (MOI) of
10:1 (5×105 cells/ml). The cultures were incubated for 48 h,
37∘C, and 5%CO2 andwashedwith phosphate buffered saline
(PBS). Serial dilutions of compounds (starting from 10𝜇M) in
RPMI were added to the cultures in duplicate and incubated
for 72 h, 37∘C,and 5% CO2. For the drug combination assay,
fractioned dilutions (2× IC50, 1.6× IC50, 1.3× IC50, 0.7× IC50,
0.5× IC50, and 0.2× IC50) of single and combined compounds
[11] were added to the infected cultures and incubated under
the same conditions. We considered 8 𝜇M, 1 𝜇M, 0.05 𝜇M,
0.7 𝜇M, and 0.04 𝜇M as 2 × IC50 for BZ, MB, NMB, TBO,
and DMMB, respectively. After incubation, the media were
removed and followed by the reactionwith chlorophenol red-
𝛽-D-galactopyranoside (CPRG) buffer (200 𝜇M CPRG, 2%
Trion X-100, and 50 mM MgCl2 in PBS) for 4 h, 37∘C. The
plates were read at 570 nm in ELISA reader (Synergy� H1,
Biotek). Three independent assays were performed.

2.4. FluorescenceMicroscopy. LLCMK2 cells (2 × 103 cells per
well) were cultivated in 96-well, black, flat-bottomed plates
for 6 h, 37∘C, and 5% CO2. The plate was washed with PBS
and the cells were infected with T. cruzi (G-GFP strain) at
a multiplicity of infection (MOI) of 5:1 (1×105 cells/ml). The
cultures were incubated for 24 h, 37∘C, 5% CO2, and the wells
washed 3 times with PBS in order to remove noninternalized
parasites. Subsequently, IC50 concentrations of MB, NMB,
TBO, DMMB, and BZ were added to the cultures and
the plates were incubated for 72 h, 37∘C, and 5% CO2.
Infected and nontreated and noninfected cells were used as
negative controls and positive controls, respectively. After the

incubation, the plates were fixed with 4% paraformaldehyde
for 20 minutes, followed by washing with PBS. The nucleus
of host cells was stained with 0.25 𝜇M 4�耠,6-diamidine-2�耠-
phenylindole dihydrochloride (DAPI) (Ex/Em = 340/488
nm) and theGFPT. cruzi parasites were detected by the green
florescence (Ex/Em= 488/510 nm).The images were acquired
in an Image Xpress Micro XLS Widefield High-Content
Analysis System from Molecular Devices. The system also
calculated the percentage of inhibition compared to the
nontreated control. This was done using the number of
intracellular amastigotes in twenty-five images obtained for
each well.

2.5. Cytotoxicity. The cytotoxic effects of the phenoth-
iazinium dyes in LLCMK2 cells was measured by Thiazolyl
Blue Tetrazolium Bromide (MTT) assay, as described in
[12]. A suspension of LLCMK2 cells (5 × 104/ml) in RPMI
supplemented with 10% FBS was distributed in 96-well plates
and cultivated (37∘C, 5% CO2) to the confluence. The media
were discarded and serial dilutions of the compounds were
added (starting from 100 𝜇M) in duplicate. The cultures were
incubated for 72 h, 37∘C, and 5% CO2. For the measurement
of the cellular esterase activity, the media were carefully
removed and anMTT solution (500 𝜇g/ml MTT in PBS) was
added. The reaction was performed for 4 h at 37∘C, 5% CO2.
After the reaction, the MTT solution was discarded and the
formazan crystals solubilized with DMSO. The absorbance
was measured in an ELISA reader (Synergy� H1, Biotek) at
570 nm.

2.6. ROS Measurement and Evaluation of Mitochondrial
Membrane Potential Status. LLCMK2 cells in 75 cm2 flasks
were cultivated to confluence and were infected with 1 ×
107 T. cruzi trypomastigotes. The cultures were cultivated
for 6 days when free trypomastigotes were observed in the
supernatant. The infected cells were centrifuged for 10 min,
3000 g, and washed with PBS and suspended in trypsin to
separate cells and parasites. The cultures were distributed
in 1.5 ml microtubes (∼ 1 × 106 trypomastigotes/tube) and
incubated with 4 × IC50 of compounds at 37∘C, 5% CO2 for
2 h. Menadione (MN), a classic inducer of cellular oxidative
stress [13], was used as the positive control of ROS production
as previously described in [14]. After treatment, the cultures
were centrifuged for 10 minutes, 3000 g, and washed with
PBS and suspended in trypsin. The ROS measurement was
performed after incubationwith 5 𝜇M2,7–dichlorofluorescin
diacetate (DCFDA) for 15 minutes at room temperature in
the dark. Similarly, the mitochondrial membrane potential
was determined after incubation with 5 𝜇M JC-1 under the
same conditions. JC-1 is a cationic dye that accumulates in
activemitochondria. In low concentrations, the dye exhibits a
green fluorescence. In polarizedmitochondria, the dye forms
J-aggregates, emitting red fluorescence. The cultures were
washed with PBS and analyzed in a BD FACS-Canto (BD
Biosciences) flow cytometer with the FACSDiva (BD) 6.1.3
software. Due to the size, host cells (infected and nonin-
fected) and trypomastigotes were separately analyzed by flow
cytometry [11]. The median of fluorescence of oxidized DCF
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and the populations with activemitochondria weremeasured
with excitation/emission at 488 nm/529 nm and 488 nm/529
nm, respectively.The percentage of DCF fluorescence or cells
with polarized mitochondria was calculated in relation to the
respective nontreated controls.

2.7. Statistical Analysis. The percentages of proliferation and
cytotoxicity were calculated using the mean absorbance of
the compound-free control and the absorbance of each treat-
ment.The IC50 and the combination index (CI)were achieved
using Compusyn software (http://www.combosyn.com/) and
the selective index (CC50/IC50) was also determined. From
CI values, synergistic (CI < 1), and antagonistic (CI >
1) interactions were identified [15]. For oxidative stress
and mitochondrial activity, data were analyzed by one-way
ANOVA followed by a Dunnett’s post hoc test (compared to
nontreated groups) on GraphPad 5.0 software.

3. Results and Discussion

3.1. PhenothiaziniumDyes Inhibit the Amastigote Proliferation
at Low Concentrations. The phenothiazinium dyes inhibited
the amastigote proliferation at low concentrations. The MB,
NMB, TBO, and DMMB IC50 concentrations were lower
compared to BZ (3.41 𝜇M), reaching 0.44 𝜇M, 0.09 𝜇M,
0.27 𝜇M, and 0.08 𝜇M, respectively (Table 1). Moreover, a
similar inhibition pattern between BZ and phenothiazinium
dyes was observed using high-content screening analysis
by amastigotes counting (Figure 1). At IC50 concentrations
(Table 1) all tested compounds partially inhibited parasite
proliferation (Figures 1(c), 1(d), 1(e), 1(f), 1(g), and 1(h)),
compared to the nontreated control (Figure 1(b)). However,
the phenothiazinium dyes demonstrated higher cytotoxicity
(lower CC50) in relation to BZ (> 200 𝜇M) wherein MB,
NMB, TBO, and DMMB inhibited the host cell reductases
at 16.82 𝜇M, 4.19 𝜇M, 7.93 𝜇M, and 4.46 𝜇M, respectively.
Despite the relative higher host cell toxicity, the selective
index (SI) was above 25, which is adequate compared to
the index recommended for candidate drugs for Chagas
disease control. In drug screening procedures againstT. cruzi,
an SI > 10 is recommended for candidates with potential
for use in in vivo and clinical assays [16, 17]. Moreover,
MB has been successfully applied against malaria and to
treat methemoglobinemia with few cases of toxicity [18, 19],
reinforcing its potential use as anti-T. cruzi compound in
further assays.

3.2. Phenothiazinium Combinations Are Synergic against
Amastigotes In Vitro. The combination of compounds has an
important potential for the control of the Chagas disease.
Several combinations of BZ with Itraconazole, E1224 (ravu-
conazole prodrug), and ketoconazole have demonstrated
improved anti-T. cruzi pattern compared to the single treat-
ments [20–22]. The main aim of combinations with BZ
is the decrease of dosages allied to the alleviation of side
effects, which allow longer-term treatments. However, the
combinations of phenothiaziniumdyeswith BZ resulted in an
antagonist effect (CI > 1), despite the elevation of the parasite

inhibition, mostly at lower concentrations (Figures 2(a), 2(b),
2(c), 2(d), and Table 2). However, the combinations among
phenothiazinium dyes were synergic against amastigotes
(except MB + DMMB), improving the parasite inhibition in
all concentrations analyzed (Figures 2(e), 2(f), 2(g), 2(h), 2(i),
and 2(j)). The CI of MB + NMB, MB + TBO, MB + DMMB,
NMB + TBO, NMB +DMMB, and TBO +DMMBwere 0.90,
0.89, 1.05, 0.74, 0.80, and 0.42, respectively (Table 2). The CI
values probably indicate some differences in mechanisms of
action among the phenothiazinium dyes. For example, the
combinations containing TBO demonstrated the lowest CI
values, probably due to low structure similarity with other
dyes. In contrast, MB and DMMB are structurally similar,
which reflected in an antagonist pattern when combined
(Table 2). However, TBO demonstrated a high IC50 (com-
pared to NMB or DMMB), which may affect negatively
further in vivo treatments. Therefore, a wide and complex
strategy for in vivo procedures is demanded, once there
are multiple combinations and treatment regimens (acute,
chronic, and pregnant models) to test.

3.3. Phenothiazinium Dyes Increase ROS in Treated Cells and
Trypomastigotes. The literature is contradictory regarding
the role of ROS produced by the host cell during T. cruzi
infection. Several studies have implicated the host cell res-
piratory burst in controlling the infection [23, 24]. Others
have reported a positive correlation between ROS production
by the host and parasite proliferation [25, 26]. Also, when
a sublethal hydrogen peroxide concentration was added to
a T. cruzi infected culture, parasite proliferation increased
[27]. Our results show increased ROS production in T. cruzi
infected cells (untreated) when compared to noninfected
cells (Figure 3(a)), corroborating an effect also observed for
proliferating bacteria [28], fungi [29], viruses [30, 31], and
Leishmania [32]. Despite the efficient antioxidant machinery
[33], we observed increased ROS production in T. cruzi
trypomastigotes after treatment with phenothiazinium dyes
(Figure 3(b)). This effect was similar to the one observed for
MN a classic inducer of oxidative stress [13]. On the other
hand, no ROS production was detected in trypomastigotes
treated with BZ. Although BZ induces the production of
free radicals and electrophilic metabolites after the reduction
of its nitro group, no ROS is produced in treated parasites
[34].We have observed that treatment with phenothiazinium
dyes (and to a lesser extent BZ and MN) increased ROS
production in noninfected cells (Figure 3(b)). In contrast,
treating T. cruzi infected cells with phenothiazinium dyes
decreased ROS production (Figure 3(b)). Indeed, Methylene
Blue scavenges ROS in several biological models such as
skin and HT-22 cells, elevating oxygen consumption and
mitochondrial activity [35–37]. Because T. cruzi proliferation
is stimulated by ROS production [27], we speculate that
scavenging of such ROS by phenothiazinium dyes impairs
parasite proliferation. However, for the complete elucidation
of the roles of phenothiazinium dyes in ROS scavenging,
complementary assays will be required in further studies. As
an example, the ability of phenothiazinium dyes to scavenge

http://www.combosyn.com/
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Figure 1: Detection of T. cruzi in cultures treated with phenothiazine dyes or Benznidazole. T. cruzi was added to LLCMK2 cell monolayers
and cultivated for 24 h, 37∘C, 5% CO2. After washing with PBS, the T. cruzi cultures were incubated with the IC50 concentrations of MB (0.45
𝜇M), NMB (0.09 𝜇M), TBO (0.28 𝜇M), DMMB (0.08 𝜇M), and BZ (3.5 𝜇M) for 72 hours, 37∘C, and 5% CO2. The controls were composed
by noninfected (negative control) or infected and nontreated cells (positive control) and cultivated at the same conditions. After treatment,
the cultures were fixed with 4% paraformaldehyde for 20 minutes and washed with PBS and then the cell nucleus was stained with DAPI
(Ex/Em = 340/488 nm). The parasites were detected by the emission of green fluorescence (Ex/Em = 488/510 nm). All figures were captured
and analyzed in an Image Xpress Micro XLS Widefield High-Content Analysis System from Molecular Devices. The system also calculated
the number of amastigotes in twenty-five images/well (x400). (a) Noninfected control. (b) Infected and nontreated control. (c), (d), (e), (f),
and (g) Infected cultures treated withMB, NMB, TBO, DMMB,and BZ, respectively. (h) Percentage of inhibition compared to the nontreated
control.

Table 1: In vitro 𝐼𝐶50 and toxicity ofMB, NMB, TBO, andDMMB to T. cruzi amastigotes and LLCMK2 cells.Themolecular weight (MW), IC50,
CC50, and selectivity index (SI) were calculated forMB, NMB, TBO, DMMB, and BZ on T. cruzi and LLCMK2 cells. Amastigotes or LLCMK2
cells were incubated for 72 hours, at 37∘C, with 5% CO2, and the proliferation (amastigotes) or toxicity (LLCMK2 cells) was measured after
CRPGorMTT assays, respectively.The percentage of inhibitionwas calculated in comparison to the nontreated controls in three independent
assays.

Compound MW IC50 𝜇M CC50 𝜇M SI

MB
N

N

NS+

319.85 0.44 ± 0.15 16.82 ± 1.18 37.40

NMB

N

NN
H H

S+

347.91 0.09 ± 0.01 4.19 ± 1.30 44.71

TBO

N

N S+
2NH

305.83 0.27 ± 0.11 7.93 ± 5.22 28.61

DMMB

N

N NS+

416.05 0.08 ± 0.02 4.46 ± 0.23 51.26

BZ

NN
N

H

2NO
O

260.25 3.41 ± 0.38 > 200 > 58.65
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Figure 2: Inhibitory activity of phenothiazinium dyes combinations against T. cruzi. Amastigotes were incubated with seven dilutions (2 ×
IC50, 1.6 × IC50, 1.3 × IC50, 0.7 × IC50, 0.5 × IC50, and 0.2 × IC50) of MB + BZ (a), NMB + BZ (b), TBO + BZ (c), DMMB + BZ (d), MB + NMB
(e), MB + TBO (f), MB + DMMB (g), NMB + TBO (h), NMB + DMMB (i), TBO + DMMB (j), and the proliferation measured after CPRG
assay. As references, isolated compounds of each combination were evaluated concomitantly in the same plate.The inhibition percentage was
calculated in comparison to the nontreated group and the IC50 and CI values were achieved using Compusyn software.

ROS may be compared to that of Trolox (6-Hydroxy-2,5,7,8-
tetramethylchromane-2-carboxylic acid), a well-established
ROS scavenger [38, 39].

3.4.Mitochondria of Trypomastigotes Are Sensitive to Phenoth-
iazinium Dyes. All noninfected and infected LLCMK2 cells
are positive to JC-1 accumulation, indicating the presence
of active mitochondria. However, 22% of trypomastigotes
were negative to mitochondrial polarization (Figure 4(a)).
Moreover, phenothiazinium dyes decreased mitochondrial
membrane potential in trypomastigotes, whereas the infected
and noninfected cells were unaffected by incubation with
the compounds (Figure 4(b)). Also, BZ and MN displayed
distinct effects on the mitochondrial membrane potential
of trypomastigotes. The former did not affect mitochon-
dria whereas the latter reduced the membrane potential
(Figure 4(b)). It was previously observed that BZ elevates

free radical production and causes DNA damage without
affecting mitochondria [40]. The effect of phenothiazinium
dyes on trypomastigotes was similar to that observed for MN
(Figure 4(b)), a classic mitochondrial inhibitor [41]. Thus,
the increment of ROS observed in trypomastigotes under
treatment with dyes may be a consequence of mitochondrial
depolarization. Moreover, decreased mitochondrial activity
may be also related to the ROS impairment production
in infected cells treated with phenothiazinium dyes. Drugs
that alter the mitochondrial activity usually lead to loss of
parasite ATP production and induction of apoptosis [42].
For example, MB improves mitochondrial respiration in cells
[35, 43], decreasing ROS in cardiac tissue from diabetic rats
[44].

We have observed that active and synergic combinations
of phenothiazinium dyes are effective in killing T. cruzi. Our
results also indicate the potential of phenothiazinium dyes as
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Figure 3: ROS detection in T. cruzi cultures treated with phenothiazinium dyes. T. cruzi cultures were incubated with trypsin and treated with
4 × IC50MB, NMB, TBO, DMMB, BZ, andMN for 2 hours, 37∘C, and 5% CO2. The cultures were washed with PBS and incubated with 5 𝜇M
DCFDA for 15 minutes in the dark. The samples were analyzed in a flow cytometer and the median intensity of fluorescence used for ROS
measurement.The control was composed of noninfected LLCMK2 cells processed under the same conditions.The percentage of fluorescence
(% DFC fluorescence) was calculated in relation to the nontreated control. (a) Median intensity of fluorescence from nontreated LLCMK2
cells and trypomastigotes. (b) Percentage of DCF fluorescence from LLCMK2 cells (infected and noninfected) and trypomastigotes treated
with phenothiazinium dyes, BZ, and MN.
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Figure 4:Mitochondrial activity of T. cruzi cultures treatedwith phenothiaziniumdyes. T. cruzi cultureswere incubatedwith trypsin and treated
with 4 × IC50MB, NMB, TBO, DMMB, BZ, andMN for 2 hours, 37∘C, and 5% CO2.The cultures were washed with PBS and incubated with 5
𝜇MJC-1 for 15minutes in the dark.The samples were analyzed in a flow cytometer and the positive red fluorescent cells (PE+ cells) determined.
The control was composed of noninfected LLCMK2 cells processed under the same conditions. The percentage of positive red fluorescent
cells (% PE+ cells) was calculated in relation to the nontreated control. (a) Positive red fluorescent cells from nontreated LLCMK2 cells and
trypomastigotes. (b) Percentage of positive red fluorescent cells from LLCMK2 cells (infected and noninfected) and trypomastigotes treated
with phenothiazinium dyes, BZ, and MN.
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Table 2: Values of inhibitory concentrations (𝐼𝐶50) and Combinatory Index of the phenothiazinium combinations.The IC50 concentrations of
the dyes alone and in combinations were calculated using the Compusyn software. The software was also used for the determination of the
CI between the combined compounds.

Combination
(compound 1 + 2)

IC50
(compound

1/𝜇M)

IC50
(compound

2/𝜇M)

IC50
(combination

compound 1/𝜇M)

IC50
(combination

compound 2/𝜇M)
CI

BZ + MB 3.315 0.477 2.262 0.291 1.29

BZ + NMB 2.937 0.100 2.091 0.056 1.26

BZ + TBO 3.024 0.380 2.259 0.178 1.40

BZ + DMMB 3.015 0.078 1.943 0.050 1.28

MB + NMB 0.560 0.112 0.247 0.051 0.90

MB + TBO 0.588 0.322 0.250 0.150 0.89

MB + DMMB 0.391 0.095 0.223 0.044 1.05

NMB + TBO 0.122 0.322 0.042 0.126 0.74

NMB + DMMB 0.101 0.071 0.034 0.033 0.80

TBO + DMMB 0.381 0.080 0.063 0.020 0.42

candidates for the control of T. cruzi. We speculate that phe-
nothiazinium dyes scavenge ROS during T. cruzi infection
thus reducing parasite proliferation. However, future assays
will be necessary to elucidate the mechanism. Furthermore,
the induction of apoptosis by disruption of mitochondrial
polarity should also be considered as a potential mechanism
operating in conjunction with the ROS scavenging by phe-
nothiazinium dyes. The present article opens the perspective
for the development of low-cost and active anti-T. cruzi
molecules, pivotal characteristics for the control of Chagas
disease in low-middle-income endemic regions.
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