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Abstract 23 

Glioblastoma is the most frequent malignant intra-cranial tumour. Magnetic resonance imaging is the 24 

modality of choice in diagnosis, aggressiveness assessment, and follow-up. However, there are 25 

examples where it lacks diagnostic accuracy. Magnetic resonance spectroscopy enables the 26 

identification of molecules present in the tissue, providing a precise metabolomic signature. Previous 27 

research shows that combining imaging and spectroscopy information results in more accurate 28 

outcomes and superior diagnostic value. This study proposes a method to combine them, which builds 29 

upon a previous methodology whose main objective is to guide the extraction of sources. To this aim, 30 

prior knowledge about class-specific information is integrated into the methodology by setting the 31 

metric of a latent variable space where Non-negative Matrix Factorisation is performed. The former 32 

methodology, which only used spectroscopy and involved combining spectra from different subjects, 33 

was adapted to use selected areas of interest that arise from segmenting the T2-weighted image. Results 34 

showed that embedding imaging information into the source extraction (the proposed semi-supervised 35 

analysis) improved the quality of the tumour delineation, as compared to those obtained without this 36 

information (unsupervised analysis). Both approaches were applied to pre-clinical data, involving 37 

thirteen brain tumour-bearing mice, and tested against histopathological data. On results of twenty-eight 38 

images, the proposed Semi-Supervised Source Extraction (SSSE) method greatly outperformed the 39 

unsupervised one, as well as an alternative semi-supervised approach from the literature, with 40 

differences being statistically significant. SSSE has proven successful in the delineation of the tumour, 41 

while bringing benefits such as 1) not constricting the metabolomic-based prediction to the image-42 

segmented area, 2) ability to deal with signal-to-noise issues, 3) opportunity to answer specific questions 43 

by allowing researchers/radiologists define areas of interest that guide the source extraction, 4) creation 44 

of an intra-subject model and avoiding contamination from inter-subject overlaps, and 5) extraction of 45 

meaningful, good-quality sources that adds interpretability, conferring validation and better 46 

understanding of each case.  47 
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Introduction 48 

Magnetic Resonance (MR) is widely used for non-invasive investigations of brain tumours, in particular 49 

in vivo diagnosis and grading, surgical planning and assessment of response to therapy. It is generally 50 

applied as MR imaging (MRI), see Fig 1(a), which provides a morphologic characterisation of tissues, 51 

and it is the modality of choice in diagnosis, aggressiveness assessment and follow-up. However, there 52 

are examples (i.e. malignant gliomas) where current imaging techniques lack diagnostic accuracy [1]. 53 

In contrast, MR spectroscopy (MRS) provides biochemical information, resulting in a precise 54 

metabolomic signature of the target tissue, which enables the identification of a wide array of molecules 55 

present in tissues. MR spectroscopic imaging (MRSI), see Fig 1(b and c), produces a spatial distribution 56 

of these metabolomic profiles, and thus delivers information about the spatial localisation of molecules 57 

[2,3]. Typically, an MRSI acquisition of the brain consists of a spectral grid of varying dimensions (e.g. 58 

10-by-10, 12-by-12) superimposed on the image, covering only a part of the full image.  59 

 60 

Fig 1. Two Magnetic Resonance approaches, MRI and MRSI, acquired in a murine glioblastoma model. a) 61 

Region of interest of the MRI. b) 10-by-10 MRSI grid of voxels, showing the metabolic composition of the tissue 62 

at voxel level. c) MRSI grid superimposed on the MRI image. d) MRS example of the non-tumour area of this 63 

mouse, indicating the position of a number of relevant metabolites: choline (Cho), creatine (Cr) and N-acetyl 64 

aspartate (NAA). e) MRS example of the non-tumour area of this mouse, including lactate/mobile lipids 65 

(Lac/ML), and highlighting the changes that occur to these relevant metabolites. 66 

Glioblastoma (GB) is the most frequent malignant intra-cranial tumour, having a very poor prognosis. 67 

Currently there is no cure for the disease. The standard treatment is surgery, with the aim of maximal 68 

safe tumour removal, followed by radio- and chemotherapy [4]. Despite this, due to the infiltrative 69 

nature of GB it is not always possible to assess the true degree of infiltration for a total tumour resection 70 

using conventional MRI [5]. Additionally, chemo- and radiotherapy only provide a small increase in 71 

the overall survival [6]. Eventually, most patients end up relapsing, and when this happens, they may 72 

be offered the possibility of starting with either second-line or experimental treatment approaches. One 73 
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of the problems at this stage is the early assessment of progression using non-invasive methods such as 74 

MRI, which may be inaccurate for some patients (e.g. distinguishing true progression from pseudo-75 

progression [7]). In this sense, non-invasive tools able to accurately distinguish the compromised area, 76 

which in turn would allow early prediction of relapse, would be of maximal benefit.  77 

Pattern recognition and machine learning methods have been extensively applied to MR data of brain 78 

tumours, to assist with different clinical issues, from diagnosis and prognosis of several pathologies, to 79 

delineation of tumour masses [8–11]. Most studies have been performed on single-voxel MRS [12–16], 80 

where a single spectrum is acquired from the pathological area. Even though substantial advances have 81 

been achieved, there are still challenges from the methodological point of view that need to be 82 

addressed. One of them is the ability to combine, in a principled manner, information from two different 83 

MR approaches such as images and spectra. As can be seen in Fig 1, the resolution of the MRSI (i.e. 84 

number of voxels of each acquisition) is considerably lower than the resolution of the MRI, which is at 85 

the pixel level. This combination of MR images and spectra poses an important challenge, as it is 86 

necessary to deal with different types of signals that also have different resolutions [17,18]. 87 

In biomedical research, animal (preclinical) models are useful for testing new drugs or treatments. One 88 

of the main advantages is the possibility of performing post-mortem studies – for example in the case 89 

of brain studies, to excise the whole brain and perform a detailed histopathological analysis. This allows 90 

the validation of imaging techniques and mathematical analyses or transformations of those, in contrast 91 

to patient studies, in which such validation approaches are not feasible due to obvious ethical 92 

restrictions. 93 

The clinical value of a multivariate statistical analysis based on multiparametric MRI and MRSI for the 94 

non-invasive analysis of brain tumours has been previously assessed in a number of publications, such 95 

as [9,10,19]. They show that results combining MR approaches are more accurate and have superior 96 

diagnostic value compared with single approach. Most of those works used supervised mathematical 97 

models that explicitly require class information, i.e. tumour type and grade. This is often achieved in an 98 

ad-hoc manner by concatenating or mixing selected characteristics from each approach (that can be MR 99 

images and spectra), such as in [3,20,21]. A more recent study [22] makes use of Structured Data Fusion 100 
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(SDF) [23], which could be potentially used for a more appropriate coupling of the information by 101 

joining the factors that are obtained in the factorisation process. However, authors in [22] do not seem 102 

to have used SDF in that way, but instead chose to concatenate the information as in the aforementioned 103 

studies. Providing multiparametric MRI and MRSI approaches in a principled manner may help to 104 

overcome the instability in the tissue segmentation that may arise from intrinsic mixing in data space. 105 

Therefore, the purpose of our study was to develop a new methodology for embedding morphological 106 

information from MR images into the MRSI analysis of brain tumours in animal models, using a Semi-107 

Supervised approach to Source Extraction (SSSE). We applied this approach to retrospective MR data 108 

from an orthotopic murine GB model (GL261 GB growing into C57/BL6 mice), widely used in 109 

preclinical research, which mimics most of the human GB features [24]. In order to validate the 110 

MRI+MRSI fusion, preclinical data allowed us to assess the quality of the tumour segmentation in 111 

comparison to a third, independent technique (histopathology). We applied our methodology to both 112 

control and treated tumour-bearing mice. 113 

Materials and methods 114 

Ethics Statement 115 

No ethics approval was required for the current retrospective study. All studies with mice were approved 116 

previously by the local ethics committee [Comissió d’Ètica en l’Experimentació Animal i Humana 117 

(CEEAH). Available: http://www.uab.cat/etica-recerca/. Last accessed 29/06/2018], according to the 118 

regional and state legislation (protocol DARP-3255/CEEAH-530). Mice were periodically subjected to 119 

welfare inspections to check for any early symptoms of suffering and an objective scale for signs and 120 

symptoms was established. Mice were obtained from Charles River Laboratories (France) and housed 121 

at the animal facility of the Universitat Autònoma de Barcelona (Servei d’Estabulari). 122 

http://www.uab.cat/etica-recerca/
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MR studies 123 

MR studies were carried out at the joint nuclear MR facility of UAB and CIBER-BBN, Unit 25 of 124 

NANBIOSIS (www.nanbiosis.es), with a 7 Tesla horizontal magnet (BioSpec 70/30, Bruker BioSpin, 125 

Ettlingen, Germany). Details of the acquisition parameters can be found in the Supporting Information 126 

file. 127 

MRSI data were processed as described in [25,26]. The MRSI data grid was formed by an array of 128 

10×10 voxels (MR spectrum from each voxel contained 692 data points), with an in-plane resolution of 129 

0.55×0.55 mm and a 1 mm slice thickness in the 3rd dimension [25]. This volume of interest was 130 

manually positioned approximately in the centre of the brain, based on the reference image, in a way 131 

that it would include most of the tumour mass and also part of the normal/peritumoural brain 132 

parenchyma. 133 

The study was performed on retrospective data already acquired. Only the spectral information (MRSI) 134 

from these data had been used in previous pattern recognition studies [25–28], performed for other 135 

purposes. Reference T2w MRI for all mice had not been used previously in any of the analyses, except 136 

for providing the anatomic overlay for the MRSI data. This is the first time that the images (MRI) were 137 

also part of the pattern recognition analysis for these mice. 138 

Datasets 139 

Pre-treatment data for analysis of tumour vs. non-tumour (groups A and B) 140 

In this section, we describe the control (untreated) mice data that was used in this study to evaluate the 141 

ability of SSSE to delineate the tumour mass. This data is summarised in Table 1 and includes: 142 

A. MRI and MRSI (short TE, 12ms) data of six mice from [25]. The MRSI data in the mentioned 143 

study had been used for the purpose of discriminating the tumour from the healthy tissue, in a 144 

fully unsupervised way.  145 

http://www.nanbiosis.es/
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B. MRI and MRSI (short TE, 14 ms) data of five mice from [26,28]. The MRSI data in the 146 

mentioned studies had been used as control (untreated) group to assess response to therapy, in 147 

a semi-supervised way. 148 

Follow-up, longitudinal data for analysis of tumour vs. non-tumour (group 149 

C) 150 

In this section, we describe the follow-up, longitudinal data that was used in this study. This is data 151 

obtained from mice under temozolomide (TMZ) treatment with the administration schedule described 152 

in [28] and in the Supporting Information file. 153 

The aim was to assess SSSE’s ability to produce an accurate delineation of the tumour mass, as well as 154 

recognise the volume changes at different time points, and tumour response to therapy. This data is also 155 

summarised in Table 1 and includes:  156 

C. MRI and MRSI (short TE, 14 ms) data of two treated mice from [26]. Again, only the MRSI 157 

data had been used previously. For this study, we selected the two mice receiving treatment for 158 

the longest period from [26] (survival time of 45 and 34 days, and with 9 and 7 MR 159 

explorations, respectively). 160 

 161 

Table 1. Data used for analysis in this study. 162 

Group Analysis in previous 

studies 

References Unique ID of mice (D: day post-

inoculation) 

Number 

of mice 

A Performed on untreated 

cases 

[25,27] C69 (D: 15), C71 (D: 16), C32 (D: 16), 

C179 (D: 17), C233 (D: 17), C234 (D: 17) 

6 

B Performed on untreated 

cases 

[26,28,29] C255 (D: 14), C288 (D: 18), C520 (D: 18), 

C529 (D: 18), C583 (D: 18) 

5 

C Performed on treated cases, 

longitudinal study 

[26] C819 (D: 10, 15, 18, 21, 25, 30, 33, 41, 

45), C821 (D: 10, 15, 18, 21, 25, 30, 33) 

2 

This table includes the references to original studies with this data, unique ID of animals, and their number of 163 

individuals. 164 
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Histopathology 165 

After the MRSI study (or at after MRSI endpoint in the Group C cases), the animals were euthanised 166 

according to the ethics protocol by experienced personnel and the brains were collected and analysed 167 

by histopathology as described in [28]. Caspase 3 immunohistochemical staining was used for detecting 168 

apoptosis. Ki67 immunohistochemical staining was used to determine the spatial proliferating 169 

population of cells in each tumour mass [25,30], calculated as a proliferation index (PI). In this 170 

particular murine model, and according to the veterinary pathologist, PI > 30% would correspond to a 171 

safe threshold for identifying the solid tumour region, whereas a PI ≤ 5% would correspond to definitely 172 

non-tumour (excluding reactive gliosis and other phenomena). This is in agreement with other studies 173 

with murine glioma, in which a PI of 23.9% was found in tumour core, and 9.6% in tumour periphery 174 

[31]. 175 

The evaluation of necrosis was performed by the histopathologist on the haematoxylin and eosin stained 176 

slides. Different features were considered: isolated necrotic cells, moderate amounts of eosinophilic 177 

debris and large empty spaces. For each tumour, the percentage of the tissue section affected was semi-178 

quantified. When a tumour showed less than 20% of the mentioned necrotic features, a low grade of 179 

necrosis was assigned, while high grade of necrosis was assigned to those having more than 20% of the 180 

features. More details are included in [26]. 181 

Using all the available histopathological information such as Ki67 (which is information obtained a 182 

posteriori, or ex-vivo), the preclinical bioimaging expert produced a set of images with the aim of using 183 

them as the gold standard for this study. These images are compiled in Fig 2. 184 

 185 

Fig 2. Delineation of the tumour area used as gold standard in this study. Images were produced a posteriori 186 

by the preclinical bioimaging expert for Groups A (first row), B (second row), and C (third and fourth rows). Two 187 

versions, (a) and (b), are available for C179, to study the main tumour mass first, and the two masses later, 188 

considering they have different proliferation indices, i.e. the rostral mass (“secondary mass”) had a 5% < PI ≤ 30 189 
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while the caudal mass (“core mass”) had a PI > 30%. Additionally, for C819 at day 41, a second (blue) area was 190 

highlighted as abnormal. 191 

Non-negative Matrix Factorisation for source extraction 192 

In Non-negative Matrix Factorisation (NMF) methods [32,33] the non-negative data matrix X is 193 

approximately factorised into two non-negative matrices: the matrix of sources or data basis S and the 194 

mixing matrix H. The product of these two matrices provides an approximation to the original data 195 

matrix in the form X≈SH. There are different NMF variants, which mainly arise from using different 196 

cost functions for computing the divergence between X and SH. While NMF describes the observed 197 

data with positive-only mixtures of the latent variables or data sources, this does not apply to long echo 198 

times where spectral phase-related signal modulation frequently results in negative values in the lactate 199 

and alanine regions [12]. 200 

Convex Non-negative Matrix Factorisation (Convex-NMF) [34] is a variant of NMF that imposes a 201 

restriction over the source matrix S to be a convex combination of the input data vectors. This restriction 202 

significantly improves the quality of data representation of S. Unlike standard NMF, Convex-NMF 203 

applies to both nonnegative and mixed-signed data matrices. What this means in practice is that: a) the 204 

data are described by positive-only mixtures of the mixed-signed sources; and b) the sources, or latent 205 

variables, are also positive-only mixtures of the data. This makes it easier to interpret both the mixing 206 

and unmixing processes. 207 

Semi-supervised methodology for source extraction in MRSI data 208 

The semi-supervised methodology proposed in [13] involves three main stages and, in a nutshell, can 209 

be described as follows: 210 

a) Definition of a Fisher Information (FI) metric to model pairwise similarities and dissimilarities 211 

between data points, using a Multi-Layer Perceptron (MLP) classifier to estimate the 212 

conditional probabilities of class membership. 213 
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b) Approximation of the empirical data distribution in a Euclidean projective space in which we 214 

can apply NMF-based techniques. Multi-dimensional Scaling (MDS) is one of the algorithms 215 

proposed to do this mapping while retaining the distance structure generated by the FI matrix. 216 

c) Application of Convex-NMF for the source decomposition of the data, which includes the 217 

identification of the underlying sources and the calculation of the corresponding mixing matrix. 218 

This semi-supervised methodology was previously applied to single-voxel data in [13], and multi-voxel 219 

data in [26], although in a slightly different way. Both studies involved using the labels provided by 220 

experts and combining spectra from different subjects to create a training dataset in which the sources 221 

were extracted. 222 

Proposed methodology to embed MRI information into the source 223 

extraction 224 

The proposed methodology, SSSE, builds upon the semi-supervised method proposed in [13] for the 225 

extraction of relevant sources, which guides the source extraction in the direction of provided class 226 

labels. In this new approach (see Fig 3), instead, we use the areas that arise from segmenting the MRI 227 

(i.e. T2w images), hence using the normal parenchyma/peritumoral/ventricle/tumour structures 228 

identified by MRI. We recommend this initial segmentation of the image to be performed manually by 229 

a researcher (e.g. radiologist, clinician, data analyst, etc.), but other automatic approaches can also be 230 

considered. 231 

 232 

Fig 3. Diagram of SSSE. Details of the methodology proposed in this study for an extraction of sources in a semi-233 

supervised way, informed by knowledge hauled out from the T2w MRI. 234 

Importantly, the semi-supervised nature of the proposed methodology has the benefit that it allows using 235 

only partial regions, so that areas of uncertainty can be left outside the initial segmentation, while 236 

allowing for concentration on the areas of maximum interest.  237 



11 

 

Following the initial selection of the areas of interest (or segmentation), we compute the posterior 238 

probability of each class (or segmented region) for each pixel. As mentioned previously, our choice of 239 

estimator of these probabilities, p(c|x), is a Multi-Layer Perceptron (MLP), which is a feed-forward 240 

artificial neural network. This is a semi-parametric non-linear probabilistic model of class membership, 241 

for which a FI metric can be derived [35]. The parameters of the MLP were set as follows: We used 242 

one hidden layer of 6 nodes plus the output layer. The initial weights and bias were generated randomly 243 

in the interval [-1, 1], the learning rate was set to 0.05, the momentum constant to 0.9, and weight decay 244 

regularization was used to limit the size of the weights (lambda constant set to 0.01), which should 245 

encourage the creation of simpler models with better generalisation capabilities. We sought model 246 

convergence by allowing the MLP to iterate over a number of iterations (maximum epochs of 2000), 247 

until the error was smaller than 5e-3. The models were trained using 75% of the instances for training 248 

and the rest for test. 249 

After calculating the posterior probability of each class for each pixel, as the resolution of the T2w 250 

image is higher than the one of the MRSI, we implement a voting system to bring the resolution of the 251 

T2w image down to the spectroscopic imaging. Then, we train the neural network model using the 252 

spectra from the MRSI and the labels provided by the segmentation, targeting the computed posterior 253 

probability of each class. From this point onwards, the rest of SSSE is similar to the semi-supervised 254 

methodology proposed in [13], but applied intra-subject (i.e. to an individual mouse) as opposed to a 255 

number of them (as in our previous study [13]). Final resulting maps with the produced segmentations 256 

were linearly interpolated to bring them to the resolution of the image, as in [25].  257 

It is important to stress that SSSE was designed to create a model of an individual case, as the purpose 258 

was to better understand and reflect the characteristics of each single patient. Hence, in order to avoid 259 

contamination from inter-subject overlaps, SSSE does not involve combining spectra from different 260 

subjects, thus focusing on intra-subject variation. What this means in practice is that every single case, 261 

Ci, was studied independently from the others (even excluding information from the same case acquired 262 

on a different day). From this data of case Ci, a proportion (detailed previously) was used for the initial 263 
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training step as required by the methodology, and from there the rest of the proposed pipeline is 264 

unsupervised. 265 

Evaluation of the results 266 

To evaluate whether embedding information from the MRI into the data source extraction improves the 267 

quality of the tumour delineation, we compare SSSE segmentations with the ones obtained without 268 

prior knowledge (Convex-NMF). We also compared SSSE with the approach proposed by Sauwen et 269 

al. in [22], as they both bear some similarities in their aim to propose a semi-supervised / semi-270 

automated method for the segmentation of brain tumours. For the latter comparison, some 271 

considerations had to be made to allow for a fair comparison of both methods (please see details in the 272 

Supporting Information file). The three approaches will be tested against the gold standard (see Fig 2, 273 

and the Histopathology section for more details). 274 

As measures used for comparison, we start by calculating the sensitivity and specificity of detecting the 275 

tumour regions. The sensitivity, or true positive rate, is calculated as TP/(TP+FN), where true positive 276 

(TP) are tumour pixels correctly labelled as tumours; and false negative (FN) are the tumour pixels 277 

labelled as non-tumours. The specificity, or true negative rate, is calculated as TN/(TN+FP), where true 278 

negative (TN) are the non-tumour pixels correctly identified as non-tumours, and false positive (FP) are 279 

the non-tumour pixels labelled as tumours. A related measure frequently used in this area [36] for 280 

comparing the similarity of two samples is the Dice score coefficient (DSC), also known as the 281 

Sørensen–Dice coefficient [37], in order to show the effectiveness and robustness of proposed approach. 282 

This is calculated from the values of TP, FP and FN, as follows: 283 

𝐷𝑆𝐶 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (1) 

As an overlap-based metric such as DSC can be dependent on the segmentation size, we also calculate 284 

two distance-based metrics: the Euclidean distance, and the Hausdorff distance. These distances were 285 

calculated between each of the resulting images and the corresponding one from the preclinical 286 

bioimaging expert, considered the gold standard in this study. The purpose was to determine how far 287 



13 

 

(based on these distances) from the gold standard was the estimation of the tumour area when using 288 

each of the benchmarked approaches (i.e. Convex-NMF, Sauwen’s and SSSE). 289 

The Euclidean distance was calculated as in [38]. Hence, a pair of images E (estimated) and G (gold 290 

standard) having feature vectors fE and fG, respectively, have the following distance: 291 

Euc_dist(E, G) =  √∑ (fi
E − fi

G)
2n

i=1
 (2) 

Where n is the number of voxels in the images. The distance between two identical images is zero, i.e. 292 

Euc_dist(G,G)=0; and the larger the value (distance), the bigger the difference between them. 293 

Turning the distance measure into a shape similarity score that is easier to interpret, we calculated then 294 

the number of pixels that match values in the two images with reference to the total number of pixels, 295 

giving us a percentage of success. 296 

The Hausdorff distance, in turn, measures how far two sets of points are from each other and was used 297 

here to measure the most mismatched tumour delineation between the three segmentations (Convex-298 

NMF, Sauwen’s and SSSE) with respect to the gold standard used. Let us consider BE and BG the 299 

boundaries of the tumour areas of the estimated and the gold standard images, respectively, of which 300 

we want to calculate the Hausdorff distance. It was then calculated as follows: 301 

Haus_dist(BE, BG) = max {
𝑠𝑢𝑝

𝑒 ∈ 𝐵𝐸
 

𝑖𝑛𝑓
𝑔 ∈ 𝐵𝐺

𝑑𝑖𝑠𝑡(𝑒, 𝑔),
𝑠𝑢𝑝

𝑔 ∈ 𝐵𝐺
 

𝑖𝑛𝑓
𝑒 ∈ 𝐵𝐸

𝑑𝑖𝑠𝑡(𝑒, 𝑔)} (3) 

where sup represents the supremum and inf the infimum. This distance will be zero if and only if BE 302 

and BG have the same closure, i.e. both tumour areas are exactly the same. 303 

Finally, the Kruskal-Wallis test was used to determine whether the results between the three approaches, 304 

i.e. Convex-NMF, Sauwen’s and SSSE, were statistically significant. 305 
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Results 306 

The presentation of results is divided into two sections. Firstly, we show the results of applying SSSE 307 

to the mice in Groups A and B, which include untreated and treated cases, respectively; and to the mice 308 

in Group C, belonging to a longitudinal study with treated mice. (Please refer to Table 1 for more details 309 

and references to these groups). This is followed by the evaluation of the presented results at the end of 310 

this section. 311 

Brain tumour delineation 312 

Fig 4 shows that the sources obtained with the three approaches, for the different tissue types, are in 313 

some cases very similar to the naked eye, which is backed by correlations above 97% in most cases 314 

(e.g. comparing the red sources obtained with Convex-NMF, Sauwen’s approach and SSSE). However, 315 

even when subtle in some cases, these small differences between them are reflected in their 316 

corresponding colour-coded maps, indicating the tumour delineation. 317 

 318 

Fig 4. Results for the cases in Group A, for two classes. 319 

For mouse C179, we also extracted three sources, in order to check whether a higher number of sources 320 

could better represent its spatial heterogeneity – i.e. two tumour masses and three histologically 321 

different regions with PI ≤ 5% (normal brain), 5% < PI ≤ 30 (secondary mass) and PI > 30% (core mass) 322 

– see Fig 2. The results are presented in Fig 5. In this situation, both, the sources obtained and the 323 

resulting maps, were more visually different. For example, when comparing the red source (representing 324 

the main tumour mass) and the blue source (representing the non-tumour area) produced by SSSE with 325 

the equivalent sources produced by Convex-NMF, they showed high similarity between themselves 326 

(with a correlation of 97% for the main tumour mass and 95% for the normal tissue). However, the 327 

yellow source obtained was less similar (with a correlation of 93%). More importantly, these two sets 328 

of sources, i.e. red and yellow sources, were mainly representative of different areas of the brain, with 329 

Sauwen’s approach and SSSE providing a closer resemblance to the T2w image and the 330 
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histopathological PI values of each mass (see Fig 2) than Convex-NMF. The latter uses mainly the red 331 

source to represent both tumour masses, according to the preclinical bioimaging expert, and the yellow 332 

source is covering both the solid tumour area and the non-tumour area. 333 

 334 

Fig 5. Results for case C179 for three classes, from Group A. 335 

Fig 6 shows the results obtained for the cases in Group B. These results were in line to those from Group 336 

A (excluding a few cases such as the three sources calculated for mouse C179), in the sense that the 337 

sources were not strikingly visually different, except for case C583, in which both the unsupervised 338 

tumour (red) and normal (blue) sources corresponded to patterns that matched with low signal-to-noise 339 

spectra. This is a problem that has been encountered and characterised before [39]. In the case of the 340 

non-tumour (blue) sources, they differed more than the tumour (red) source between the two approaches 341 

in all five mice. 342 

 343 

Fig 6. Results for the cases in Group B, for two classes. 344 

Fig 7 compiles the resulting colour maps (tumour delineation) after applying Convex-NMF, Sauwen’s 345 

approach and SSSE to the two mice in Group C, at the different time points studied.  346 

 347 

Fig 7. Results for the cases in Group C, longitudinal study. Under each case there is a colour-bar showing the 348 

response stage determined by the RECIST criteria throughout the therapy protocol (orange means progressive 349 

disease, yellow stable disease and green partial response). At the bottom it is indicated when the three TMZ cycles 350 

were administered. 351 

These colour-coded maps show how the volume of the tumour mass in each mouse changes as a result 352 

of their response to the three cycles of therapy. The RECIST criteria [40], which provides an indication 353 

of the response evaluation criteria in solid tumours, was determined for these two mice throughout the 354 

course of the treatment [26].  355 
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The adapted RECIST criteria were applied for mouse C819 [26] and in results from day 10 to day 18, 356 

the tumour was considered to be at the stage of progressive disease. At day 21, it entered the stable 357 

disease stage, remaining in a transient response state until day 25, when tumour shrinkage indicated 358 

partial response to the therapy. At days 30 and 33 the tumour was considered to be again in a stage of 359 

stable disease, gradually halting its response to the therapy and starting to regrow/relapse. Finally, at 360 

days 41 and 45 the tumour was considered again to be at the stage of progressive disease. 361 

The adapted RECIST criteria for mouse C821 [26] indicated that the tumour was in the stage of 362 

progressive disease from day 10 to 21, in which the tumour grew from occupying ca. 15% of the area 363 

of the region of interest to nearly the 90% of it. This stage was followed by a short stable disease stage 364 

during days 30-35, followed again by another stage of progressive disease at the last day. A summarized 365 

explanation of the adapted RECIST criteria can be found in the Supporting Information file. 366 

Evaluation of the tumour delineation against the gold standard 367 

The results presented in the previous section for the three approaches were quantitatively evaluated 368 

using two main criteria: i) their ability to delineate the tumour regions (therefore discriminating the 369 

tumour from the non-tumour regions) with high sensitivity and specificity; and ii) their ability to 370 

produce colour-coded maps that are as close as possible to the gold standard (see Fig 2), which in this 371 

study, it is the set of images provided by the preclinical bioimaging expert (see more details in 372 

Histopathology and Evaluation of Results sections from Methods). 373 

Details of the sensitivity and specificity values corresponding to the ability of each approach to detect 374 

the tumour masses can be found in Tables A in S1 File (for Groups A and B), B in S1 File (for more 375 

details on mouse C179 from Group A), and C in S1 File (for Group C). These tables also include the 376 

Dice score coefficient calculated for the three methods against the gold standard. A summary of these 377 

results is presented in Table 2. 378 

Table 2. Overall sensitivity / specificity and Dice score of the correct delimitation of the tumour mass.  379 
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Groups Number 

of 

masses 

Sensitivity / Specificity Dice score 

Convex-

NMF 

Sauwen et al. SSSE Convex-

NMF 

Sauwen et 

al. 

SSSE 

A and B 1 0.90 ± 0.08 / 

0.68 ± 0.23 

0.90 ± 0.08 / 

0.76 ± 0.14 

0.94 ± 0.05 / 

0.82 ± 0.16 

0.82 ± 0.11 0.84 ± 0.09 0.90 ± 0.05 

A 

(C179) 

2 0.70 ± 0.42 / 

0.68 ± 0.04 

0.87 ± 0.18 / 

0.77 ± 0.11 

1.00 ± 0.00 / 

0.88 ± 0.05 

0.45 ± 0.05 0.63 ± 0.13 0.82 ± 0.04 

C 1 0.88 ± 0.17 / 

0.60 ± 0.17 

0.90 ± 0.08 / 

0.72 ± 0.13 

0.94 ± 0.10 

/ 0.81 ± 0.13 

0.76 ± 0.13 0.82 ± 0.12 0.89 ± 0.10 

Mean and standard deviation reported per group. First column indicates the group; second indicates the number 380 

of tumour masses; third to fifth columns include the sensitivity / specificity results for the three approaches, 381 

respectively; while sixth to eighth show their corresponding Dice scores. Shaded columns highlight the results 382 

obtained with SSSE. 383 

 384 

Next, we present the results of the Euclidean distance between each of the three methods to the gold 385 

standard, followed by a shape similarity score (see Evaluation of the results in the Methods section), 386 

and the Hausdorff distance between the same set of images. The results for the individual cases in 387 

Groups A and B are shown in Table S4; while the results for Group C can be seen in Table S5. A 388 

summary of them is presented in Table 3. 389 

Table 3. Overall Euclidean distance / shape similarity score (%) and Hausdorff distance. 390 

Groups Number 

of 

masses 

Euclidean distance / Shape similarity score (%) Hausdorff distance 

Convex-NMF Sauwen et al. SSSE Convex-

NMF 

Sauwen et al. SSSE 

A and B 1 99.72 ± 24.99 / 

79.07 ± 11.62 

84.19 ± 14.46 / 

85.72 ± 5.15 

73.88 ± 17.67 

/ 88.75 ± 5.43 

9.40 ± 1.35 8.22 ± 1.65 8.18 ± 1.49 

C 1 122.23 ± 34.23 

/ 73.14 ± 14.52 

102.41 ± 22.93 

/ 81.63 ± 7.57 

76.76 ± 27.32 

/ 88.98 ± 8.18 

10.22 ± 2.14 7.74 ± 1.80 6.61 ± 2.42 

Distances between the produced colour-coded maps (Convex-NMF, Sauwen’s and SSSE) and the expert’s (mean 391 

and standard deviation reported per group). Columns 1 and 2 as in Table 2. Third to fifth columns include the 392 

Euclidean distance and the shape similarity score for the two approaches, respectively; while sixth to eighth show 393 



18 

 

their corresponding Hausdorff distance. Shaded columns highlight the results obtained with the proposed 394 

methodology. 395 

The results presented in Tables S4 and S5 were tested for significance (comparing the three approaches 396 

against each other) using a Kruskal-Wallis test, to decide whether the population distributions are 397 

identical (null hypothesis) without assuming them to follow the normal distribution. They resulted in a 398 

p-value < 0.00001 (any p-value < 0.05 is deemed as significant). 399 

Discussion 400 

This section mirrors the structure of the Results section, to facilitate the discussion. 401 

Brain tumour delineation 402 

Starting with a discussion of the tumour delineation results for mice in Groups A and B, we can see that 403 

the high resemblance between the sources representing the same tissue type for each approach (Figs 4 404 

to 6), is generally because the areas that they are representing are largely the same. However, the 405 

seemingly small differences displayed between them have an important impact in the resulting colour-406 

coded maps. This is not surprising as we have seen this effect in the past where very small differences 407 

in the spectra led to the characterisation of the therapy response to temozolomide in preclinical 408 

glioblastoma in [26]. In this study, SSSE achieved a sharper delimitation of the tumour masses when 409 

comparing with Convex-NMF, probably due to the embedded information from the T2w image. 410 

Additionally, it is worth mentioning that the inclusion of the MRI information did not affect the 411 

biochemical interpretation of the sources, thanks to the way this information was embedded into the 412 

model. Moreover, SSSE outperformed its counterpart approach proposed by Sauwen et al. when used 413 

in equal conditions (i.e. same data), possibly because the initial information (labelling/segmentation) 414 

fed into SSSE is preserving better the spatial configuration of the information. 415 

Overall, for mice in Group A, SSSE and Sauwen’s approach provided a more meaningful representation 416 

than Convex-NMF. This is especially relevant for mouse C179. Metabolically, regarding the spectral 417 
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pattern represented, the yellow source obtained with Convex-NMF included metabolic features that 418 

would be expected both in tumour and non-tumour areas, such as high mobile lipids and high NAA, 419 

respectively. See relevant metabolites highlighted in Fig 1 d) and e). 420 

In contrast, for mouse C179, SSSE yielded a source (coloured in yellow) that was very similar to the 421 

red (tumour) source (Fig 5). The main difference between them was a higher peak signal from 422 

lipids/lactate in the red source, which matched with the increased proliferation and necrosis, and the 423 

higher choline to creatine ratio (3.21:3.03 ppm). The choline signal had the same intensity of the 424 

lipid/lactate signal (1.28/1.33 ppm) in the yellow source, which is indicative of an active tumour, in 425 

agreement with the intermediate proliferation indices that were recorded in the yellow region. This goes 426 

in line to what we know about this case: this would be indeed expected, as the PIs calculated in zones 427 

inside this secondary mass are indicative of tumour tissue, with PI values above 20%. This difference 428 

in the spectral patterns are probably responsible for the production of the three coloured regions that 429 

closely matched the three histologically different regions. In the case of Sauwen’s approach, the 430 

obtained results are not too far from those obtained by SSSE, which reinforces the value of using any 431 

available knowledge (in this case MRI information) from the case/patient to guide the source extraction 432 

in a semi-automated/semi-supervised way.  433 

Most importantly, in the case of Convex-NMF, when looking at the area in the colour-coded map that 434 

this yellow source is representing (Fig 5), it is considerably far from the secondary tumour mass and it 435 

is actually infiltrating non-tumour area in the bottom of the region of interest, which explains why this 436 

source exhibits some metabolic features of healthy tissue (see figure 11 available at [25]). The latter is 437 

an important result as it shows that with both semi-supervised approaches, the system can be guided to 438 

find a representation of the knowledge that the researchers would need modelling, giving them a tool 439 

for testing different hypotheses – when left free in a completely unsupervised approach, the result will 440 

not necessarily relate to anything of interest as they could be separating regions (e.g. artefacts, 441 

ventricles, noise, etc.) that might not be relevant to the particular study. 442 

The results for Group B show that, in general, the spectral pattern exhibited a great variation among 443 

cases: for example, case C520, C529 and C583 show prominent peaks of lipids/lactate even in the non-444 
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tumour region, whereas case C255 and C288 did not. This is not totally unexpected as the first three 445 

cases had larger tumour volumes than the other ones, with most voxels within the MRSI grid being 446 

represented either by the tumour itself or by the peritumoral infiltrating zone. Fig 8 shows a selection 447 

of voxels from one of these mice, i.e. C520, in which a high peak of lipids/lactate at c.a. 1.3 ppm can 448 

be seen, especially prominent in voxels a and b which could be due to tumour tissue infiltration. 449 

 450 

Fig 8. MR spectra of three selected voxels from the non-tumour area. 451 

However, even for the cases in which the similarities between the sources are higher, again the resulting 452 

maps were quite different, as seen in the results reported for the Group A. Regardless of this apparent 453 

high similarity, the colour maps show a different representation of the tumour areas for each approach, 454 

which are visually more coincident with the initial manual segmentation, but with the benefit that they 455 

also include the researcher-dubious (grey/uncertain) areas. 456 

In addition to all the aspects mentioned before, both semi-supervised approaches have shown the ability 457 

to learn more meaningful, better-quality sources, as a way to overcome the susceptibility to the presence 458 

of artefacts and the lower signal-to-noise spectra issues reported in [39], with SSSE providing more 459 

accurate results according to the gold standard. 460 

The delineation of the tumour area in the maps for the Group C show that, as observed for Groups A 461 

and B, SSSE results in more coincidental areas with the abnormal regions. Additionally, they are in 462 

accordance with the RECIST criteria for each of these images. Indeed, for both mice, there was a much 463 

higher correspondence between the RECIST criteria, and the maps obtained when using SSSE. 464 

Evaluation of the tumour delineation against the gold standard 465 

In most cases of Groups A and B, the sensitivity and specificity when using SSSE was better than the 466 

other two approaches (Tables 2 and A in S1 File), and in some cases by a large difference. The 467 

exceptions of a higher sensitivity with Convex-NMF and/or Sauwen’s approach were seen in mice 468 

C179, C520 and C583, but these are at the cost of a much reduced specificity. If we look closer at mouse 469 



21 

 

C520, for example, we can see that it showed some atypical features around the ventricle which the 470 

imaging expert marked as abnormal, although this does not necessarily mean that it corresponds to core 471 

tumour area, with PI > 30%. SSSE then benefitted from representing the tumour as a larger volume, but 472 

failed to do it accurately, as can be seen with a drop in specificity. In the case of specificity, SSSE also 473 

exhibited a better performance overall, only running aground with  case C529 in which it also failed to 474 

identify the abnormal features around the ventricle (see Fig S4, supporting information), as described 475 

by the preclinical bioimaging expert, possibly because they are not part of the core tumour area with PI 476 

> 30%. 477 

When looking at the results of the analysis of the two abnormal masses from mouse C179 (see Fig 5 478 

and Tables 2 and B in S1 File), we can see that in cases such as this one, semi-supervised approaches 479 

can make a huge difference when creating a model that represents areas of interest (notice that the 480 

resulting areas in the colour map, first row of Fig 5, do not represent such areas), with overall sensitivity 481 

and specificity of SSSE (1.00 and 0.88, respectively) outperforming Sauwen’s approach (0.87 and 0.77, 482 

respectively) and Convex-NMF (0.70 and 0.68, respectively). 483 

The sensitivity and specificity results for Group C are also consistent with the ones of Groups A and B. 484 

A detailed discussion for this group can be found in the Supporting Information file (Discussion of the 485 

tumour delineation sensitivity and specificity for Group C). 486 

The Dice scores also show agreement with what was discussed previously. The semi-supervised 487 

approaches greatly outperform the unsupervised one, with SSSE exhibiting better performance. As 488 

recommended by Zijdenbos et al [41] in the literature of image validation, a good overlap occurs when 489 

DSC >0.70, which has been attained by the three approaches. 490 

The Euclidean distance between the SSSE resulting maps and the gold standard were smaller in most 491 

of the cases than the distances between the maps obtained with the other two approaches and the gold 492 

standard (see Tables S4 and S5), which means that SSSE delineation of the tumour was more accurate 493 

than the other methods. There were only four exceptions to this (from all the 28 delineation maps 494 

produced in this study with the proposed methodology), two maps in group B, and another two in Group 495 

C. The ones in Group B were for mice C288 and C529, for which the Euclidean distances were slightly 496 
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worse for SSSE, however the Hausdorff distance for both cases indicated otherwise. In addition, our 497 

proposed method did spot the anomaly in the ventricles of C529, which was also identified by the expert 498 

pathologist when analysing the samples a posteriori. The exceptions in Group C were case C819 at day 499 

41 and case C821 at day 21, in which the differences were marginal, and again the Hausdorff distances 500 

contrarily show a better performance by SSSE. It is worth mentioning that the distance between two 501 

images will indicate how much they differ, meaning that the shorter the distance between them the 502 

higher their similarity. 503 

Therefore, considering that a) most of the delineation maps produced by SSSE showed a notorious 504 

improvement over the unsupervised approach, and b) the maps produced by the counterpart, semi-505 

supervised approach proposed by Sauwen et al. did not generally outperform SSSE, we can confidently 506 

say that overall, the distance of the maps produced by SSSE to the gold standard were considerably 507 

shorter, meaning that SSSE was better suited for the problem and data at hand.  508 

Previous results for the Euclidean distances between the three approaches to the gold standard 509 

harmonise with those obtained for the shape similarity score, as these two evaluation methods are highly 510 

related, except that the latter provides a better understanding and interpretability of what these distances 511 

mean. Overall, for Groups A and B, the proposed methodology exhibited an improvement over the 512 

unsupervised approach in the shape similarity score of nearly 10%; and Group C showed an 513 

improvement of more than 15% (both with a much smaller standard deviation). 514 

The results presented in Tables S4 and S5 (referring to the Euclidean distance, similarity score, and 515 

Hausdorff distance between the three approaches to the gold standard) were tested for significance using 516 

a Kruskal-Wallis test, obtaining a p-value < 0.00001, which indicates that the difference between these 517 

approaches are statistically significant (as p < 0.05). Furthermore, statistically significant differences 518 

were found between the 28 delineation maps produced by the unsupervised approach and Sauwen’s 519 

approach in comparison to the 28 produced by SSSE. 520 

One final note goes to the fact that the proposed methodology does not combine MRI and MRSI 521 

information by concatenation, nor it constrains the MRSI to fit the MRI segmentation, as opposed to 522 

several previous works, such as [3,20–22]. Instead, our proposed methodology embeds the information 523 
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coming from the MRI (e.g. the manually selected areas) into the analysis of the MRSI by guiding the 524 

source extraction (which are MR spectra) in the direction of the areas of interest, according to the MR 525 

image. Our reason to avoid direct concatenation of the information from these MR approaches was to 526 

propose a model able to integrate them in a principled manner. Moreover, we use the full MR spectra 527 

in the usual range of interest [4.5 – 0 ppm], as opposed to quantifying only a selection of metabolites 528 

as in [3,20,21]. The added value of the latter is interpretability, providing not only the visualisation of 529 

the resulting map with the delineation of the tumour areas and healthy parenchyma, but also the spectral 530 

pattern associated to each of these segmented regions. This allows for extra validation and reassurance, 531 

and more importantly, better understanding of the results. 532 

Conclusions 533 

Overall, the quality of the resulting colour-coded maps indicating the tumour delineation with the 534 

proposed methodology was considerably better than when using only Convex-NMF in a completely 535 

unsupervised approach, as in [25], or even an alternative semi-supervised approach proposed by 536 

Sauwen et al. [22]. This was carefully assessed in a quantitative way, showing that, in most cases, the 537 

sensitivity and specificity of delineating the tumour masses (which provide a measure of accuracy and 538 

confidence in these delineations) was far superior when using the proposed methodology, SSSE. These 539 

results were also consistent with the shape similarity scores and distances calculated for both sets of 540 

images (in both approaches) to the gold standard (images from the imaging expert), which can be 541 

considered statistically significant. 542 

These results also come with additional advantages, namely: a) the proposed methodology is able to 543 

effectively deal with signal-to-noise issues, which is not the case of the unsupervised approach in [25]; 544 

b) it allows radiologists/clinicians to define the area of interest to them and, with that, guide the process 545 

of source extraction, which was not a possibility in [25]; c) while still creating an intra-subject model, 546 

as opposed to [26] where the model was trained using a set of subjects, therefore needing to deal with 547 

the tumour heterogeneity of GB, which is a well-recognised problem [42], and d) in addition to a 548 

segmented images, SSSE also produce meaningful, good-quality sources that represent each of the 549 
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regions of interest, which adds an extra layer of interpretability to the results obtained, conferring not 550 

only validation of the results, but also better understanding and analysis of each individual case. 551 

Therefore, given the quality of the obtained results, and the advantages identified in the use of the 552 

proposed methodology, we consider that the extra pre-processing steps related to the embedding of the 553 

MRI information into the MRSI data source extraction are worthwhile, as they have shown to improve 554 

the tumour delineation in the preclinical GB model. Once again, the multiparametric character of the 555 

proposed approach (fusing MRI and MRSI) has shown to provide better results compared with using a 556 

single approach (MRSI) [26]. 557 
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