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Abstract

Disturbance decoupling — i.e., the problem of making the

output of a dynamical system insensitive to undesired inputs

— is a classical problem of control theory and a main con-

cern in control applications. Hence, it has been solved for

many classes of dynamical systems, considering both struc-

tural and stability requirements. As to decoupling in linear

switching systems, several definitions of stability apply. The

aim of this contribution is investigating different decoupling

problems with progressively more stringent stability require-

ments: from structural decoupling to decoupling with local

input-to-state stability. A convex procedure for the com-

putation of the switching compensator is presented, based

on the fact that quadratic stability under arbitrary switch-

ing guarantees global uniform asymptotic stability and the

latter implies local input-to-state stability. Measurable and

inaccessible disturbances are considered in a unified setting.

The work is focused on discrete-time systems, although all

the results hold for continuous-time systems as well, with

the obvious modifications.

1 Introduction.

Disturbance decoupling, which is a main issue in control
system design, was first solved for linear systems in the
late sixties, within the geometric approach (see, e.g., [1,
2] and the references therein). Since then, the problem
has been reformulated for different classes of dynamical
systems and, due to the peculiarities of each context,
it still attracts a fair amount of research effort: e.g.,
nonlinear systems have recently been considered in [3],
descriptor systems and systems over rings in [4], time-
delay systems in [5], linear parameter varying systems
in [6, 7].

Lately, disturbance decoupling has been tackled for
switching linear systems, that are dynamical systems
described by a set of linear time-invariant systems —
each of them modeling a different mode of operation —
and a switching signal, designating the active mode at
each time instant [8–10]. Indeed, when switching linear
systems are involved, the problem of disturbance decou-
pling lends itself to a number of formulations, character-
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ized by different approaches to both switching systems
and disturbance decoupling.

A first distinction can be made between those works
where the switching signal is considered the only ma-
nipulable variable, like [11], and those where it repre-
sents an exogenous input, possibly available in real time,
while the manipulable variable is a standard control in-
put, like [12]. In-between cases, where both the switch-
ing rule and the control input may be designed, have
also been examined [13–15]. Another distinctive fea-
ture concerns the meaning of decoupling: i.e., while the
objective of some studies is rendering the output totally
insensitive to the disturbance [13–16], the aim of some
others is achieving a certain attenuation level [11,12,17].

Apart from these characteristics, which, even alone,
can account for the variety of approaches to distur-
bance decoupling for switching linear systems available
in the literature, another key aspect is stability. As
is well-known [18, 19], different definitions of stabil-
ity apply to switching systems without inputs, rang-
ing from quadratic stability to exponential stability or
asymptotic stability. Moreover, a switching system may
not enjoy a certain stability property under arbitrary
switching, but may have this property when it is ruled
by somehow restricted switching signals, such as those
satisfying a minimum dwell-time or average dwell-time:
i.e., the time or the average time between two consecu-
tive switches is not smaller than a constant [20,21].

Indeed, only few of the abovementioned works take
into account stability requirements for the compensated
system achieving disturbance decoupling. Mainly, these
papers are [13, 14], where quadratic stability is sought
for a suitable choice of the switching rule. In addi-
tion, in [22], sufficient conditions for obtaining distur-
bance decoupling with quadratic stability under arbi-
trary switching of the closed-loop dynamics are shown.
However, no computational procedures are provided for
the synthesis of the switching state feedback. Further-
more, in the most recent papers [23, 24], disturbance
decoupling is achieved with exponential stability of the
closed-loop dynamics and a synthesis procedure for the
switching state feedback is illustrated, but the admissi-
ble switching signals are subject to a minimum dwell-
time restriction.

In this context, it is worth stressing that switch-
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ing linear systems having some zero-input state stabil-
ity properties do not automatically enjoy good input-
to-state stability properties, such as bounded inputs re-
sulting in bounded state trajectories or inputs converg-
ing to zero resulting in state trajectories converging to
zero. These facts have been pointed out in [10], where
arguments holding true for nonlinear systems in general
(see, e.g., [25] and the references therein) are specifically
referred to switching systems. This aspect is crucial in
the problem of disturbance decoupling, but, to the best
of the author’s knowledge, it has not been addressed in
any of the abovementioned papers. Hence, the scope of
this work is to show how to solve disturbance decou-
pling problems with progressively more strict stability
requirements, so as to achieve, at the last step, local
input-to-state stability of the compensated system. The
suggested methodology is supported by a complete com-
putational framework, which provides the algorithms for
the synthesis of the switching compensator.

2 Notation.

The symbols Z+ and R stand for the sets of nonnegative
integer numbers and real numbers, respectively. Matri-
ces and linear maps are denoted by slanted capital let-
ters, like A. The image, the kernel, the spectrum, and
the transpose of A are denoted by imA, kerA, λ(A),
and A⊤, respectively. Vector spaces and subspaces are
denoted by calligraphic letters, like V. The quotient
space of a subspace V over a subspace W⊆V is de-
noted by V/W. The restriction of a linear map A to an
A-invariant subspace J is denoted by A|J . The dimen-
sion of a subspace V is denoted by dimV. The symbols
I and O denote an identity matrix and a zero matrix of
appropriate dimensions, respectively.

3 Structural Disturbance Decoupling.

The discrete-time switching linear system

Σσt
≡

{

xt+1 = Aσt
xt +Bσt

ut +Hσt
ht,

et = Eσt
xt,

(3.1)

is considered, where t∈Z
+ is the time variable,

x∈X =R
n is the state, u∈U =R

p is the control input,
h∈R

m is the measurable disturbance input, and e∈R
q

is the output, with p,m, q≤n. As mentioned earlier,
measurable and inaccessible disturbances are treated in
a unified setting. A distinction between the two cases
will be highlighted in Remark 5.1. For a deeper dis-
cussion about different classes of disturbance inputs in
the basic, linear time-invariant case, the reader is re-
ferred to [26–28]. The switching signal σt is defined as
the arbitrary, measurable and not a-priori known corre-
spondence σ :Z+ →I, where I = {1, 2, . . . , N} denotes
the finite index set of the modes of Σσt

. With a slight

abuse of notation, the set of the modes of Σσt
, which

are linear time-invariant systems whose input and out-
put distribution matrices are assumed to be full-rank,
is denoted by {Σσ, σ ∈I}. The set of the admissible
measurable disturbances is defined as the set of the se-
quences ht, t∈Z

+, with bounded values in R
m. Hence,

the problem of structural measurable disturbance de-
coupling is stated as follows.

Problem 3.1. Given the discrete-time switching linear
system Σσt

, defined by (3.1), find a switching control
law

ut = Fσt
xt +Gσt

ht, t ∈ Z
+,(3.2)

such that the compensated discrete-time switching lin-
ear system Σ̂σt

, defined by

Σ̂σt
≡

{

xt+1 = (Aσt
+Bσt

Fσt
)xt + (Hσt

+Bσt
Gσt

)ht,
et = Eσt

xt,
(3.3)
satisfies the following requirement:

R 1. the output et → 0 as t→∞, for any admissible
measurable disturbance ht, with t∈Z

+, any initial
state x0 ∈R

n, and any switching signal σt.

4 A Geometric Approach to Switching Linear

Systems.

The aim of this section is to review some basic notions
of the geometric approach [1, 2] and to introduce some
new ones, useful to solve the Problem 3.1. In particular,
the definition of maximal robust controlled invariant
subspace, first presented in [29] for a generic set of
linear time-invariant systems, is herein referred to the
modes of a switching linear system and enhanced with
the novel definitions of outer switching dynamics and
outer stabilizability under arbitrary switching.

The following symbols, which refer to the set
{Σσ, σ ∈I} of the modes of Σσt

, will be used through-
out the work: Bσ, Hσ, and Eσ respectively stand for
imBσ, imHσ, and kerEσ, with σ ∈I. The symbol E
stands for

⋂

σ∈I
Eσ. It is worth mentioning that a sub-

space J ⊆X is said to be a robust Aσ-invariant sub-
space if Aσ J ⊆J for all σ ∈I. A subspace V ⊆X is said
to be a robust (Aσ,Bσ)-controlled invariant subspace
if Aσ V ⊆V +Bσ for all σ ∈I. Moreover, a subspace
V ⊆X is a robust (Aσ,Bσ)-controlled invariant subspace
if and only if a set of linear maps {Fσ :X →U , σ ∈I}
exists, such that (Aσ +Bσ Fσ)V ⊆V for all σ ∈I.

The next definition ensues from the fact that, as was
shown in [29], the set of all robust (Aσ,Bσ)-controlled
invariant subspaces contained in a given subspace is an
upper semilattice, with the sum as binary operation and
the inclusion as partial ordering relation.
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Definition 4.1. The maximum of the set of all ro-
bust (Aσ,Bσ)-controlled invariant subspaces contained
in the subspace E is called the maximal robust (Aσ,Bσ)-
controlled invariant subspace contained in E and is de-
noted by V∗

R.

The subspace V∗
R, which plays a key role in disturbance

decoupling, can be computed as in [29, Algorithm 1].
The following statements are aimed at introduc-

ing the notions of outer switching dynamics and outer
quadratic stabilizability under arbitrary switching of the
subspace V∗

R. Two lemmas are premised to the new def-
initions. For the sake of brevity, proofs are omitted.

Lemma 4.1. Consider the discrete-time linear time-

invariant systems of the set {Σσ, σ ∈I} and the max-

imal robust (Aσ,Bσ)-controlled invariant subspace con-

tained in E, V∗
R. Perform a state space basis transforma-

tion T = [T1 T2 ], where imT1 =V∗
R. Then, with respect

to the new coordinates,

A∗
σ = T−1 Aσ T =

[

A∗
11,σ A∗

12,σ

A∗
21,σ A∗

22,σ

]

,

B∗
σ = T−1 Bσ =

[

B∗
1,σ

B∗
2,σ

]

,

H∗
σ = T−1 Hσ =

[

H∗
1,σ

H∗
2,σ

]

,

E∗
σ = Eσ T =

[

O E∗
2,σ

]

,

for all σ ∈I.

Lemma 4.2. Consider the discrete-time linear time-

invariant systems of the set {Σσ, σ ∈I} and the

maximal robust (Aσ,Bσ)-controlled invariant subspace

contained in E, V∗
R. Let the set of linear maps

{Fσ :X →U , σ ∈I} be such that V∗
R is a robust

(Aσ +Bσ Fσ)-invariant subspace. Refer to the coordi-

nates introduced in Lemma 4.1 and let

F ∗
σ = Fσ T =

[

F ∗
1,σ F ∗

2,σ

]

be partitioned accordingly, for all σ ∈I. Then, with

respect to the new coordinates,

A∗
σ+B∗

σ F
∗
σ =

[

A∗
11,σ +B∗

1,σ F
∗
1,σ A∗

12,σ +B∗
1,σ F

∗
2,σ

O A∗
22,σ +B∗

2,σ F
∗
2,σ

]

(4.4)
for all σ ∈I.

It is worthwhile to stress that, for any σ ∈I, the matrix
A∗

22,σ +B∗
2,σ F

∗
2,σ in (4.4) represents the linear map in-

duced by Aσ +Bσ Fσ on the quotient space X/V∗
R —

briefly denoted by (Aσ +Bσ Fσ)|X/V∗

R
and called the

outer dynamics of V∗
R with respect to Σσ. Hence, the

notion of outer switching dynamics of V∗
R can be intro-

duced, quite naturally, as follows.

Definition 4.2. The switching dynamics (Aσt
+

Bσt
Fσt

)|X/V∗

R
, associated with the set of induced linear

maps {(Aσ +Bσ Fσ)|X/V∗

R
, σ ∈I}, is called the outer

switching dynamics of V∗
R.

Moreover, the definition of outer quadratic stabilizabil-
ity of V∗

R under arbitrary switching is stated in the fol-
lowing terms.

Definition 4.3. The subspace V∗
R is said to be outer

quadratically stabilizable under arbitrary switching, if a
set of linear maps {Fσ :X →U , σ ∈I} exists, such that
V∗
R is a robust (Aσ +Bσ Fσ)-invariant subspace and the

switching dynamics (Aσt
+Bσt

Fσt
)|X/V∗

R
is quadrati-

cally stable under arbitrary switching.

A convex procedure to compute a set of linear maps
{Fσ, σ ∈I}, such that V∗

R is a robust (Aσ +Bσ Fσ)-
invariant subspace and is outer quadratically stable un-
der arbitrary switching will be presented in the following
section, as part of the solution of Problem 3.1.

5 Sufficient Conditions for Structural

Disturbance Decoupling.

The main theorem of this section provides a pair of suf-
ficient conditions for Problem 3.1 to be solvable. The
proof is constructive, since it shows how to synthesize a
switching control law that achieves disturbance decou-
pling. Arguments showing why the pair of conditions is
not necessary are also given. Two lemmas are presented
first, respectively expressing the two conditions, which
are originally given in coordinate-free terms, with re-
spect to the coordinates introduced in Lemma 4.1. The
proofs of the lemmas are omitted.

Lemma 5.1. Consider the discrete-time linear time-

invariant systems of the set {Σσ, σ ∈I}, the maxi-

mal robust (Aσ,Bσ)-controlled invariant subspace con-

tained in E, V∗
R, the images Bσ of the control in-

put matrices Bσ, and the images Hσ of the measur-

able disturbance input matrices Hσ, with σ ∈I. Let

the subspaces Vσ ⊆V∗
R be such that Vσ ∩Bσ = {0} and

(V∗
R ∩Bσ)+Vσ =V∗

R, for all σ ∈I. Refer to the coordi-

nates introduced in Lemma 4.1 and let V ∗
σ ∈R

n×rσ , with

σ ∈I, be basis matrices of the corresponding subspaces

Vσ. Then,

Hσ ⊆ Bσ + V∗
R, ∀σ ∈ I,(5.5)

if and only if matrices Γσ ∈R
p×m and Λσ ∈R

rσ×m, with

σ ∈I, exist, such that

H∗
σ = B∗

σ Γσ + V ∗
σ Λσ, ∀σ ∈ I,(5.6)

or, with respect to the partition introduced in
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Lemma 4.1,

[

H∗
1,σ

H∗
2,σ

]

=

[

B∗
1,σ

B∗
2,σ

]

Γσ+

[

V ∗
1,σ

O

]

Λσ, ∀σ ∈ I.(5.7)

Lemma 5.2. Consider the discrete-time switching lin-

ear system Σσt
, with the modes {Σσ, σ ∈I}, and

the maximal robust (Aσ,Bσ)-controlled invariant sub-

space contained in E, V∗
R. Let r=dimV∗

R. The sub-

space V∗
R is outer quadratically stabilizable under arbi-

trary switching if and only if a positive-definite sym-

metric matrix Qe ∈R
n−r×n−r and a set of matrices

{Yσ ∈R
p×n−r, σ ∈I} exist, such that

[

Qe (A∗
22,σ Qe +B∗

2,σ Yσ)
⊤

A∗
22,σ Qe +B∗

2,σ Yσ Qe

]

> 0,

∀σ ∈ I,(5.8)

with A∗
22,σ and B∗

2,σ defined as in Lemma 4.1.

If this is the case, the switching dynamics

(Aσt
+Bσt

Fσt
)|X/V∗

R
, associated with the set of ma-

trices {A∗
22,σ +B∗

2,σ F
∗
2,σ, σ ∈I}, where F ∗

2,σ =Yσ Q
−1
e ,

with σ ∈I, is quadratically stable under arbitrary

switching.

It is worth noting that (5.8) are LMIs in the unknowns
Qe and Yσ, with σ ∈I. Hence, Lemma 5.2 points out
a convex procedure to derive — if the LMI problem is
feasible — a set of matrices {F ∗

2,σ, σ ∈I}. Furthermore,
a set of matrices {F ∗

1,σ, σ ∈I}, such that

A∗
21,σ +B∗

2,σ F
∗
1,σ = 0, ∀σ ∈ I,(5.9)

always exists, owing to the equivalence between robust
controlled invariance and robust invariance by state
feedback, mentioned in §4.

Theorem 5.1. Consider the discrete-time switching

linear system Σσt
. Problem 3.1 has a solution if the

following conditions hold:

C 1. Hσ ⊆Bσ +V∗
R, ∀σ ∈I;

C 2. V∗
R is outer quadratically stabilizable under arbi-

trary switching.

Proof. Let Conditions C 1 and C 2 hold. Consider the
switching control law (3.2). Let Gσt

be the switching
linear map associated with the set {Gσ, σ ∈I}, defined
by

Gσ =−Γσ, ∀σ ∈ I,(5.10)

where the matrices Γσ, with σ ∈I, are given by
Lemma 5.1 (which is possible by virtue of Condi-
tion C 1). Moreover, let Fσt

be the switching linear map
associated with a set {Fσ, σ ∈I} determined according

to Lemmas 4.2 and 5.2 (which is feasible owing to Con-
dition C 2). Then, it will be shown that the switching
control law (3.2), where Fσt

and Gσt
are picked as spec-

ified above, solves Problem 3.1. First, note that, with
respect to the coordinates introduced in Lemma 4.1, the
modes {Σ̂σ, σ ∈I} of the switching compensated system
Σ̂σt

are described by

Σ̂σ ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1,t+1 = (A∗
11,σ +B∗

1,σ F
∗
1,σ)x1,t + V ∗

1,σ Λσ ht

+(A∗
12,σ +B∗

1,σ F
∗
2,σ)x2,t,

x2,t+1 = (A∗
22,σ +B∗

2,σ F
∗
2,σ)x2,t,

et = E∗
2,σ x2,t, σ ∈ I,(5.11)

where (5.7), (5.9), and (5.10) have been taken into
account. Equation (5.11) shows that quadratic
stability under arbitrary switching of the dynam-
ics (Aσt

+Bσt
Fσt

)|X/V∗

R
, associated with the set

{A∗
22,σ +B∗

2,σ F
∗
2,σ, σ ∈I}, implies that the state trajec-

tory x2,t, with t∈Z
+, converges to 0, for any admissible

measurable disturbance ht, with t∈Z
+ (indeed, ht does

not appear in the equation of x2,t), any initial state
x0 ∈R

n, and any switching signal σt. Therefore, the
same is true for the output et, with t∈Z

+, which only
depends on x2,t.

It is worth noting that Condition C 1 is also necessary to
solve Problem 3.1. In fact, if Condition C 1 is not met,
no other robust (Aσ,Bσ)-controlled invariant subspace
contained in E , say VR, exists, such that Hσ ⊆Bσ +VR,
for all σ ∈I, because the set of all robust (Aσ,Bσ)-
controlled invariant subspaces contained in E is an upper
semilattice and V∗

R is its maximum.
Instead, Condition C 2 is not necessary to solve

Problem 3.1. In fact, a less conservative form of sta-
bility for the switching dynamics (Aσt

+Bσt
Fσt

)|X/V∗

R
,

such as asymptotic stability under arbitrary switching,
would be sufficient to guarantee convergence to zero of
the output as the time approaches infinity. However, as
mentioned earlier, focusing on quadratic stability un-
der arbitrary switching has the advantage of leading to
a convex procedure for determining the switching state
feedback to be included in the control law, thus provid-
ing a straightforward computational tool for the prob-
lem solution. In this regard, it is also mentioning that
specific degrees of freedom are available in the determi-
nation of the set of linear maps {Fσ, σ ∈I} and that
these degrees of freedom are implicitly exploited in the
solution of the LMI problem of Lemma 5.2.

This section is concluded by the following two re-
marks, which point out that inaccessible disturbance
decoupling and perfect disturbance decoupling can be
regarded as respective special cases of Problem 3.1.

Remark 5.1. If the more restrictive condition
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C 1′. Hσ ⊆V∗
R, ∀σ ∈I,

holds in place of Condition C 1, the feedforward action
applied through Gσt

is not required anymore. Thus, the
disturbance input ht, with t∈Z

+, is no longer needed
to be measurable. In fact, if Condition C 1′ holds,
Lemma 5.1 can be modified by replacing (5.6) with
H∗

σ =T ∗
1 Λσ, for all σ ∈I, where T ∗

1 = [ I O ]⊤ is a basis
matrix of V∗

R with respect to the coordinates introduced
in Lemma 4.1. Consequently, the control law (3.2) re-
duces to ut =Fσt

xt, with t∈Z
+, where Fσt

is still de-
termined according to Lemmas 4.2 and 5.2. Namely, the
switching state feedback alone achieves asymptotic de-
coupling of any admissible inaccessible disturbance, for
any initial state x0 ∈R

n and any switching signal σt.

Remark 5.2. If the initial state x0 belongs to the sub-
space V∗

R, then the output et is zero for all t∈Z
+,

for any admissible measurable (or, inaccessible — if
Condition C 1′ holds) disturbance ht, with t∈Z

+, and
any switching signal σt. In fact, in light of (5.11), if
x0 ∈V∗

R, the sole state component x1,0 may be differ-
ent from zero. Therefore, x2,0 =0 implies x2,t =0 for
all t∈Z

+, which, in turn, implies et =0 for all t∈Z
+.

Namely, when x0 ∈V∗
R, perfect decoupling of any admis-

sible measurable (or, respectively, inaccessible) distur-
bance is achieved for any switching signal σt.

6 Disturbance Decoupling with State Stability

This section is focused on an improved version of the
disturbance decoupling problem, where, in addition to
the original specification, the dynamics of the compen-
sated system, in the absence of the disturbance, is re-
quired to be stable under arbitrary switching. It will be
shown that the new requirement is compatible with the
existing one and a new convex procedure, independent
of that discussed in §5 and to be applied besides that in
the synthesis of the control law, will be illustrated.

Problem 6.1. Given the discrete-time switching linear
system Σσt

, defined by (3.1), find a switching control
law (3.2), such that the compensated system Σ̂σt

, de-
fined by (3.3), satisfies Requirements R 1 and

R 2. the switching dynamics Aσt
+Bσt

Fσt
is quadrati-

cally stable under arbitrary switching.

Along the same lines developed in §4, it is worth noting
that, for any σ ∈I, the matrix A∗

11,σ +B∗
1,σ F

∗
1,σ in (4.4)

represents the restriction of the linear map Aσ +Bσ Fσ

to the subspace V∗
R, with respect to the coordinates

of Lemma 4.2. The restricted dynamics is denoted by
(Aσ +Bσ Fσ)|V∗

R
and called the inner dynamics of V∗

R

with respect to Σσ. Hence, the definitions of inner
switching dynamics and inner quadratic stabilizability

under arbitrary switching of the subspace V∗
R follow

plainly.

Definition 6.1. The switching dynamics (Aσt
+

Bσt
Fσt

)|V∗

R
, associated with the set of restrictions

{(Aσ +Bσ Fσ)|V∗

R
, σ ∈I}, is called the inner switching

dynamics of V∗
R.

Definition 6.2. The subspace V∗
R is said to be inner

quadratically stabilizable under arbitrary switching, if a
set of linear maps {Fσ :X →U , σ ∈I} exists, such that
V∗
R is a robust (Aσ +Bσ Fσ)-invariant subspace and the

switching dynamics (Aσt
+Bσt

Fσt
)|V∗

R
is quadratically

stable under arbitrary switching.

By inspecting the partition, shown in (4.4), of the
matrices representing the linear maps of the set
{Aσ +Bσ Fσ, σ ∈I} with respect to the coordinates of
Lemma 4.2, one can see that the properties of outer
and inner quadratic stabilizability of V∗

R are indepen-
dent of each other. The former only depends on
the set {F ∗

1,σ, σ ∈I}, while the latter only depends
{F ∗

2,σ, σ ∈I}. Hence, the next lemma shows how a
set of matrices {F ∗

1,σ, σ ∈I}, such that V∗
R is a robust

(Aσ +Bσ Fσ)-invariant subspace with the property of
being inner quadratically stable under arbitrary switch-
ing, can be obtained as a solution, if it exists, of a convex
problem with a linear constraint.

Lemma 6.1. The subspace V∗
R is inner quadratically

stabilizable under arbitrary switching if and only if

a positive-definite symmetric matrix Qi ∈R
r×r, where

r=dimV∗
R, and a set of matrices {Wσ ∈R

p×r, σ ∈I}
exist, such that

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[

Qi (A∗
11,σ Qi +B∗

1,σ Wσ)
⊤

A∗
11,σ Qi +B∗

1,σ Wσ Qi

]

> 0,

A∗
21,σ Qi +B∗

2,σ Wσ = 0,
∀σ ∈ I,

(6.12)
with A∗

11,σ, A∗
21,σ, B∗

1,σ, B∗
2,σ defined as in

Lemma 4.1. If this is the case, the switching dynamics

(Aσt
+Bσt

Fσt
)|V∗

R
, associated with the set of matrices

{A∗
11,σ +B∗

1,σ F
∗
1,σ, σ ∈I}, where F ∗

1,σ =Wσ Q
−1

i , with

σ ∈I, is quadratically stable under arbitrary switching.

Hence, the following theorem provides a set of sufficient
conditions for Problem 6.1 to have a solution.

Theorem 6.1. Consider the discrete-time switching

linear system Σσt
. Problem 6.1 has a solution if Con-

ditions C 1, C 2, and the following hold:

C 3. V∗
R is inner quadratically stabilizable under arbi-

trary switching.
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Proof. Let Conditions C 1–C 3 hold. Consider the
switching control law (3.2). Let the switching linear
map Gσt

be determined as in the proof of Theorem 5.1.
Let the switching linear map Fσt

be such that, with re-
spect to the partition of the matrices F ∗

σ , with σ ∈I,
considered in Lemma 4.2, the matrices F ∗

2,σ, with σ ∈I,
are derived according to Lemma 5.2, as in the proof
of Theorem 5.1, while the matrices F ∗

1,σ, with σ ∈I,
are derived according to Lemma 6.1 (which is feasible
owing to Condition C 3). Hence, the proof that the
control law thus devised satisfies Requirement R 1 is
the same of Theorem 5.1. As to the proof that Re-
quirement R 2 is also met, this is an immediate con-
sequence of quadratic stability under arbitrary switch-
ing of the switching dynamics (Aσt

+Bσt
Fσt

)|V∗

R
and

(Aσt
+Bσt

Fσt
)|X/V∗

R
and of the block triangular struc-

ture of the dynamics of the compensated system Σσt

shown in (5.11) (see, e.g., [30, Chapter 7]).

7 Disturbance Decoupling with Input-to-State

Stability

To summarize the reasoning developed so far, the plain
structural disturbance decoupling problem has been ap-
proached first. In the solution of that problem, only
outer stabilization of the subspace V∗

R has been required,
in order to guarantee asymptotic convergence to zero
of the output, due to a possible nonzero initial state.
Then, the problem of disturbance decoupling with state
stability has been investigated and solved, which has
required stabilization of both outer and inner switch-
ing dynamics of the subspace V∗

R, in order to guarantee
state stability of the closed-loop switching system.

In particular, quadratic stability under arbitrary
switching has been considered. This choice has a main
motivation. Indeed, as reviewed in [19], the existence
of a common quadratic Lyapunov function is a suffi-
cient condition for global uniform asymptotic stability
of a switching system. On the other hand, asymptotic
stability under zero input of a nonlinear system implies
local input-to-state stability, as was shown in [31]. This
fact was considered with specific reference to switching
systems in [10, Appendix A]. Thus, in light of these
results, available from the literature, the outer and in-
ner quadratic stabilization under arbitrary switching of
the subspace V∗

R, discussed in this paper, guarantees not
only disturbance decoupling with global uniform asymp-
totic stability of the switching system under zero input,
as was shown in Theorem 6.1, but also local input-to-
state stability.

To the best of the author’s knowledge, input-to-
state stability has never been mentioned in the litera-
ture on disturbance decoupling in switching linear sys-
tems. Indeed, stability, whenever considered, was meant

to be state stability under zero input. Moreover, it is
worth noting that, due to the key role played by uniform
asymptotic stability, input-to-state stability cannot be
achieved, in general, under less restrictive stability con-
ditions, like, e.g., asymptotic stability under dwell-time
switching.

8 Conclusions

A methodology to solve different formulations of the dis-
turbance decoupling problem, from the mere structural
decoupling to the problem with state stability under
arbitrary switching, so as to guarantee also local input-
to-state stability properties of the compensated system,
has been shown. The synthesis procedure has been sup-
ported by a complete computational framework. The
geometric approach, with some new notions specifically
addressed to switching linear systems, and linear matrix
inequalities have provided the theoretical and computa-
tional background.
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