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Abstract

Falls are one of the greatest risks for the older adults living alone

at home. This research presents a novel visual-based fall detection

approach to support independent living for older adults in an indoor

environment. The aim of the research was to investigate appropriate

methods for detecting falls through analysing the motion and shape

of the human body.

Several techniques for automatically detecting falls have been pro-

posed. The existing technologies can be classified into three main

groups of fall detectors, namely: ambient device-based, wearable sensor-

based and computer vision-based techniques. Ambient device-based

techniques use vibration or pressure sensors to capture the sound and

vibration for detecting the presence and position of a person. Al-

though these devices are inexpensive and do not disturb the user,

the detection rate is rather low and many false alarms are generated.

Wearable devices use different sensors such as accelerometer and gyro-

scopes to capture the human body movement information and detect

falls. However, older adults often forget to wear them. Wearable sen-

sors are also known to be too invasive as they require wearing and

carrying various uncomfortable devices. Much work has been under-

taken to investigate the use of visual-based sensors for fall detection

using single, multiple, and omnidirectional cameras.

The proposed research reported in this thesis uses a single camera

to detect a moving object using a background subtraction algorithm.

The next step is to extract robust features which describe the change

in human shape and to discriminate falls from other activities like

lying and sitting. These features are based on motion, change in



the human shape feature, projection histogram features and temporal

change of head position. Features extracted from the human silhou-

ette are finally fed into various machine learning classifiers for fall

detection evaluation.

The ability to distinguish a fall action depends mainly on the quality

of the classifier inputs, therefore, the features of the extracted hu-

man silhouette play a key role in the effectiveness and robustness of

detecting human falls. In this research, the timed Motion History Im-

age (tMHI) method is applied for motion segmentation. In addition,

the motion information was combined with other features extracted

from the fitted ellipse around the human body to discriminate actual

fall from other activities.

Fall detection methods can be divided into two main categories; thresh-

old based methods and machine learning-based methods. This re-

search presents threshold-based methods to distinguish between Ac-

tivities of Daily Living (ADL) and falls. Fall events can be detected

if the measured features values higher than pre-determined thresh-

old values. Results show that falls can be distinguished from ADL

with an accuracy of 99.82%, using our recording dataset. In addition,

various machine learning methods were compared to evaluate their

abilities to accurately detecting falls. Experimental results show ef-

ficiency and reliability of the proposed fall detection approach with

high fall detection rate of 99.60% and low false alarm 2.62% tested

with UR Fall Detection dataset. Additionally, A set of experiments

have been conducted using our recording dataset, the results indicate

that the proposed approach achieves high fall detection rate 99.94%

and low false alarm 0.02%.
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Chapter 1

Introduction

The number of older adults (people aged 65 years and over) is rapidly increasing

[45]. According to the UK Office for National Statistics (ONS), there will be a

further 8.6 million people aged 65 or over in the next 50 years [3]. The existing

social care and healthcare systems are deficient in meeting the care needs of older

adults. Independent living supported by automated monitoring is an acceptable

solution to deal with the increasing older adults population and limited budget

available for their care. The current technologies such as Ambient Intelligence

(AmI) can help older adults to live in their own homes longer. Intelligent homes

(also referred to as Smart Homes or AmI Environments) deploy a range of sensors

to monitor and track the presence of a person and detect anomalies with the

Activities of Daily Living (ADL).

Falls among the older adults are a relatively common occurrence that can have

dramatic health consequences. Studies have shown that 28 − 34% of the older

adults, have at least one fall every year [68]. Besides, falling is the second biggest

cause of accidental death for more than 87% of older adults [112]. Falls are one

of the leading causes of several types of injury including fractures, brain injuries,

or strained muscles for older adults [103]. An injured person may be laying on

the ground for a significant amount of time after a fall incident has occurred and

before they receive assistance [42]. Fall detection and altering systems are unable

to prevent falls; nevertheless, these systems can reduce complications by ensuring

that falling person receive help quickly [42]. Therefore, significant attention has

been devoted to develop automated human fall detection systems [125].

1



1. Introduction

Research on video surveillance systems for understanding human behaviour

has grown steadily in recent years [112]. Computer vision systems offer a new

promising solution which can help older people stay at their own home by provid-

ing a secure environment and improve their quality of life [22]. One application

area of video surveillance is to analyse human behaviour and detect unusual be-

haviour.

A two-way audio camera monitoring system for older adults allows to listen

and view their activities. Although, activities monitoring by cameras are re-

garded as an intrusion of privacy and it is not acceptable by many older adults.

Preferably, unobtrusive sensors should be used, along with a small computerised

receiver to collect data that are then analysed and posted to a secure server for

viewing by the carer/relative. The adult children/informal carers of frail older

adults living alone would prefer to receive short daily report or alerts in the form

of e-mail or phone calls [125].

Fall is one of the most serious causes of fatal injuries among the older adult

population [103]. Most of the fall detection systems fail to distinguish between

daily activities and a real fall. Therefore, this research aims to investigate ap-

propriate approaches to detect falls through analysing the motion and shape of

the human body. The research will be focused on automatically detecting human

falls by using visual camera monitoring older adults in a home environment.

The main research question addressed in this thesis is to investigate the use of

appropriate methods to monitor human activities in smart environments and to

automatically detect falls. In particular, this study trying to answer the following

questions:

• Can we detect human falls from low level camera data by using simple image

processing techniques?

• Can simple detection techniques be utilised to detect fall events with fewer

false detection rates?

• Can we identify falls within the data that is collected from RGB camera

sensors in a real home environment?

• Can we validate and test the proposed techniques on data collected from
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Figure 1.1: Schematic diagram of the proposed vision-based monitoring system.

real environments?

The rest of this chapter is structured in the following order. The next section

presents an overview of this research. Section 1.2, aims and objectives of this

study are explained. Section 1.3 introduces the significant contribution of the

thesis. Finally, the remaining chapters of this thesis are outlined in Section 1.4.

1.1 Overview of the Research

This study aims to detect fall events in indoor environments based on video data.

To achieve the project aim, a video-based system for fall detection is proposed.

The proposed system consists of three steps; detection moving objects in a frame,

tracking such objects from frame to frame and then analysis of object tracked to

recognise the behaviour. A schematic diagram of the proposed vision-based older

adults behaviour monitoring system is illustrated in Figure 1.1.

The pre-processing and pattern recognition stages are conducted locally and

the visual information about a subject is not communicated for normal activities.

The two-way audio camera communication will be permitted once an anomaly/fall

is detected. This information will be shared with the carers and they will have

the privilege to establish the visual communication.
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Figure 1.2: Flow diagram of the proposed human fall detection system.

This research proposes a visual-based approach for fall detection in a home en-

vironment and detecting a fall event based on motion information and the changes

in human shape. An overview of the proposed fall detection system is shown in

Figure 1.2. The proposed fall detection system includes four steps; data collec-

tion, foreground segmentation, feature extraction and fall detection. Background

subtraction is implemented to segment out moving objects [94]. Afterwards, use-

ful features such as motion information, a shape orientation, a temporal change

of the head and histograms for detecting fall from different daily activities are

extracted. The proposed method exploits motion and shape features based on

the observation that human falls often involve drastic shape changes and abrupt

motions as compared to other activities.

The first step in the proposed system is to analyse the motion occurring in a

given time window. It is assumed that human fall has greater acceleration than

other daily activates. However, focusing only on a fast acceleration can result
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in many false alarms during fall-like activities such as sitting down quickly [61].

Therefore, the second step is to analyse the change of the human shape to identify

a fall among other activities.The analysis of the moving object is performed by

fitting an approximate ellipse around the human body.

Common fall detection algorithms are based on the fact that the fall events

has high motion than every day life activities. This study highlights the situation

when a human fall can occur with low motion rate. A typical example is when a

person loses balance and hold onto furniture to prevent a fall and yet falls on the

ground. Therefore, the third feature which is projection histogram feature is also

utilised to confirm a fall event. Furthermore, the proposed fall detection approach

applies other features; tracking of the human head in subsequent frames to deal

with occlusion problem. Finally, the extracted features are used as input vectors

to various machine learning classifiers for fall and non-fall events classification.

1.2 Aims and Objectives

This research will be focused on automatically detecting human falls from camera

sensor data. The work is based on a low cost, off-the-shelf visual camera moni-

toring system for the older adults living independently in a home environment.

The aim of the research is to investigate appropriate methods for recognising and

classifying falls of an occupant in a domestic room setting. In this research, a

method for monitoring human activities in a home environment and detecting a

fall event based on motion information and changes in the orientation regarding

the shape of a person is presented.

To achieve this aim the following objectives are identified.

1. To conduct extensive research into the literature concerning existing tech-

nologies for monitoring the older adult and detecting fall events.

2. To implement pre-processing techniques on images of objects from a low-

cost camera, resulting in outline detection and feature extraction to deter-

mine the physical shape, position and activity.
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3. To set up a simulated domestic setting in order to recognise, track physical

movement and position of a person using the techniques in 2.

4. To investigate and develop approaches to processing the results of 3. For

the automatic classification of situations in order to recognise problem sce-

narios/situations.

5. To investigate the temporal relationship between a sequence of frames (low

frame rate) to infer the presence and behaviour of the older adults from the

pre-processed camera data.

1.3 Major Contributions of the Thesis

The main contributions of this thesis are:

- applying timed Motion History Image (tMHI) method to extract relevant

features regarding the motion trail of a moving object over time,

- exploring the use of the major semi-axis and minor semi-axis of the ellipse

fitting around the human silhouette as feature descriptors for fall detection

purposes,

- introducing a new feature by computing the maximum values of foreground

pixels in the horizontal and vertical histograms, as well as the difference

between maximum values to effectively discriminate a fall among other ac-

tivities,

- investigating a novel feature by determining the person head in each frame

and compute the standard deviation of the absolute difference of y-coordinate

of the head point. The implemented feature enhanced the performance of

the proposed fall detection approach,

- identifying the best combinations of features capable of effectively detecting

a fall,

- identification of optimal parameters for machine learning methods for fall

detection.

6



1. Introduction

1.4 Thesis Outline

This thesis consists of eight chapters that are summarised as follows:

Chapter 2: Literature Review - This chapter gives a review of the relevant

literature in the field of Assisted Living (AL) technologies which are used in

human activity recognition and fall detection domains. These technologies can be

classified into wearable sensors-based methods, ambient sensor-based method and

computer vision methods. In particular, the literature focuses on reviewing the

use of threshold-based methods and machine learning methods for fall detection

of older adults to support them to live independently in their own homes.

Chapter 3: Environment and Data Collection - This chapter describes the sys-

tem to monitor the Activities of Daily Living (ADL) for the older adults and to

detect falls. Three different datasets; University of Rzeszow Fall detection (UR

Fall Detection) dataset [62], Le2i fall detection dataset [25] and video recorded

dataset are also explained in detail to validate and test the proposed fall detection

approach. Details of the collected video data are also presented.

Chapter 4: Selected Features and Tools for Fall Detection - This chapter discuss

in detail the implementation of the selected features for fall detection. Details

of different methods for extracting these features from binary human silhouettes

such as timed Motion History Image (tMHI) method, fitting approximated el-

lipse around the human body, projection histograms and tracking human head

in consequent frames are presented. In this chapter, machine learning methods

to classify fall/non-fall activities are presented. These methods include MLP

Neural Networks (MLPNN), Support Vector Machine (SVM), K Nearest Neigh-

bour(KNN) and Bootstrap Aggregation (Bagging).

Chapter 5: Fall Detection Approach Using Threshold- Based Methods - In this

chapter, the proposed fall detection approaches which employ a different com-

bination of features like motion information, change in the orientation of the

human body and horizontal histograms features are presented. These approaches

are based on predefined threshold values. Experimental results of using different

statistical methods which have been tested and evaluated using different datasets

are presented.
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Chapter 6: Fall Detection Approach Using Neural Network - This chapter pro-

vides an overview of fall detection approaches using MLP Neural Network. The

experimental results of applying Neural Network methods using features men-

tioned in Chapter 4 are presented.

Chapter 7: Fall detection Approaches Using Various Machine Learning Methods

- In this chapter, the results of applying the machine learning methods presented

in Chapter 4 are validated using our recorded video datasets and UR Fall Detec-

tion dataset. A comparison of these methods is made to find the best method to

detect falls.

Chapter 8: Conclusions and Future Work - This chapter provides the conclusions

arisen from this thesis and formulates some future research in monitoring the daily

activities of the older adults and detecting abnormal events like falls.
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Chapter 2

Literature Review

2.1 Introduction

Falls are one of the leading causes of several types of injury including fractures,

brain injuries, or strained muscles for older adults [103]. The latest report from

the World Health Organisation (WHO) indicates that about 646,000 individuals

die from falls over the world each year. Falls are the second leading cause of

injury-related deaths worldwide [5]. The statistical study in [115] shows that at

least one third of older adults fall one or more times a year . An injured person

may be laying on the ground for a significant amount of time after a fall incident

has occurred and before they receive assistance [42]. Although fall detection and

altering systems are unable to prevent falls, they can reduce complications by

ensuring that the falling person receive help quickly [42]. Therefore, significant

attention has been devoted to develop automated human fall detection systems

[125].

This chapter is structured as follows: in Section 2.2, assisted living technolo-

gies to support older people and detect fall events are introduced. Literature on

fall detection methods including threshold-based methods and machine learning

methods are reviewed in Sections 2.3 and 2.4 respectively. A methodology of the

research is presented in Section 2.5. Conclusions are drawn in Section 2.6.
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2.2 Assisted Living Technologies

An Intelligent Environment (IE) is a space in the real world which has the ca-

pability of collecting important information about an occupant’s behaviour and

detects gradual changes in their behaviour [73]. An Ambient Intelligent (AmI)

environment can improve the lifestyle of the elderly by using different sensor tech-

nologies for example: wearable sensor-based, ambient sensor-based and computer

vision-based. These technologies allow environments to be sensitive, adaptive and

responsive to the presence of people in order to support them to live independently

in their preferred environment [57]. Assistive technology is an umbrella term that

incorporates assistive and adaptive devices for people with special needs. One

important aim of assistive technology is to allow elderly people to stay as long as

possible in their home without changing their living style [125].

New technologies are used to support independent living and provide security

for older adults [61]. Several techniques for automatically detecting falls have

been proposed [44, 70]. The existing technologies can be classified into three main

groups of fall detectors, namely: wearable sensor-based [56], ambient sensor-based

[131] and computer vision-based methods [91].

2.2.1 Wearable Sensor Based Technologies

Wearable devices use different sensors such as accelerometer and gyroscopes.

These sensors are widely used to capture the human body movement information

and generate an alarm when orientation or acceleration of the person reaches a

predefined threshold [78]. Wearable sensors have several advantages in terms of

low cost, power consumption and ease to use. Therefore, wearable sensors like

accelerometers are used widely to detect human falls [125].

Authors in [6] propose a fall detection algorithm based on accelerometers

found in mobile phones. The orientation of the mobile phone determined the

orientation of the accelerometer axes. The algorithm is applies to various machine

learning algorithms to a large time-series feature set to detect falls. The results

show that SVM classifier can identify a fall with an accuracy of 98%.

Mao et al in [74] propose a human fall monitoring system based on a sensor

unit and a mobile phone. The sensor unit consists of a tri-axial accelerometer, a
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tri-axial gyroscope, and a tri-axial magnetometer. The acceleration data repre-

sents the orientation of the persons body. The orientation data and Root Mean

Square (RMS) of acceleration are used for fall detection. The processed data

are sent into the mobile phone via Bluetooth communication. Their experiments

show that the waist is the best position for sensor placement where the detection

fall detection sensitivity and specificity are 100%. However, their system requires

the sensor unit to be charged to ensure that the battery is adequate during collect

the data and the mobile phone is connected to the sensor unit. Moreover, the

sensor unit need to be fixed horizontally on the shoulder or the foot by the tape

or to be placed in the coat pocket for the waist segment.

Shi et al. in [98] introduce a human fall detection system using the J48 decision

tree classifier. The system employs inertial MEMS sensor which monitors the

motions of the feet and waist to detect the falls. Their system achieves an overall

accuracy of 98.6%, sensitivity of 98.9%, and specificity of 98.5%.

Guvensan et al. [47] developed a novel hybrid fall detection system which

combines simple threshold methods with machine learning algorithms. Their

system uses different types of sensors including microphones, accelerometers, and

gyroscopes. The threshold value is used to discriminate between falls and normal

activities. The machine learning technique is applied to classify slow fall and

fall-like events, which are difficult to distinguish from actual falls. The decision

tree learning algorithm of J48 is used for detection of fall events. The accuracy

of their hybrid method is 93%.

Wearable sensors require older adults to wear sensor devices and some people

especially those with dementia, tend to forget to wear such devices [32]. In

addition, there are some wearable devices which can be activated by pushing an

alarm when there is a fall. However, such an alarm can’t be activated if the person

is unconscious after the fall [125]. Moreover, wearable sensors are also known

to be too invasive as they require wearing and carrying various uncomfortable

devices especially during changing clothes and bathing [125]. Computer vision

systems do not require the person concerned to wear any devices. Furthermore,

such vision sensors give more information about the motion of the person, their

location and their activities [43]. Moreover, the common wearable fall detectors,

which are usually attached to a belt around the hip, are inadequate to be worn
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during the sleep and this results in the lack of ability of such detectors to monitor

the critical phase of getting up from the bed [125].

One of the main reasons for non-acceptance of wearable based sensors is that

the fall detectors using accelerometers generate false alarms. This means that

some normal daily activities like laying or sitting are signalled as falls, which in

turn leads to frustration of the users. Many attempts were undertaken to reduce

the number of false alarms by combining both accelerometer and gyroscope. How-

ever, several Activity Daily Living (ADLs) like sitting down quickly have similar

kinematic motion patterns to fall events and in consequence, such methods might

trigger a considerable number of false alarms [32].

To solve this problem, Wang et al. [109] present fall detection system for de-

tecting falls based on placing an accelerometer on the head level. First, a tri-axial

accelerometer was placed above the ear side to measure tri-axial accelerations.

Their system then computes some measurements such as the sum vector of axial

accelerations and an acceleration change on the horizontal plane. A fall event is

detected if these measurements reach a certain threshold value.

2.2.2 Ambient Sensor Based Technologies

Ambient sensor-based technologies use vibration or pressure sensors which are

installed on the floor surface or under the bed. These sensors are used to capture

the sound and vibration to detect the presence and position of a person [131].

Although, these devices are inexpensive and do not disturb the user [78], the

detection rate is rather low and many false alarms are generated [37].

Many studies have also made use of sensor network systems that are able to

detect abnormal behaviours of daily activity. Data may be collected from the

environment using occupancy sensors such as Passive Infra-Red (PIR) movement

detectors, door/ window entry point sensors and bed/sofa pressure sensors [27].

However, this technology only determines whether or not there is a moving object,

and cannot extract any information about daily activities of moving object [128].

In addition, these sensors require to be installed in several rooms to cover the

whole area of the monitored house [32].

For example, authors in [130] propose a system that detects human falls by

12



2. Literature Review

using the audio signal from a microphone. Their system models each fall or noise

segment by means of a Gaussian Mixture Model (GMM). Then, SVM classifier

is employed to classify audio segments into falls and various types of noise. Ex-

perimental results show that the system achieves low detection rate where the

accuracy of the system is 41%, precision is 70% and F-score up to 67%.

Rimminen et al. [89] present a fall detection approach using vibration sensors

embedded on the floor. The approach is based on a Near-Field Imaging (NFI)

which apply both floor sensor and pattern recognition to detect falls. First, the

floor sensor detects patterns and location of a person and then create an image of

the person touching the floor. A range of features is calculated from the cluster

of observations associated with a person. These features include; the number of

observations, the longest dimension, and the sum of magnitudes. After that, the

Bayesian filter is used to estimate the pose of the person. Results present a 91%

detection rate, sensitivity and specificity were 90.7% and 90.6% respectively.

2.2.3 Computer Vision Based Methods

Computer vision-based methods are able to give information on falls and also

other daily living behaviours. Falls can be detected by employing an automatic

fall detection algorithm using intelligent surveillance systems [87].

Much work has been undertaken upon the use of visual-based sensors for

fall detection using single [48], multiple [122] and omni-directional [76] cameras.

Recently, depth camera such as Microsoft Kinect 2.0 [18] and ASUS XtionPro

Live [17] have also been used for detecting falls. The Kinect is a motion sensing

technology which combines an RGB camera and a depth sensor to track the

moving object in 3D [100]. The depth camera, such as Microsoft Kinect has been

used for fall detection. The depth camera of the Kinect can work well in low light

condition and when the light condition significantly changes such as switching on

or off the light [18].

Depth cameras are used widely for human activity recognition. For example,

the authors in [51] propose a novel skeleton-based approach to describe spatio-

temporal aspects of a human activity using three-dimensional (3D) depth images.

Two feature channels are calculated from the 3D joint position including the
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spatial and the temporal aspects of the activity. These features are used as

inputs to Extremely Randomised Trees algorithm to train the human activity

model. The experimenters are conducted using the Microsoft Research MSR

3D Action dataset [65]. The trained classifier model achieved an accuracy of

80.92%. Similarly, authors in [36] proposed a method for skeleton-based human

action recognition. Motions between rigid bodies are used to describe human

posture and draw movement components and mapping them to the points on

a Grassmannian manifold. Then representative postures are extracted through

spectral clustering. An action is represented by a symbol sequence generated

with a global linear eigenfunction. Finally, the Hidden Markov model (HMM) is

used to classify these action sequences. The recognition rate is over 80%.

Thermal cameras are also used to track a thermal target and analyse its

motion. The work in [106] presents a novel approach for fall detection with Infra-

red (IR) thermal array sensors. Features including the maximal temperature

difference, the maximal motion distance, the duration of motion and variance of

the maximal thermal difference between foreground and background over time

are extracted for fall detection. The system achieves fall recognition rate over

94% at room temperature (up to 24◦C).

Kido et al [59] present fall detection algorithm by using a thermal camera to

detect falls in the toilet room. The algorithm based on the temperature difference

between the person and the toilet room. Their technique achieves an accuracy of

97.8%, while the room temperature needs to be 31◦C or less. Thermal camera

can be used in temperature-managed facilities such as hospitals. However, ther-

mal imaging technique could be unsuitable for detecting falls at home, because

temperatures are not often managed consistently inside homes.

Thermal imaging applications abound in the field of human healthcare, ther-

mal camera is being used to help detect cancer earlier, locate the source of arthritis

and detect human veins. For an example; The work has been done by Asrar et

al. [14] uses three types of cameras; a visual, an infrared and near infrared for the

detection of veins to support the cannulation process. The collected images from

three cameras were analysed using image processing techniques and compared

with identification templates to evaluate the performance of each technology.

The results show that the near infrared technology supported by suitable LED
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illumination provides the most accurate detection of veins. Where the infrared

technology with the use of a cold compress helps to enhance the visualisation of

veins.

Elgargni et al. [40] employ infrared and vision systems to detect the existence

of the tool in the spindle and to assess whether its health whether is normal or

broken. They develop a software program for tool tracking and health recognition

based on Principal Component Analysis (PCA) and Discrete Wavelet Transform

(DWT) combined with neural networks. Both infrared and visual cameras are

used to locate and track the cutting tool during the machining process. The

methodology proposed develops an improved computer algorithm for tool recog-

nition and evaluates the performance infrared and visual data. The evaluation

of the use of DWT combined with feedforward neural networks with one hidden

layer is divided into two stages; the first stage evaluates the ANN based on in-

frared image data and DWT, the second stage evaluates the ANN based on visual

image data and DWT. The results show that the use of infrared data processed

using DWT and neural networks achieves a 100% success rate.

Fall detection approaches can be divided into two main categories; threshold-

based approaches or a machine learning-based approaches. Threshold-based ap-

proaches detect falls by checking if the measured feature exceeds a predefined

threshold value [64]. Machine learning-based approaches use labelled data to

train a classifier using supervised machine learning algorithms such as Support

Vector Machines (SVM), Decision Tree, and Artificial Neural Networks (ANN)

to recognise the characteristic features of falls.

2.3 Threshold-Based Methods

Threshold-based methods are simple and have been applied widely in existing fall

detection systems as they have a low computational cost [54]. These approaches

use manually pre-defined threshold values and they do not require a learning step

to classify falls [64]. However, manually defining thresholds is difficult, as several

activities of daily living (ADLs) like quickly sitting or laying can produce high

acceleration which can cause a high number of false alarms. In addition, the high

number of false alarm is generated due to manually predefined threshold values
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do not generalise well for unseen persons [52]. In contrast, some falls may have a

lower acceleration which leads to falls undetected [107]. This is mainly because

some sensors are sensitive to the presence of noise in the living environment [124].

Several studies used machine learning algorithms as an alternative to reduce the

number of false alarms while maintaining a high detection rate [86].

Mastorakis and Markis [75] introduces a novel fall detection system based on

the Kinect camera. The algorithm analises the human 3D bounding box and

employs thresholding on the first derivative (velocity) of width, height and depth

to determine whether a particular event is a fall or not.

Rougier et al. [90] propose a fall detection method based on two features; 3D

body velocity, and human centroid height relative to the ground. Firstly, a Kinect

camera is used to collect depth data, and then the foreground object is segmented

from a background image. Their method uses the centroid height of the person

to detect falls ends on the ground. The body velocity feature is used to deal

with the occlusion problem, for instance, a person is fallen and occluded behind

furniture. A fall is detected when the centroid velocity of the person is above a

certain threshold while the distance of the centre of mass to the floor is below

another certain threshold. The experiments were run in a laboratory setting,

including 54 non-fall samples and 25 fall samples. The results show that only one

fall was notdetected and no false alarms were reported. Although the authors

claim that their method achieves an overall detection rate of 98.7%, their method

requires floor coordinates to operate and the dataset has a very limited number of

samples. Additionally, some essential details about the collected dataset missing

such as the number of subjects performing the experiments, the type of falls, and

whether or not the data contains fall-like events such as lying or sitting quickly

on a sofa.

Kong et al. [60] introduce an algorithm for fall detection by using a depth

camera. Firstly, the algorithm extracts the binary image to detect human blob.

The median filter removes the noise in the binary image. Then a canny filter is

applied to get the outline of the binary image. After that, the algorithm computes

all the white pixels in the outline image. The tangent vector angle of each white

pixel is computed and divided into 15 groups. Finally, their algorithm detects

falls if most tangent angles are below 45◦. The experiments were collected in a
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living room which includes over 700 images. The accuracy of their algorithm is

97.1%, where, sensitivity and specificity are 94.9% and 100% respectively.

A novel method for fall detection was proposed by [122] through analysing

dynamic shape and motion of human body regions on Riemannian manifolds. The

method represents human activities by dynamic shape points and motion points

moving on two simple Riemannian manifolds. Afterwards, the velocity statistics

on the two manifolds are computed. The test results show a high detection rate

of 99.38%.

2.4 Machine Learning-Based Methods

As an alternative to threshold-based methods, machine learning methods are

widely used to classify falls. In these methods, the data sequences is usually split

into a number of segments or sliding windows. There are two types of sliding win-

dows; a fixed-length overlapping sliding window and fixed-length non-overlapping

sliding window. Then, features are extracted from all data segments and fed into

one or more machine learning classifier. The machine learning approaches com-

bine both features and labelled data to train a classifier using supervised machine

learning algorithms to classify fall events. This section summaries most cited ma-

chine learning methods for human activity recognition and fall detection.

2.4.1 Random Forest

Random Forest consists on an ensemble of classifiers with low bias and variance

performances. RF is widely employed for solving classification and regression

problems [80]. The study done by Nunes et al. [80] introduces a framework

for human daily activity recognition using depth data. The first step is to divide

each activity into actions of variable size identified by key poses. A pre-processing

step is applied to the 3D skeleton data to normalize the data. Then, static and

dynamic or temporal features are extracted from each action window. Static

features represent positions of the skeleton, defined as key poses. On the other

hand, dynamic features provide information about the skeleton motion, described

in terms of joint movements between key poses. The static features include; pro-
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jected distances between two joints and projected angles based on three joints.

Dynamic features include; velocities of joints coordinate and projected angular ve-

locities. The extracted features are used to train a Random Forest (RF) classifier.

Then, an extension of the RF classifier named the Differential Evolution Random

Forest (DERF) algorithm is proposed. The main advantage of the DERF algo-

rithm is that it has no thresholds to tune, but a few adjustable parameters with

well-defined behaviour. Their activity recognition framework achieves a precision

of 81.83% and recall of 80.02%.

Authors in [12] propose a real time system for fall detection via computing

various temporal and spatial features from the foreground object. The algorithm

is based on the variances of various temporal features. These variances include

temporal variations of the aspect ratio of the bounding box, the orientation and

the ratio of the fitted ellipse around the foreground object, the motion vector,

the upper half area of the bounding box and the geometric centre position. The

aspect ratio refers to the ratio of the width to the height of the bounding box en-

closing the foreground object. The orientation is computed as the angle between

the major axis of the ellipse containing the foreground object and the horizontal

axis of the image. The ratio between the length of the major and minor axis

of the ellipse. The change of the motion is the variation in the position of the

foreground object between the current and the next frame. The upper half area

of bounding box was used as a shape descriptor to capture the variation in the

orientation of the upper part of the body when a fall occurs. The temporal vari-

ation in the x-component and y-component of the centre of the current frame are

computed to provide the temporal change in the geometric centre position of a

foreground object. During a fall, the values of variation in motion and orientation

are considerably high and changed rapidly when a person fell from standing state

to a fall state. Features are fed into boosting with J48 and Adaptive boosting

(Adaboost) classifiers. Experiments were run on publicly available datasets in-

cluding the Multiple Cameras Fall dataset [15] and the UR Fall Detection dataset

achieving accuracy of 99.2% and 99.0% respectively.
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2.4.2 Hidden Markov Models

Hidden Markov Models are applied in many studies to model human behaviour

and detect abnormality in the daily routine. For example, Dai et al. [30] present

an image-based method for fall detection by applying an statistical human posture

sequence model. A Kinect camera is used to extract the skeleton view of a

human body in depth images. Hidden Markov Models (HMMs) are trained by

the labelled extracted features to distinguish between various fall avents and daily

activities. Firstly, principle component analysis is applied to reduce the data

dimensionality. Then, the k-means clustering algorithm is employed to prepare

training data for HMMs. The experimental results demonstrate an average fall

recognition rate above 80%.

The study reported in [28] introduce an approach for temporal detection of

social interactions. Their approach temporally detects intervals of individual or

social activities from continuous video streams of RGB-D data. They develop a

computational model for the temporal segmentation of human interactions. The

model is based on features extracted from the upper body joints of the skeleton,

such as: shoulder, head and torso joints. Then, the normalisation step was per-

formed using the minimum and maximum values for each feature. Furthermore,

a median filter is applied to reduce noise. Finally, these features were feed into

two standard models; HMM and SVM. Their approach achieves an accuracy of

85.56%.

2.4.3 Support Vector Machine

Support Vector Machines are widely used for detecting abnormal human be-

haviour in data collected from intelligent environments. For instance, Kwolek

and Kepski in [62] present a low cost embedded system for fall detection. The

system is based on acceleration data and depth maps. A tri-axial accelerome-

ter measures the acceleration of the person and the rate of change in velocity

across time. If the measured acceleration is higher than a predetermined thresh-

old value, that indicates a possible fall have happened. The next step is to use

depth images from Kinect camera. The algorithm extracts the foreground object,

calculates the features and then the feature vector is fed into the SVM classifier to
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make the final decision about the fall. The features extracted from depth images

are; a ratio of width to height of the persons bounding box, a ratio of the height

of the persons bounding box in the current frame to the physical height of the

person, and the distance of the persons centroid to the floor. The experiments

were conducted on the UR Fall Detetion dataset. The performance of the system

using only depth images achieves an accuracy of 90%, precision 83.30%, sensitiv-

ity 100% and specificity 80%. The results show that their system using depth

images with acceleration data achieves an accuracy of 98.33%, precision 96.77%,

sensitivity 100% and specificity 96.67%.

Harrou et al. [50] introduce a fall detection approach based on the combi-

nation of a Multivariate Exponentially Weighted Moving Average (MEWMA)

monitoring scheme and a SVM classifier. Firstly, the human body silhouette is

extracted from each frame and then the body is divided into five areas. These

areas are obtained by defining five lines from the silhouettes center of gravity.

Experiments were conducted on UR fall detection database. The results report

an accuracy of 96.66%, sensitivity of 100% and specificity of 94.93%.

Debard et al. [34] present a feature-based approach for human fall detection.

The approach based on four features include; the angle of fall, aspect ratio, centre

velocity and head velocity. These features were fed into the SVM classifier. Var-

ious combinations of features were tested. Their experimental results reported

that fall angle, head velocity and aspect ratio is the best combination of features.

Their approach achieves a recall of 89.6%. However, the system is unable to

discriminate between falls and sitting down activities.

Charfi et al. [24] propose an automatic fall detection approach in a home en-

vironment. The system is based on a single camera to extract RGB video images.

A number of features are exploited from a bounding box and also from a fitted el-

lipse around the human body. The features extracted from the bounding box are:

height and width of the bounding box, the aspect ratio and the coordinates of the

centre of the bounding box. The features extracted from the ellipse are: the ori-

entation of the ellipse and the coordinates of the centre of the best fitting ellipse.

In addition other features like horizontal and vertical projection histograms and

moments of order 0, 1 and 2 were calculated. Several transformations including

Fourier Transform, Wavelet transform, first and second derivatives are applied
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to the features. After testing various combinations of features, the results show

that a set of seven features including; the aspect ratio of the bounding box, Y

coordinate of the center of the bounding box, X coordinate of the center of the

ellipse, the orientation of the ellipse, the m00 and m02 moments and the horizon-

tal projection histograms are the best features combination. The SVM classifier

is fed by the set of selected features and the system archives 98% of sensitivity

and 99.60% of specificity. Experiments are done on Le2i fall detection dataset.

However, it is not clear how this system would perform in other dataset as the

thresholds were manually defined for the Le2i fall detection dataset.

Zhang et al. [126] introduce an automatic fall event detection method from

both 3D depth and 2D RGB appearance information. Firstly, kinematic features

such as vertical height of the tracked person are extracted from 3D depth images.

The 2D images are used to extract two features; the ratio between the width

and the height of the bounding box, and histograms of width-height ratios of

the monitored person. The Kinect camera provides 20 body joints tracked for

each person in each depth frame, however only 8 body joints on head and torso

information are choosen to distinguish whether a person is falling. Their method

aims to recognise five activities including three normal activities: standing, sit on

chair, and sit on floor and two fall events including; fall from standing and fall

from chair. The hierarchy SVM classifier is shown to robustly recognise the falls.

Experimental results show that the method achieves an accuracy of 98%.

Bian et al. [18] propose a fall detection approach using a single depth camera.

A Randomized Decision Tree (RDT) algorithm is employed to extract key joints

of the human body. Then, the head joint distance trajectory are used as input

feature vector to the SVM classifier to detect fall events. The video data collected

in a laboratory setting containing 380 samples has equal number of fall and non-

fall samples. The results demonstrate that all falls were detected and 9 false

alarms were generated. However, this approach cannot detect the falls ending

lying on furniture since the distance between the body and the floor is high.

Wang et al. [110] propose vision-based fall detection method using multiple

cameras. First, a background subtraction algorithm is used to extract the moving

person. Second, a new feature named HLC is introduced. The HLC feature is a

combination of three features; Histograms of Oriented Gradients (HOG), Local
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Binary Pattern (LBP) and Convolutional Architecture for Fast Feature Embed-

ding (Caffe). The HLC feature is used to represent a motion state of a person in a

frame of a video sequence. The method includes two training stages. In the first

training stage, the images are extracted from the video sequences and classified

into three activities: walking, falling and lying. The SVM classifier is trained by

the extracted three features from the input images. A single frame classification

model is obtained from the first training stage. The single frame classification

model is then used to classify every 30 continuous frames in a video sequence into

fall or non-fall categories. In the second training stage, the categories of the 30

frames are used as input to the fall detection model to decide whether a person

is fallen or not. Their method achieves 93.7% sensitivity and 92.0% specificity.

2.4.4 K-Nearest Neighbour

The K-Nearest Neighbour (KNN) classifier has been widely applied as an effective

classification model. For example, Kwolek and Kepski in [63] introduce a fall de-

tection system based on an accelerometer and a kinect sensor. The accelerometer

wirelessly transmits the motion data to the embedded system. The Kinect sensor

is used to acquire depth images in order to obtain lower false alarm ratio. The

system then continuously updates the depth reference image and extract features.

Finally, the system employs a KNN classifier for fall classification. Experiments

show that the KNN classifier obtains good results on UR Fall Detection dataset

in terms of sensitivity and specificity. The accuracy of the system was 95.83%,

precision 90.91%, sensitivity 100% and specificity 92.86%.

Recently, Kwolek and Kepski [58] presented an event-driven system for fall

detection based on data from a body-worn accelerometer and sequences of depth

maps from a Kinect sensor. If a significant change on the persons motion is

detected by the accelerometer, the system validates the fall event from depth

maps. Their study evaluates different algorithms for fall detection on the basis of

two main modes; the first mode uses depth maps provided by a depth sensor facing

the scene, whereas, the second mode uses depth maps acquired by an active ceiling

mounted camera. To deal with data maps acquired by an active camera, the

algorithm tracks the centroid of the person in each frame and detects the persons
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head. Then, the algorithm extractes some features such as the distance between

the persons head and floor and the centroid-floor distance. The fall detector

system uses the features extracted from both facing and overhead cameras as

input features to both a linear SVM and K-NN classifier for lying pose detection.

Their system obtains an accuracy of 100%.

The work in [32] introduces a fall detection approach based on artificial vision

algorithms. The first step is to use a single camera to acquire video data. The

second step is to apply the background subtraction algorithm to extract the

foreground subject. Then, a Kalman filter is used to reduce noisy data. The next

step is to extract some features from the foreground subject for instance; the

orientation of the ellipse enclosing the subject, the ratio between the width and

the height of the rectangle that encloses the subject and the derivative value of the

absolute normalised ratio variation. These three features describe how quickly

the human silhouette changes over time to distinguish activities like walking,

standing, sitting and falling. The final step is to apply the KNN classifier to

classify the current activity of the extracted foreground subject. Their results

show an accuracy of 96.9%, sensitivity of 96% and specificity of 97.6%.

Putra et al. [86] propose an event-triggered machine learning approach for

fall detection using wearable sensors. Firstly, a fall event is divided into three

stages:( pre-impact, impact, and post-impact). Then, a finite state machine is

used to align each segment to one of the fall stages. Several features were used

during the training and testing processes of the classifier. These features are;

minimum, maximum, and average acceleration vector magnitudes, variance of

the acceleration vector magnitude, Root Mean Square (RMS) of the acceleration

vector magnitude and velocity. To evaluate their approach, experiments were

conducted using two publicly available datasets; Cogent Dataset [83] and SisFall

[104]. Finally, various machine learning methods were applied to classify fall

and non-fall events. These methods include Classification and Regression Tree

(CART), Logistic Regression (LR), KNN and SVM. Experimental results shown

that, their approach achieves F-scores of 98% for a chest-worn sensor and 92%

for a waist-worn sensor.
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2.4.5 Artificial Neural Networks

Artificial Neural Networks (ANNs) have been used to distinguish between normal

and abnormal human behaviour patterns from low-level sensors. For example,

Harrou et al [49] proposed a statistical approach to detect human falls based on

both video data and acceleration data. Video data was collected via camera and

accelerometer named X-IMU inertial sensor. A Shewhart control chart is used to

detect a fall by using the accelerometer data. Features are extracted from images

which contain a human body silhouette. The silhouette is divided into five areas.

The set of ratios that are computed for each frame are then computed to form

the feature vector. The features are used as input data to Neural Network. The

experiments were conducted on UR Fall Detection dataset. Their system achieves

an accuracy of 96.67%, sensitivity of 100% and specificity of 93.4%.

2.4.6 Deep Learning Methods

Nowadays, the use of deep neural network is growing in many problem domains,

including vision-based fall detection. The authors in [81] propose a vision-based

fall detection approach using Convolution Neural Networks (CNN). The optical

flow images of consecutive frames are used as input to the CNN. These images

represent the motion between consecutive frames. A number of features are ex-

tracted by a modified V GG16 architecture to process various frames and extract

motion. Initially, the CNN is trained on small fall datasets to acquire the relevant

features for fall detection and then the CNN is sequentially trained on different

datasets. Finally, transfer learning is used by reusing the network weights and

fine-tuning the classification layers. The results show an accuracy of 95%, 100%

sensitivity and 92% specificity, when tested on the UR Fall Detection dataset.

Wang et al [111] propose a fall detection framework based on automatic feature

learning methods. First, the extracted frames from video images including the

foreground blob are used as the training set. Then a simple deep learning model;

PCANet is trained by using all samples to predict the label of every frame. The

predicted labels from the trained PCANet model are then used by the SVM

classifier to detect falls. After training; two models are obtained; a single frame

detection model and an action model. The training process includes two stages:
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in training stage 1, the training samples are labelled to three classes namely,

standing, falling and fallen and then a PCANet model is trained by all samples

in order to label every frame. The PCANet is used to extract the features of the

images using all information from the bounding box containing the foreground

blob. In training stage 2, the extracted features from PCANet with the predicted

labels are used to train an SVM for fall classification and to obtain an action

model. Their system achieves an 89.2% sensitivity and 90.3% specificity.

Doulamis [39] proposes a fall detection framework based on the joint esti-

mation of a foreground object and motion information. The motion vectors on

particular selected points on the image plane and the vertical velocity of the up-

per boundary of the foreground object are estimated to detect falls in different

directions from the camera position. Recently, Doulamis [38] introduced a vision-

based approach to the problem of human fall detection by using a self-adaptable

deep machine learning approach. The deep learning approach is employed to de-

tect a foreground object from the background. Then, three features are extracted

including the human height, the vertical motion velocity of the object and the

height-width ratio for fall detection.

The authors in [77] propose a fall detection method for falls against furniture

such as sofas and chairs. Their method is based on the activity characteristics

of the detected people such as motion speed and human shape aspect ratio.

Convolutional NN is employed to obtain the information of the locations of the

objects in the scene. The method can distinguish falls from other activities with

an accuracy of 95.50%.

Yi-zeng [53] introduces an optical flow feedback convolutional neural network

system for human fall detection. Firstly, the system employs a median filter to

extract the silhouette in depth images. The system is based on optical flow image

that are used as input to the convolutional network. The reduction algorithm is

applied to obtain the shape of the person from the depth data. The next step is

to extract some features such as the orientation of the ellipse and the angle be-

tween the shape of the body and the lower level. The system tests if two of these

measurements are higher than threshold values, then a fall event will be recog-

nised. A Feature Feedback Mechanism Scheme (FFMS) is proposed to allocate

the features of the convolutional layers with the best object recognition models.
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The FFMS uses interest of optical flow vector to calculate the Euclidean distance

of histogram and use them as the input to the convolutional layer to determine

the motion object boundary. During the training process, the Euclidean distance

of two consequent images is calculated before feeding into the convolutional layer.

Additionally, the system adopted the 3DCNN temporal information to construct

the rule-based motion event. The rule-based motion is used to filter the motion

event. The back-propagation algorithm was used to train the deep network. To

evaluate the performance of the system, their proposed model was tested on the

the KTH [93] dataset. The results show an average accuracy of 92.65%.

The work presented in [99] proposes a deep learning-based approach for human

fall detection, using a Long Short-Term Memory (LSTM) neural network. The

3D locations of the body joints are used as features for discriminating different

activities. As activities might take a long sequence of frames, the traditional

Recurrent Neural Network (RNN) encounters the vanishing gradient issue. For

this reason, the LSTM was introduced as a modified version of RNN to solve this

issue, so that the neural network can handle long frame sequences. However, the

LSTM requires large amount of training data, thus, transfer learning is employed

in training the LSTM. In the training process, a multi-class LSTM is trained

using training samples extracted from daily activities. The weights of the first

few layers are copied to a two-class LSTM for fall detection. The last layer

of the two-class LSTM was trained on fall samples in combination with daily

activities samples. The experiments were conducted on the NTU RGB+D Action

Recognition Dataset [97]. Their method achieves 93% precision and 96% recall.

The study presented in [102] introduces a video-based fall detection approach

using stereo camera data. The approach starts by using a 2D human pose esti-

mator in combination with a CNN to extract 3D human pose. Then, the ground

plane in 3D was calculated. Finally, the approach uses multiple measures such as

head position to detect whether a person has fallen. The results show accuracy

above 91%.

Zhang et.al. [127] present an approach named Trajectory weighted Deep con-

volutional Rank pooling Descriptor (TDRD) for fall detection. First, a Trajectory

map was used to extract a CNN feature map of each frame. Next, the CNN fea-

ture map of each frame is weighted with its corresponding trajectory attention
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map to get the trajectory-weighted convolutional visual feature of human region.

Then, a cluster pooling method is used to reduce the redundant frames of the

videos. Finally, the rank pooling method is invoked to encode the dynamic of

human actions to get TDRD. Furthermore, TDRDs are used with a SVM for

fall detection. Experimental results on UR Fall datasets, show that the TDRD

approach gets 100% sensitivity and 95% specificity.

2.5 Methodology

This research presents a novel visual-based fall detection approach to support

independent living for older adults. The proposed approach includes four steps;

data collection, foreground segmentation, feature extraction and fall detection.

The first step is to detect a moving object from camera data using a background

subtraction algorithm [31]. The second step is to extract number of features

which describe the change in human shape and allow discrimination of falls from

other activities like lying and sitting. These features are based on motion, change

in the human shape, projection histogram and temporal change of head position.

The first stage of the system is to analyse the motion occurring in a given

time window, using tMHI [66]. Analysis of the moving object is performed by

fitting an approximate ellipse around the human body [41]. After ellipse fitting,

the orientation of the ellipse and the ratio between the major semi-axis and

the minor semi-axis are taken as features to describe human body posture in a

general way. A bounding box was used to surround the foreground object, then

the y-coordinate of the top left point of the bounding box was computed and the

absolute difference of y-coordinates in successive frames were used as features.

In order to evaluate the proposed human fall detection approach, video data

was recorded in a realistic home environment using a single camera. Participants

were selected with varied age, gender and height. The data recording was con-

ducted in a controlled environment and the participants performed normal day

to day activities such as: walking, sitting, bending, lying on the sofa and simu-

lated falls. The experiments were carried out in different environments; bedroom,

kitchen, dining room, office and living room. Additionally, the experiments were

conducted using publicly available datasets; UR Fall Detection dataset [62] and
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Figure 2.1: Phases of the research (overall picture).

Le2i fall detection dataset [25].

After the data acquisition process, each video data is converted into a num-

ber of frames. The acquired video data is used to extract the relevant features,

providing the inputs for the fall detection methods. Fall detection methods

can be divided into two main categories; threshold-based methods and machine

learning-based methods. In threshold-based methods, fall events can be detected

if the measured features values exceed pre-determined threshold values. Machine

learning-based methods use labelled data to train a classier using supervised ma-

chine learning algorithms such as Support Vector Machines (SVM), Decision Tree,

and Artificial Neural Networks (ANN) to recognise the characteristic features of

falls. Figure 2.1 shows a diagram representing the phases of this research in-

cluding phase 1: Data Collection, phase 2: Foreground Segmentation, phase 3:

Features Extraction and phase 4: Fall Detection.
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2.6 Discussion

In this chapter, a review of technologies and solutions for monitoring daily ac-

tivities and automatically detecting falls was presented. These technologies are

wearable sensor-based methods, ambient sensor-based methods and computer

vision-based methods. Although the use of wearable sensors is popular in the hu-

man fall detection domain, there are some issues associated with their utilisation.

For instance, wearable sensors are invasive as they require wearing and carrying

various uncomfortable devices. In addition, fall detectors using acceleration data

might generate a high number of false alarms. The knowledge gathered through

this literature reveals that ambient sensor-based methods produce a high number

of false alarms. Moreover, some of the ambient sensors require to be installed in

the floor to cover the whole area of the monitored person.

For computer vision-based methods, there is no need for the older adults to

wear an accelerometer enabled device and its use is not affected by ambient noise.

The review presented here provides an overview of the most cited approaches

for fall detection. The fall detection methods can be classified into threshold-

based methods and machine learning-based methods. The manually defined

threshold values could generate false alarms since fall and non-fall activities could

have similar acceleration. Machine learning-based methods are used as an alter-

native to reduce the number of false alarms.

In the next chapter, a description of data collection will be introduced. Video

data recording is employed in this research in order to monitor ADLs of an elderly

person and detect falls.
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Environment and Data Collection

3.1 Introduction

Human activities recognition and especially automatic detection of fall using

computer-vision techniques can be useful for helping older adults living alone in

a smart environment. Video-based fall detection techniques employ camera sen-

sors to acquire video data. Then, various algorithms are used for detecting and

tracking a person in the scene. In this context, the visual information extracted

from consecutive frames of video data represents crucial information which helps

to detect falls.

In order to evaluate the proposed automatic human fall detection approach,

video data was recorded in a realistic home environment setting using a single

camera. Additionally, the experiments were conducted using publicly available

datasets; UR Fall Detection dataset and Le2i fall detection dataset [25]. In this

chapter, the environment and the data collection system employed for this re-

search are discussed. Various scenarios of the collected video data from a camera

sensor to monitor the daily activities of an elderly person and to detect falls are

also presented.

This chapter provides a detailed description of the acquired video data gath-

ered for training and evaluation of various machine learning based algorithms for

detecting falls. This chapter is organised as follows: in Section 3.2 details of col-

lected video data including; experimental setup, the position of the camera and
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scenarios are presented. Section 3.3 presents details about the UR Fall Detection

dataset. Section 3.4 gives information about Le2i fall detection dataset. Some

conclusions are drawn in Section 3.5.

3.2 Data Collection and Video Recording

This section provides an overview of the collected video data acquired from a

single camera system. The video dataset contains falls and normal daily activ-

ities acquired in realistic scenarios. The reason for collecting video data is to

provide enough experimental data for this research. In addition, most available

fall detection datasets used the same location for recording video data. That is,

the same location is used for testing and training. To evaluate the robustness of

the proposed method to changes in location, video data need to be collected in a

realistic home environment and in several environments.

Data is obtained from visual recording of individual mimicking normal and un-

usual behaviour in an indoor environment. Data was acquired using a fixed/static

camera. The information enclosed in the visual data is needed to enable the de-

velopment of methods to automatically identify and distinguish between falls and

daily living of occupants.

The video recording was conducted in a controlled environment where the

participants performed normal day to day activities like standing, lying, walking

and sitting. On occasions where the participant had to simulate falling, a well

cushioned surface or sofa was used and the location was kept away from hard

furniture. Before a participant was asked to simulate a fall, a first aider was

present and for all other activities, a first aider was present within 5 minutes.

One of the major challenges for most fall detector approaches is the high rate of

false alarms. Thus, the recorded data involved the simulation of falls and fall-like

activities. Fall-like activities have similar characteristics to falls in terms of high

motion, and a large vertical velocity which tend to trigger false alarms. Evaluating

with video data including activities which generate high motion similar to falls

can help to improve the performance of the proposal fall detection approach.

Figure 3.1 represents the main steps for the collection of the video data. The

collection of video data sequences include the following steps:
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Figure 3.1: The data collection process.

- design scenarios for collecting video data sequences,

- identify appropriate hardware and camera sensors necessary for collecting

data,

- recruit participants,

- collecting the data,

- process the collected data; detecting moving object and extract useful fea-

tures. In this research study, various features are extracted from human

silhouettes to evaluate the proposed fall detection algorithm.

After using a camera to record video sequences, the recorded data is used to

extract features to determine physical shape, position and activity. This include

three steps: the segmentation of foreground objects from the still background,

object detection and feature extraction. Object detection methods are designed

based on temporal information such as frame differencing and background sub-

traction. Object tracking is the process to track the person by locating their

position in every frame of the video. After object detection and tracking, the

next stage is to infer the behaviour of the occupant.

3.2.1 Experimental Setup

The experiments were conducted in a home environment, seven participants were

invited to simulate fall and non-fall activities, which were used to test the pro-
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Figure 3.2: Layout of first floor of recording video data.

posed fall detection algorithm. The experiments were carried out in different

rooms including living room, kitchen, dining room, office and bedroom with dif-

ferent light conditions. Participants were selected with varied age, gender and

height. The data recording was conducted in a controlled environment and the

participants performed normal day to day activities such as: walking, sitting,

bending, lying on the sofa and also simulated falls. The video recording took place

at the Crime Scene Training Facility at Nottingham Trent University, Clifton

Campus, which is representative of the target environment and is comfortable

for participants and those conducting the experiment. The ground floor has a

kitchen, dining room and living room. On the first floor there are two bedrooms,

office and bathroom. The layout of the house and the location of the camera

sensors are shown in Figure 3.2 and Figure 3.3.

The data is collected using installed CCTV cameras with 640 x 480 pixels

and the lens of the camera is 360 degrees to cover a good proportion of the room

running at 30 fps. The distance of the person to the camera is approximately

3 meters. In addition, low cost RGB camera ( Panasonic camera; SDR-S7 CD/

SDHC card with the image size of 768 x 576 as shown in Figure 3.4) mounted at

45 degrees is also used. The RGB camera was placed in the corner of each room
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Figure 3.3: Layout of second floor of recording video data.

and attached to a tripod approximately 1.50 m above the ground. The videos

are between 3 and 4 minutes long.

The recorded video sequence is processed by using MATLAB R2017b 64 bit

on Windows 10. The Computer Vision System Toolbox and the Machine Learn-

ing Toolbox were used to implement the proposed fall detection system. The

experiments were run on an PC laptop Intel (R) Core (TM) i5-4210U CPU @

2.40 GHZ with 6 GB RAM.

Three different cameras were used to record the same scene at the same time,

a ceiling mounted camera for side view (Camera #1), a ceiling mounted camera

for front view (Camera #2) and the Tripod-RGB camera (Camera #3).

The recorded video sequences contained typical difficulties which can lead to

segmentation errors mainly by the following reasons:

- shadows which can be detected as moving objects during the segmentation

process,

- variable illumination,
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Figure 3.4: RGB camera used for recording video data.

- occlusions caused by furniture like; chairs and table,

- entering and leaving the view of a camera,

- different clothes with different colours and textures.

A sample of images gathered from our experiments are shown in Figure 3.5.

3.2.2 Scenarios

The data recorded includes five different scenarios representing daily activities

that may occur in an older adult’s life. All these scenarios have only one per-

son in the scene. Falls were simulated in different directions with respect to the

camera view. Different types of fall incidents were recorded to include forward,

backward and sideways falls. A fall event takes about 3 seconds and each par-

ticipant performed three falls. In addition, there are 10 fall videos depict fall in

diverse directions. The five scenarios were developed to collect data suitable for

evaluation of fall detection algorithms. Each scenario involves a set of activities

and events performed by participants during data acquisition. Each participant

performed five scenarios, for a total time of 15 minutes per participant.

It was assumed that in real-life, people engage to some activities such as

reading books, or watching TV while maintaining various postures. Therefore,
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Figure 3.5: Sample frames for transition of normal daily activities including walk-
ing, sitting, lying down and bending are presented in the first four rows. Human
falls in various ways side way fall, backward fall and occluded fall are presented
in the last three rows.
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in order to gather realistic ADL data, these activities were considered in our

scenarios. For example, the ADLs of scenario 1 involve using a TV remote control

and watching TV while the person is sitting on a sofa.

Falls are abnormal events that occur during normal daily activities. Therefore,

the collected video sequences were developed to simulate falls during normal daily

activities. Various scenarios define a set of normal daily activities during which

falls can occur. For instance, in scenario 4, a person can be walking, then sitting

down for a moment, then stand up and fall on the floor. Therefore, the collected

data consist of a combination of static postures, transitions between different

postures, and fall events. A survey done by [104] demonstrates that older adults

tend to fall more when walking and when trying to get up from a chair or a bed.

Thus, the recording video sequences include these types of fall incidents. Table

3.1 shows types of ADL and falls in the recorded video data.

According to Noury et al.[19] a fall event involves four phases:

- The pre-fall phase, corresponding to normal daily activities.

- The critical phase, corresponding to the fall event. This phase is extremely

short, and can be detected by the high motion produced by a movement of

the human body towards the ground.

- The post fall phase, where the person is in a lying position on the ground.

Table 3.1: Details of various activities in our recorded datasets.

Activities Duration Number of
sequences

Sitting on a chair while reading a book 4 min 7
Sitting on a chair while drinking a cup of tea 3 min 7
Sitting on a sofa while watching TV 2 min 7
Laying on a sofa 3 min 7
Laying on a bed 4 min 7
Walking 1 min 35
Bending 15 sec 7
Fall forward 3 sec 10
Fall backward 3 sec 3
Side Fall 3 sec 17
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This phase can be detected by an absence of motion.

- The recovery phase, where the person is able to stand up or sit down after

a fall.

In order to perform fall events, participants were asked to deliberately simulate

falls onto a 25 cm mattress and then to remain lying on the mattress with no

motion. This process was performed for fall forward, fall backward, and fall side.

Participants fell onto a mattress as realistically as possible. The following list

gives the details of these scenarios.

- Scenario 1 sitting room: The participant is asked to sit comfortably in the

sofa and watch Television for approximately 5 minutes. The person is then

asked to walk close to the TV and pick up a remote, on the way back to

the sofa, he/she is asked to simulate a fall. The simulated fall in this setup

involves a mattress laid on the floor in the sitting room in-between the TV

set and the sofa. When the participant is close enough to the mattress

he/she is asked to simulate a fall.

- Scenario 2 kitchen: The participant is asked to walk to the sink, fill the

kettle up with water and prepare a cup of tea. He/she is asked to walk to

the sitting area and sit for approximately 3 minutes.

- Scenario 3 dining area: The participant is asked to sit down at the dining

area for approximately 4 minutes and pretend to be having a cup of tea.

- Scenario 4 working area: The participant is given a newspaper and a story

book to read at the desk. He/she is asked to walk around the bedroom for

approximately 1 minute and then return back to the seat. After that, the

participant is asked to simulate a fall, so he/she stands up and falls down

to the floor.

- Scenario 5 bedroom: The participant is asked to walk around the bedroom

for a minute and then lie down on the bed. This is followed by an uncon-

trolled fall on the floor such that the participant gets up from the bed and

falls on the floor.
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The main goal of activity recognition approaches is to be able to perform the

recognition in videos coming from continuous streams of data. Given that, a

dataset that includes long videos in which continuous streams of activities occur

is needed [28]. Thus, for the fall detection dataset, considering more data in the

period before and after the fall could improve the system performance. Thus, a

feature vector extracted from a long video sequence will contain information in

the period of fall and also information in the period before and after the fall.

3.2.3 Participants

A challenge was encountered during the acquisition of data relating to falls by

the older adult. It is unethical to use older adults for performing falls due to

the potential risks to their health [82]. Moreover, only few falls occur each year

per older person. Thus, ADL and fall events in the acquired video data were

simulated by young healthy participants. All participants gave their informed

consent for inclusion before they participated in the study. Participants were

healthy and independent, and none of them presented gait problems. Table 3.2

presents information about the participants recruited for the experiment.

The collected dataset included a total of 7 participants. Two females and five

males were recruited. The ages of the participants was between 24 and 45 years,

heights were between 1.58 and 1.86 m, and weight were between 56 and 98.5 kg.

Age, weight, and height of the participants are provided in Table 3.2.

3.3 UR Fall Detection Dataset

In order to evaluate the efficiency of the proposed fall detection approach, ex-

periments have been conducted using publicly available datasets; the UR Fall

Detection dataset [62]. The UR Fall Detection dataset is widely used to test the

Table 3.2: Information about participants

Sex Age Height(m) Weight(kg)
Male 24− 45 1.67− 1.86 69− 97

Female 30− 37 1.58− 1.65 58− 78
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performance of various fall detection approaches in the literature.

3.3.1 Experimental Setup

The UR Fall Detection dataset includes front and overhead video sequences ac-

quired by two Kinect cameras. The first camera mounted at a height of 1 m from

the floor and the second camera placed at the ceiling with a height of 3 m. There

are 30 fall scenarios recorded by two Kinect sensors and an accelerometer. The

daily activities include: walking, sitting, bending, picking-up an object from the

floor and crouching down. The normal activities (30 scenarios) were collected us-

ing one kinect sensor parallel to the floor, and 10 sequences with fall-like activities

such as quickly lying on the floor and lying on the bed. Five participants were

asked to perform daily activities and simulate falls. The dataset was recorded at

30 frames per second. The number of images in the video sequences containing

fall events is equal to 3000, whereas the number of images in video sequences

with ADLs is equal to 10000.

Falls were simulated in different directions with respect to the camera view.

Different types of fall incidents were recorded to include forward, backward and

sideways falls. Participants performed falls from standing position and from

sitting on the chair. Frame samples taken from the UR Fall Detection dataset

are shown in Figure 3.6. For the proposed fall detection approach, only video

data from RGB camera are used.

3.4 Le2i Fall Detection Dataset

The Le2i fall detection dataset [25] contains 249 videos, 192 videos represent falls

and 57 videos represent daily activities. The activities of daily living include

walking in different directions, sitting down, standing up and crouching down.

The video data were recorded in four different locations; home, coffee room,

lecture room and office. The data was acquired by a single RGB camera placed 2m

high from the floor. Participants attempted to simulate daily activities and falls
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Figure 3.6: Sample frames from UR Fall Detection dataset. Upper row images are
normal daily activities including sitting, lying down, crouching down and bending
over. Second row images are fall-like activities including; laying on the floor and
laying on the bed. Lower row images are human falls in various ways [62].

in different directions. A number of video sequences represent some difficulties

such as; occlusions, cluttered, textured background, shadows and variability in

illumination. The frame rate is 25 frame/s and the resolution is 320 x 240 pixels.

Frame samples taken from the Le2i fall detection dataset are shown in Figure

3.7. Table 3.3 represents the characteristics of different fall detection datasets

including; the UR Fall detection dataset, the Le2i fall detection dataset, and the

collected video dataset.

After the data acquisition process, each video data is converted into a number

of frames. Various computer vision techniques were applied to detect moving

object and extract features from consequent frames. The acquired video data is

used to extract the relevant features, providing the inputs for the fall detection

methods.
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3.5 Discussion

The collected video data set is intended for the evaluation of the proposed fall

detection approaches by combining daily activities and falls. In the present study,

to assess the detection performance of the proposed fall detection approach, ex-

periments are conducted on the video data recording dataset, UR Fall Detection

dataset and Le2i fall detection dataset. In this chapter, the experiments setup

for data collection are discussed. Various scenarios for daily activities and falls

are described in this chapter. In Chapter 5, 6 and 7, the collected data is used

Table 3.3: Characteristics of the different fall detection datasets.

Characteristics Le2i fall detection
dataset

UR Fall detection
dataset

Recording video data

Normal activities Normal activities like:
walking and sitting
but not lying down.

Some normal activi-
ties include: walking,
sitting, lying, bending
and crouching down.

Normal activities such
as: walking, sitting,
bending and lying.

Falls Different kind of falls. Several different types
of falls.

Several different types
of falls include person
partly occluded.

Participants Several participants
wearing different
cloths.

Several participants
with different cloth-
ing.

Several participants
with different types of
cloths.

Lighting Different light source,
including sun light
through window.

Different light source
represents variable il-
lumination.

Several light sources;
changing conditions
during day.

Setting Several different envi-
ronments include: liv-
ing room, office, cof-
fee room and lecture
room, with few pieces
of furniture.

Several different
rooms include: living
room and office, with
only small amount of
furniture.

Five different rooms
involve: kitchen, din-
ing room, living room,
bedroom and office,
with full of furniture.

Camera perspective One perspective. Two perspectives. Fixed perspectives us-
ing two CCTV cam-
eras placed upper cor-
ner of rooms. In ad-
dition, RGB camera
fixed on tripod.

Occlusions Person is partly occlu-
sion.

Few video sequences
represent person is
partially in view of
camera.

Occlusion caused by
furniture and person
exiting view of cam-
era.

Video length Short video sequences
(10− 45 sec).

Short video sequences
(2− 13 sec).

Video length between
(3− 6 min).
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Figure 3.7: Sample frames from Le2i fall detection dataset. First and second row
images are normal daily activities including standing, bending, and sitting down.
Lower row images are human falls in various ways [25].

to train and test the proposed approaches for fall detection.
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Chapter 4

Selected Features and Machine

Learning Techniques for Fall

Detection

4.1 Introduction

The proposed fall detection system includes four steps; data collection, foreground

segmentation, feature extraction and fall detection. Background subtraction is

implemented to segment out moving objects [94]. Afterwards, useful features such

as motion information, shape orientation, temporal change of the head and pro-

jection histograms for detecting fall from different daily activities are extracted.

The proposed system exploits motion, projection histograms and shape features

based on the observation that human falls often involve drastic shape changes

and abrupt motions as compared to other normal daily activities.

This chapter is organised as follows; Section 4.2 reviews various methods for

detecting and tracking moving object. Section 4.3 presents enhanced features for

the proposed fall detection approach. Machine Learning techniques for classifying

fall and non-fall activities are investigated in Section 4.4. A brief discussion is

presented in Section 4.5.
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4.2 Detection and Tracking of Moving Object

Moving objects detection in video streams is one of the important research prob-

lems. Various techniques have been developed to detect and extract foreground

object from a video sequence. Foreground object contains the interesting in-

formation to do further processing for several types of applications [119]. This

section reviews the state of the art related to various techniques for detecting and

tracking moving object in a video sequence.

4.2.1 Moving Object Detection

Identifying moving objects from a video sequence is a fundamental task in many

computer vision applications [94]. The objective of moving object detection meth-

ods is to utilise a video sequence acquired from camera and produce a binary im-

age representing moving objects for each frame of the sequence [119]. Jadhav and

Jyoti [55] mentioned that most common methods for moving object detection are

mainly the frame subtraction method, the background subtraction method and

the optical flow method. This section briefly classifies various methods available

for moving object detection from video.

4.2.1.1 Frame Subtraction Method

The work presented in [101] uses frame subtraction method to segment out the

moving object from background image. Firstly, the first frame is captured through

the camera. Secondly, the absolute difference is calculated between the consecu-

tive frames and the difference image is stored in the system. Thirdly, the differ-

ence image is converted into binary image. Finally, morphological filtering process

is used to remove noise [101]. According to [31] the frame subtraction method

is simple in implementation and has low computational requirements. However,

it is not suitable for detecting darker objects over/on a light background. Addi-

tionally, the main challenge of this method is the determination of an appropriate

threshold, since the result depends on the threshold used and lighting conditions

[31]. The main limitation of the frame difference method is that if the object

moves very slowly it might not be detected.
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4.2.1.2 Background Subtraction Method

The background subtraction method uses the difference between the current im-

age and the background image to detect moving objects. Various stages of the

background subtraction method are shown in Figure 4.1. The background image

is subtracted from the current frame. Any pixels with difference greater than

the set threshold can be classified as foreground pixels. The value of threshold

can change dynamically using the dynamic threshold method. This method can

effectively support the impact of light changes [55].

The basic idea of the background subtraction method is to initialise the back-

ground with the first input image. The subsequent images are then converted to

gray-scale and then subtracted from the background image at the pixel level to

produce a binary image as in ( 4.1) [119].

Rk(X, Y ) = Fk(X, Y )−B(X, Y ). (4.1)

RK is the absolute difference between the current and background images;

FK is the current image and B is the background image. If the value of pixel

level difference is lower than the threshold value, the object is considered to be

background pixel and assigned 0 in the binary image. Otherwise the pixel is

considered as foreground and assigned 1 as in (4.2) [55].

DK(X, Y ) =

{
0 background Rk(X, Y ) ≥ T ,

1 target Rk(X, Y ) < T.
(4.2)

There are many background subtraction methods used for segmentation for

instance: mean filter, W4 and inter-frame difference [96]. The mean filtering

method is calculated using the mean of the last n frames. This is a fast, and

easy to implement algorithm. Mean filtering also uses an adaptive background

calculation. The drawbacks are that the accuracy of this method depends on

object speed and the memory requirement is very high [96]. Inter-frame difference

method subtracts the corresponding pixel value of the front from that of the back.

If the result is less than a certain threshold, there is no moving object target

otherwise; there is a target [67].

The work done by [114] proposes a new inter-frame difference algorithm for
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Figure 4.1: Background subtraction method.

moving target detection. This algorithm is based on three- frame- difference

methods in combination with the background subtraction method. The opti-

cal flow method detects the optical flow change of each pixel in the image to

distinguish the moving target from the background. This method can detect the

moving object from the background without the effect of motion background [35].

4.2.1.3 Statistical Methods

Statistical methods have been utilised to overcome the shortcomings of back-

ground subtraction techniques. Statistical methods are mainly based on dynam-

ically updating statistics of the pixels belonging to the background image [119].

Some studies based on using statistical methods such as Gaussian Mixture Model

(GMM) and Hidden Markov Model (HMM) for detecting moving objects in video

sequences are presented below.
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Gaussian Mixture Model (GMM) [84] uses the moving object distribution in

the first frame of the video sequences to localise the object in the next frames by

tracking its distribution. The GMM has been used widely for modelling dynamic

background as it can represent a complex distribution of each pixel. Moreover,

GMM is computationally intensive and very sensitive to sudden changes in global

illumination which can turn the entire frame into foreground [94]. The GMM

is a complex technique because it uses a different threshold for each pixel and

has many parameters to update, which reduce its speed. These limitations can

be overcome using the Approximated Median Filter (AMF) that achieves good

performance with simple implementation. However, it is slow to adapt to larger

change in background. The AMF needs many frames to learn the new dark

background [96]. Median filtering is a nonlinear single processing method. It is

widely used to remove noise from images while preserving edges. The median

filter works by replacing each pixel value with the median value of neighbouring

pixels. The pattern of neighbours is called the window. The median is computed

by sorting all the pixel values from the window into numerical order, and then

replacing the pixel being considered with the middle pixel value [129].

Hidden Markov Model (HMM) is widely used for object background subtrac-

tion. It represents the intensity variations of a pixel in an image sequence as

discrete states. The HMM can be used in the context of detecting light on/off

events in a room [35].

4.2.1.4 Optical Flow Methods

Optical flow methods uses the flow vectors of moving objects over time to detect

moving regions in an image. In this approach, the apparent velocity and direction

of every pixel in each frame are computed. This method is effective to detect

motion in video sequences even from a moving camera and moving background.

However, most of the optical flow methods are computationally complex and

time consuming [119]. Because the sensors that will be used here will mainly

be stationary there will be no added advantage to consider this computationally

intensive approach.
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4.2.1.5 Morphological Operations

Moving object detection is not an easy task due to many challenges involved in

detecting moving objects in video sequences captured by cameras. Some of the

challenging issues includes: sudden changes in the speed and direction of the ob-

jects motion, occlusion, shadows and reflections [119]. Post processing techniques

are widely applied to remove these false errors in the output images. Morpholog-

ical operations and connected component labelling were used as post processing

techniques to remove false errors and refine the edge of resulting moving object

on the binary image. The fundamental morphological operations are listed below.

- Dilation operation is basically used for filling the holes in a continuous ob-

ject. The dilation operation gradually enlarges the boundaries of foreground

regions. Therefore, areas of foreground objects become larger while holes

within those areas become smaller.

- Erosion operation is the complement of the dilation operation. That is

erosion operation results in loss of boundaries of foreground regions. Thus,

areas of foreground objects shrink in size, and holes within those regions

become larger.

- Opening operation is defined as an erosion followed by a dilation. Opening

operation generally smoothes the outline of foreground objects by removing

some of the foreground pixels from the edges of foreground regions.

- Closing operation is defined as a dilation followed by an erosion. Closing

operation smoothes sections of contours, blends narrow breaks and fill gaps

in the boundaries of foreground regions [88].

4.2.2 Moving Object Tracking

A video tracking system usually has three stages: object extraction, object recog-

nition and tracking, and high-level decisions about the object [85]. The aim of an

object tracker is to recognise the motion trajectory of an object as video frames

progresses by identifying the objects position in every frame.
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Tracking moving objects depends on many features which describe the appear-

ance of the objects. These features may include edges, colour, gradient, texture,

optical flow and Spatio-temporal features. Colour feature descriptors are used

to increase the discriminative power of intensity based descriptors. Gradient fea-

tures are important in human detection. For example, the shape or contour of the

human body is used in gradient based methods to represent the human body. In

[117] a contour based object tracking algorithm was implemented to track object

contours in video sequences.

Firstly, the active contour is segmented using the graph cut image segmenta-

tion method. The resulting contour of the previous frame is taken as initialisation

in each frame. The new object contour is detected using intensity information of

the current frame and the difference between the current frame and the previous

frame. According to [26] contour based methods can achieve a high tracking pre-

cision; however, the computing cost of these methods is usually high, especially

for large and moving objects. There are various contour tracking approaches such

as snakes active contour models, which are effective in extracting object contours

and tracking them in the video [117]. Using region-based object tracking models,

objects are tracked by considering the colour distribution of the tracked object.

However, these methods are not suitable when multiple objects move together in

the image sequences. The basic idea of region based method is to track objects

with the similarity measure of object region. The new similarity measure in the

spatial feature space can effectively cope with the translation and scaling of the

object. However, it does not consider the rotation invariance [26].

Kalman filter is a set of mathematical equations that provide an efficient

computational means to estimate the state of a process [26]. The Kalman filter

can be defined as an optimal recursive data processing algorithm composed of

two stages: prediction and correction. The first stage includes the prediction of

the next state variable using the current set of observations. The second step

gradually updates the predicted values and gives a much better approximation

of the next state [94]. The Kalman filter stages are shown in Figure 4.2. The

Kalman filtering approach can be used to track points in noisy images [16].

After detection of moving object by background subtraction algorithms, the

next step is to track the extracted the human silhouette from frame to frame to
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Figure 4.2: The basic stages of Kalman filter.

analyse behaviour. Tracking human silhouette is done by extracting combination

of some features from the shape of the human silhouette. The ability to distin-

guish a fall action depends mainly on the quality of the classifier input, therefore,

the features of the extracted human silhouette play a key role in the effectiveness

and robustness of detecting human falls [110].

The next section will introduce the implementation of methods to extract

these features covered by this research.

4.3 Enhanced Features for Fall Detection

The feature extraction process includes applying background subtraction algo-

rithms to extract the human silhouette, and combination of some features from

the shape of the human silhouette. These features retain the motion informa-

tion of actions and includes the motion, changes in orientation, changes in head

position and histogram features are extracted from the human silhouette. The

extracted features are used to decide whether there is a fall or not. This section

presents details on how the features are extracted.

The first step of the system is to analyse the motion occurring in a given time

window, using the tMHI [66]. The proposed method is based on the assumption

that the motion is large when a fall occurs. Based on this assumption, the

proposed system aims to detect a large motion of the person in the video sequence

using tMHI. The motion is quantified by calculating the pixel value of motion

history image blob in the current frame, which is then divided by the number of

pixels in the human blob. A large motion does not necessarily signify a fall, as

activities like fast walking or running may also exhibit such characteristics [95].

Considering that the first step is not sufficient, a second step is also considered

to analyse the change of the human shape to identify a fall among other activities.

Analysis of the moving object is performed by fitting an approximate ellipse
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around the human body. The orientation of fitted ellipse provides information

about the body posture [41]. After ellipse fitting, the orientation of the ellipse

and the ratio between the major semi-axis a and the minor semi-axis b are taken

as features to describe a human body posture in a general way. However, these

features alone are not sufficient to describe postures in detail for distinguishing

different postures [121], therefore more features are needed.

It is assumed that human fall have greater motion than other daily activates

like walking or sitting. However, focusing only on a fast motion can result in many

false alarms during fall-like activities like sitting down quickly [61]. Therefore,

combining motion with other features extracted from the fitted ellipse around the

human body helps to discriminate actual fall from other activities. After ellipse

fitting, the orientation, the ratio, the major semi-axis and the minor semi-axis

are taken as a feature to describe a human body posture. The motion feature

Cmotion indicates the changing rate of human motion and orientation feature θ

indicates the changing rate of human shape [9].

Common fall detection algorithms are based on the fact that the fall activity

have high acceleration than other normal activities. This study highlights the

situation when human fall can occur with low motion rate. A typical example

is when a person loses balance and holds onto a furniture to prevent a fall and

yet falls on the ground. Therefore, the third feature which is the projection

histogram feature is applied to confirm a fall event. Furthermore, the proposed

fall detection approach applies another feature; tracking of the human head in

subsequent frames to deal with occlusion problem. Occlusion can occur when a

relevant area of the bottom of a person is covered or when a person moves behind

an object and consequently part of his/her body disappears [32]. Tracking the

head position of the person can provide useful information in such instances as

they tend to be visible most of the time. Also in a fall situation there is more

movement toward the head than the lower part of the body. The bounding box

was used to surround the foreground object, then the y-coordinate of the top

left point of the bounding box is computed and the absolute difference of y-

coordinates in successive frame are used as features to fed into various machine

learning algorithms for fall and non fall events classification.
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4.3.1 Motion History Images

Motion History Image (MHI) has been used widely to extract the motion from

video sequences. The MHI indicates the speed of the movement; therefore, if

a person conducts unusual activities such as fast walk or run, this method will

return a high value as the result. In [116], MHI was used to extract motion

from the video sequences. After that, the standard deviation of (a) the motion

quantification and (b) orientation of the ellipse were employed to distinguish a

fall from other activities; for instance, walk, sit and lie.

The MHI method is an approach based on template matching. The MHI

method can provide useful motion information of a moving object and it is in-

sensitive to illumination change and occlusion. These advantages make the MHI

method suitable for motion analysis in challenging scenarios [66].

Suriani and Hussain [105] employed two motion features namely, Motion His-

tory Histogram (MHH) and Motion Geometric Distribution (MGD) to distinguish

the transition state between walking and falling. The geometric distribution of

motion can be used to identify spatial abnormalities in an event such as a sudden

fall. In addition, MHH is used to differentiate between other multiple actions like

walk, run, sit and fall.

The work of [116, 105, 8] highlighted that the MHI method is simple to calcu-

late and has been employed widely for various action-recognition tasks. Although,

MHI is easy to implement, it has the limitation of viewpoint dependence and loss

of information in the projection from 3D to 2D [8]. Indeed, [7] points out that

the main restrictions of MHI are the motion self-occlusion and motion overwrit-

ing which lead to loss of important information. Additionally, MHI is dependent

on the temporal duration value and it cannot perform well with variable length

action sequences.

To overcome some of the constrains of the MHI method, a variant of the

MHI, like the timed Motion History Image (tMHI) method can be used. In [20],

the tMHI method is employed with silhouette pose recognition which provides a

potentially useful tool for gesture and motion recognition. In addition, the tMHI

is used by [95] for motion segmentation to track objects in real time. In this

study, the tMHI method will be used for motion segmentation. This method
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makes the representation independent of the system speed or frame rate, so that

tMHI can cover the same MHI area at different capture rates. Detailed discussion

as to why this method was chosen will be addressed in the Section 4.3.1.1.

4.3.1.1 Timed Motion History Image

The MHI is generalised by directly encoding the actual time in a floating point

format, which is called timed Motion History Image (tMHI) [95]. With tMHI,

representation can be used to determine the current pose and also measure the

motion of an object. In general, the tMHI is updated by time stamps of the video

sequence, rather than the frame numbers [8]. This method makes the represen-

tation independent of the system speed or the frame rate. One can conclude that

tMHI provides coherent motion information to represent the motion trail of a

moving object over time [66]. The motion history image contains the trajectory

information of the action being performed and recent motion is emphasised more

than past motion [48].

When the human body region is extracted, the motion activity of the seg-

mented foreground object is measured by generating a timed motion history im-

age (tMHI). The tMHI image is computed as:

tMHIδ(x, y) =

{
τ if current silhouette at(x, y).

0 if tMHIδ(x, y) < (τ − δ).
(4.3)

where τ is the current time-stamp, and δ is the maximum time duration constant

(typically a few seconds) associated with the template [8, 95].

Compared to tMHI, MHI refers to an image where the pixel intensity repre-

sents the recency of the motion in the image sequence, and therefore gives the

most recent movement of the person during an action [8]. A MHI image has the

same size as the input image and contains motion information associated with

any action in the frame. A Motion History Image (Hτ(x,y,t)) at time t and location

(x, y) is defined by the following equation:

Hτ (x, y, t) =

{
τ if D(x, y, t) = 1,

Hτ (x, y, t− 1) , otherwise,
(4.4)
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where D(x, y, t) is a binary sequence of motion regions which is obtained from

the original image sequence using background subtraction method. Each pixel of

Motion History Image Hτ is a function of the temporal history of the motion at

that point occurring at fixed duration τ (with 1 ≤ τ ≤ N for a sequence of length

N frames) [8].

4.3.1.2 Quantify the Motion

To quantify the human motion, it can be calculated using pixel values of motion

history image, divided by the number of pixels in human blob. The coefficient

of motion Cmotion based on the motion history image can be computed as shown

below:

Cmotion =
Σpixel(x, y) ∈ blob Hτ (x, y, t)

#pixels ∈ blob
. (4.5)

A coefficient Cmotion is computed based on timed motion history image using:

Cmotion =
Σpixel(x, y) ∈ blob tMHIδ(x, y)

#pixels ∈ blob
. (4.6)

The term blob, refers to the silhouette of a person extracted using the background

subtraction method, and tMHIδ means the timed Motion History Image. The

value of Cmotion is a percentage ranging from 0% (no movement) to 100% (maxi-

mum movement) [92].

4.3.2 Approximated Ellipse

One of the conventional methods for detecting a fall from video sequences is to

represent the human shape using the bounding box method. This method is

simple and easy to implement [87]. The bounding box attributes of height and

width are used to represent the human physical shape. The approach proposed in

[33] extracts four features from the bounding box around the human silhouette to

describe a fall. The features are the aspect ratio, fall angle, centre speed and head

speed. A Support Vector Machine classifier is then employed to detect the fall

using these features. However, The major drawback is the inadequate description

of human motion by simply using a bounding box [122].
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The other effective model is to represent the human in the video using an

ellipse. The study in [46] presents a novel method to detect falls which combines

the orientation angle and the ratio of a fitted ellipse around the human body,

motion coefficient and silhouette threshold features. The extracted features are

then used as inputs to a KNN classifier to classify fall events. The accuracy of the

system was 95%. The authors in [25] used fourteen features extracted from the

bounding box including height, width, aspect ratio, centroid coordinates of the

box and ellipse orientation for fall detection. Fourier and wavelet transformations

were then applied to these features before fall detection by using either SVM or

adaptive boosting algorithm. Using the Le2i fall detection dataset, they achieved

specificity of 100%, an accuracy of 99.9% and recall of 98%. The work presented

in [69] proposes a fall detection approach using a Gaussian mixture background

model to build the background. MHI is applied to analyse the fall behaviour

and the orientation and the ratio of the ellipse are computed to represent the

variation in the shape of the human object. In addition, two extra features,

acceleration and angular acceleration, are computed to improve fall detection

accuracy. However detailed performance data was not provided.

The ellipse model is a simple model describing the motion or the shape of

the human body. In this model, a single object is surrounded by an ellipse. The

approximated ellipse offers information in relation to the shape and orientation of

the person in the image [41]. There are three important parameters of the ellipse:

a) the vertical angle of the object (current angle), b) the major axis of the object

and c) the minor axis of the object. In [120] , analysis of the moving object is

performed to detect a change in human shape; particularly in orientation and

proportion.

The moving object is approximated by an ellipse using a moment-based method

[44]. The general form for calculating the moment of any two variable functions

is given as:

mpq =

∫ +∞

−∞

∫ +∞

−∞
xp yq f(x, y)dxdy, (4.7)

for p, q = 0, 1, 2... and binary image f(x, y), the moments of order (p+ q) is given

by:
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mpq =
∑
x,y

xp yqf(x, y) with p, q = 0, 1, 2, 3 . . . (4.8)

To calculate the region of interest in a binary image f(x, y), one will have to

calculate its zeroth moment as:

m00 =
∑
x,y

x0 y0 f(x, y). (4.9)

Therefore, the x0 ,y0 do not have any effect and can be removed. x0 = 1 and

y0 = 1. Thus, the zeroth order moment, m00 of the image f(x, y) can be defined

as:

m00 =
∑
x,y

f(x, y). (4.10)

The above equation counts all the white pixels in an image. Therefore, the

zeroth moment represents the total area of the size of the image. To compute

the centre of the ellipse (x, y), the first and zero moments, m10,m01,m00 are

calculated as:

m10 =
∑
x,y

x1 y0 f(x, y), (4.11)

m10 =
∑

(x). (4.12)

The x is the coordinate of all white pixels (where f(x, y) = 1) is summed.

m01 =
∑
x,y

x0 y1 f(x, y), (4.13)

m01 =
∑

(y). (4.14)

The y is the coordinate of all white pixels (where f(x, y) = 1) is summed. After

calculating the sum of the x and y coordinates of several pixels, the average is

computed by dividing each moment by the number of pixels in the image.
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x̄ = m1,0/m0,0 , ȳ = m0,1/m0,0. (4.15)

The coordinates x and y of the centre of the image are described by the spatial

moments of first order m10 and m01 divided by the zero order moment m00. After

that, basic moments of order 0 to 2; m01, m10, m20, m02, and m11 are calculated

as follows:

m20 =
∑
x,y

x2 y0 f(x, y), (4.16)

m02 =
∑
x,y

x0 y2 f(x, y), (4.17)

m11 =
∑
x,y

x1 y1 f(x, y). (4.18)

These moments are then used with the centroid (x̄, ȳ) to compute the central

moments µ11, µ20 and µ20 as follows:

µpq =
∑
pq

(x− x̄)p (y − ȳ)qf(x, y), (4.19)

with p, q = 0, 1, 2, 3..., therefore:

µ11 =
m11

m00

− x̄ ∗ ȳ, (4.20)

µ20 =
m20

m00

− x̄2, (4.21)

µ02 =
m02

m00

− ȳ2. (4.22)

The central moments µpq of the image is required for computation of the

orientation of the ellipse. The angle between the major axis of the person and

the horizontal axis, gives the ellipse orientation and can be computed with the

central moments of second order. The orientation describes the direction of the

major axis and is within the range −π/4 ≤ θ ≤ π/4 and it is defined as:
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θ =
1

2
arctan(

2µ11

µ20 − µ02

). (4.23)

The eigenvalues Imin and Imax are given by:

Imin =
µ20 + µ02 −

√
(µ20 − µ02)2 + 4µ2

11

2
, (4.24)

Imax =
µ20 + µ02 +

√
(µ20 − µ02)2 + 4µ2

11

2
. (4.25)

Then, the major semi-axis, a, and the minor semi-axis, b, of the best fitting ellipse

are given by:

a = (4/π)1/4
[

(Imax)
3

Imin

]1/8
, (4.26)

b = (4/π)1/4
[

(Imin)3

Imax

]1/8
. (4.27)

The ratio of the ellipse is computed by ρ = a/b [41].

Fitting an ellipse is insufficient to describe the posture of the human body in

detail and it might be hard to differentiate two postures by using only the global

information [121]. Therefore more information from local features is required

to describe different postures. A widely used feature to describe such detailed

information is the projection histogram. The projection histogram features are

computationally efficient to derive and produce a good performance for posture

classification [120, 70]. The work in [120] presents fall detection using the in-

formation from ellipse fitting and a projection histogram along the axes of the

ellipse to distinguish different postures of the person. The system achieves a high

fall detection rate of 97.08% in a simulated home environment. Similarly, the

approach presented in [123] is based on measuring a temporal variation of pose

change and body motion to detect falls. Several measures such as centroid veloc-

ity, head-to-centroid distance, a histogram of oriented gradients and optical flow

were computed. The system can correctly classify 90.6% of falls. A comparison

amongst several fall detection systems was performed in [22], showing sensitivities

from 71% to 100%, specificity from 73% to 100% and accuracy of 84 to 94%.
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4.3.3 Projection Histogram

The horizontal and vertical projection histogram of foreground object is obtained

by calculating the number of foreground pixels row wise and column wise. The

foreground F image is donated as cloud of 2D points with (xp, yp) as the pixel

coordinates. The horizontal projection histogram Hz(y) of foreground F can be

defined as cardinally of set of points as follows:

Hz(y) = |(xp, yp) ∈ F, (yp = y)| . (4.28)

Similarly, vertical projection histogram V t(x) can then be computed as follows:

V t(x) = |(xp, yp) ∈ F, (xp = x)| . (4.29)

For each activity, the horizontal and vertical projection histograms are com-

puted for each frame. Then, the maximum values of foreground pixels in the

horizontal and vertical histograms, as well as the difference between maximum

values are calculated to effectively discriminate fall among other activities [43].

4.3.4 Temporal Changes of Head Position

The reason to track the head is mainly because it is visible in the scene and it has

a large movement during the fall. When the fall occurs the head moves abruptly

and its displacement would be large, thus, it is aimed to estimate a person’s

head position in every frame of a video sequence. In order to determine the head

position, the top left detected point of silhouette is marked. Firstly, silhouette

is enclosed by minimum bounding box and then the top left detected point of

the bounding box is marked in each frame. In addition, the absolute difference

values of top left point of the head over successive frames are obtained and forms

feature vector, which represents the vertical displacement of the head point [43].

In the moment when a fall occurs, the y-coordinate of the person’s head

increases significantly, which leads to considerable variance in the vertical velocity.

Consequently, the y-coordinate of the person head was selected as a feature for fall

identification. In addition, the standard deviation of y-coordinate σy is calculated

as:
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σy =

√√√√ 1

N − 1

N∑
i=1

|yi − µy|2, (4.30)

where yi is the y coordinate which is calculated from the ith frame; µy represents

the average value of y within the specified number of frames; N is number of

frames [116].

The absolute difference of consequences y-coordinates are also used as a fea-

ture for fall detection. The difference in y-coordinate is computed as:

dy = yi − yi−1, (4.31)

where yi is the y coordinate of human head in the ith frame and yi−1 is the y

coordinate of the human head in the (i − 1)th frame. Moreover, the standard

deviation of absolute difference of y-coordinate of the head is calculated using (

4.30).

4.3.5 Selected Features

Based on the information provided in the preceding sections, for each video se-

quence, the moving object is detected and 10 unique features represented in the

feature vector F are used to identify falls. The selected feature vector is given

by:

F = [Cmotion, θ, ρ, a, b,Hz(y) − V t(x), y, σy, |yi − yi−1| , σ|yi−yi−1|], (4.32)

where the individual features are as follows:

- coefficient of motion Cmotion - defined in ( 4.6),

- the orientation of the ellipse θ - defined in (4.23),

- the major semi-axis a,

- the minor semi-axis b of the ellipse and,
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- the ratio of the ellipse ρ - i.e. the ratio of a/b where a and b are defined by

(4.26) , (4.27),

- the difference between the horizontal and vertical projection histograms

Hz(y) − V t(x) - which are defined by ( 4.28) and (4.29),

- the y-coordinate of the head point y,

- the standard deviation of y-coordinate σy - defined by (4.30),

- the absolute difference of y-coordinate dy - defined by (4.31),

- the standard deviation of the absolute difference of y-coordinate σ|yi−yi−1| -

defined by ( 4.30) as applied to dy.

4.4 Machine learning techniques

In this section, some of the machine learning techniques used in fall detection are

reviewed. These techniques are used later on in this thesis in Chapter 6 and 7 for

fall classification. The utilised techniques are briefly described in this section.

4.4.1 Artificial Neural Network

Artificial Neural Network (ANN) has been applied widely on human pattern

recognition due to its capability to learn from data and create a network model.

The network model can be applied on new data which was not previously exposed

to the network for classification. The ANN is a model consisting of a collection of

inputs and processing units called nodes or neurons. The neurons are arranged

into three layers: input layer, hidden layer and output layer. Each neuron per-

forms the simple operation to process these inputs and produce the output and

then the output is forwarded to the next node or neuron in the sequence[108].

The neurons, which consist of an activation function φ(W − T ), where W is the

weighted sum of the inputs and T is the bias value. The weights are initialised to

small random values and updated during the training process. The weighted sum

W is given from inputs 1,2,3,... to n and associated weights as shown in (4.33).
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Figure 4.3: The learning process of a single neuron of the neural network.

W =
n∑
i=1

weighti × inputi. (4.33)

A number of input vectors are provided to the algorithm in order to determine

the corresponding desired output. There is an error created at the output layer

when the input data is presented to the system. The error represents the difference

in value between the real system output and the desired response value. The error

is fed back into the ANN system to adjust its weights through the use of a learning

rule [11].

During the learning phase, a set of training input vectors are presented at

the input layers which are feature vectors and their corresponding desired output

vectors. Initially random weights are assigned to the set of nodes. The ANN ad-

justs the weights attached to the connections according to the difference between

the network’s output and the desired output for that input vector. The more

this difference is reduced the better for the classification outcome. The learning

process of a single neuron is shown in Figure 4.3.

A single neuron in the network can be represented as follow:

Yj = fj
∑

Wij × xi, (4.34)

where xi is data input to the neural network, Wij represents weights between ith

neuron of previous layer and jth neuron of the current layer and fj represents

the activation function. There are various activation functions including: linear,
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sigmoid and hyperbolic tangent [124].

The ANN used in this study are based on the principles of the Multi-Layer

Perceptron (MLP) network with Back Propagation (BP) learning algorithm be-

cause it is easy to train and for its accuracy. The process of the BP can be

divided into two operations, feed forward and back propagation operations. In

the feed forward operation, input features are fed to the input neurons. Then the

back propagation adjust the output through adjusting the weights of the network

[108].

A cross validation method is applied to estimate and evaluate the performance

of the learning model. Section 4.4.5 presents various cross validation methods.

Several training algorithms for ANN are based on the conjugate gradient algo-

rithms. In this research, a variation of the conjugate gradient algorithm known

as Scaled Conjugate Gradient (SCG) algorithm is used to train the feed forward

neural network. The next section briefly introduces this algorithm.

4.4.1.1 Scaled Conjugate Gradient Algorithm

The learning process of the ANN often involves adjustments of weights. Opti-

misation methods such as conjugate gradients that are applicable to large scale

problems are used as alternatives to the learning algorithms. The SCG is a su-

pervised learning algorithm based on a class of optimisation techniques known

as the Conjugate Gradient methods. The SCG is faster than the standard back-

propagation algorithm. The SCG avoids time consuming line search per learning

iteration by using the step size scaling mechanism, which makes the SCG algo-

rithm considerable faster than the other second order. The minimisation strategy

of the SCG algorithm is a local iterative process in which an approximation to the

function in a neighbourhood of the current point in weight space is minimised.

The training algorithms based on the gradient descent methods usually have

a poor convergence rate and depends on parameters specified by the user. The

values of these parameters are often crucial for the success of the algorithm.

The SCG algorithm combines Levenberg-Marquardt algorithm with a conjugate

gradient approach.

In our experiments, the neural network is trained using the SCG Back-propagation
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algorithm. The SCG algorithm selected is fast to train and even with few training

data, it is capable of generating acceptable results [79].

4.4.2 Support Vector Machine

The Support Vector Machine (SVM) algorithm is widely applied for classifying

data [29]. The principle of the SVM algorithm is to map the input space into

a higher dimensional feature space using a kernel function and then define the

optimal separating hyperplane in the transformed space to distinguish between

classes [23]. The optimal hyperplane for the SVM means, the one with the largest

margin between the two classes, so that the distance to the nearest data point

of both classes is maximised. Such a large margin means the maximal width of

the tile parallel to the hyperplane that contains no interior data points and thus

incorporating robustness into the decision making process [125].

The support vectors are the training data points that are closest to the sep-

arating hyperplane; These points represent the maximum-margin hyperplane for

the training data. The SVM algorithm finds the optimal separating hyperplane

to map each feature vector into its corresponding label space. Figure 4.4 shows

the SVM maximum-margin hyperplane.

Different kernel functions can be chosen during the classification process namely;

linear, polynomial, and Radial Basis Function (RBF) [50]. The kernels defined

are:

- Linear: K(xi, xj) = xi.xj

- Polynomial: K(xi, xj) = (xi.xj+1)d, where d is the degree of the polynomial

kernel.

- quadratic kernel function: K(xi, xj) = (xi.xj + 1)2

- Radial basis function: K(xi, xj) = exp[−γ ||xi − xj||2]

4.4.3 K Nearest Neighbour

The KNN classifier is a supervised machine learning technique which works well

on many classification problems. The KNN has been widely applied in a large
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Figure 4.4: SVM maximum margin hyperplane [4].

number of classification and regression problems, including human behaviour

recognition and fall detection [57]. KNN as a non-parametric method, is use-

ful in classification tasks, where the decision boundary is very irregular. The

main idea of the KNN method is to find a predefined number of training samples

closest in distance to the classified example, and then to predict the label from

these samples. KNN simply uses the training data itself for the classification and

requires no learning process [13]. Thus, the cost of the learning process is zero

and all the cost is dedicated to determining the decision. The decision is the most

common label among the K closest neighbouring points. The parameters of the

algorithm are the number of K neighbours and the procedure for combining the

predictions of the K examples. Changing K can alter the decision of the classifier

[63]. Various voting strategies in the literature are: Standard voting, Weighted

voting, and Distance-based voting. The main concept of the KNN classifier is

shown in Figure 4.5.

Given a test sequence x, its k closest neighbors yi...yk are found and voting is

conducted to assign the dominant class to x. This class of x is denoted by c(x),

and determined by the following equation:

C(x) = argmaxc∈C

k∑
i=1

δ(C(yi), C(xi)). (4.35)
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Figure 4.5: The main concept of KNN [2] .

where C(yi) is the class of (yi) [124].

4.4.4 Bagging

Bootstrap aggregation also known as (bagging) method is proposed by Breiman

[21] in order to improve the precision of classification results. Bagging method

is widely applied to reduce the variance and increase the prediction accuracy

of a learning algorithm by combining together hundreds or thousands of trees

into a single prediction model. This method takes training subsets from the

training data and produce a separate prediction model for each training subset

and average the resulting predictions as illustrated in Figure 4.6. Bagging can be

used for classification and regression problems.

The base version of bagging strategy performs experiments over various sam-

ples of the training data set. A classifier is generated for each of the training

samples by a selected machine learning algorithm. Thus, for N of training sam-

ples, there are N particular classifiers. The result will be given as a combination

of individual particular classifiers. There are other bagging strategies including:

- bagging like strategies- In this strategy, all the training sets are split into

N subsets of the same size and each subset is used to create one classifier.

A compound classifier is created as the aggregation of particular classifiers.
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Figure 4.6: Bootstapping and learning ensembles [1].

- the disjoint partitions strategy- In this strategy, if N subsets are selected

from the original training set, then each of them contains 1/N part from

the original set. For large training sets, partitions enable parallel learning

of base classifiers. Classifiers learnt on disjoint partitions reach the best

results from bagging like strategies.

- small bags strategy- In this strategy, each subset is generated independently

from the other subsets by random selection of training samples with the

possibility to select a subset repeatedly. A subset can be located in several

subsets. A combined classifier is obtained from the aggregation of particular

classifiers [72].

In the bagging method, individual decision trees are grown in deep. These

trees will have both high variance and low bias. The only parameters required

are the number of samples and the number of trees. A large number of models

may take a long time to prepare, but will not over-fit the training data [71].

4.4.5 Cross Validation

In the learning process, the data is split into two subsets: training and testing

data. The data is normally split into 70% for training data and 30% for testing.
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The learning algorithms such as artificial neural network are usually have an over

fitting problem. The over fitting problem occurs when the learning algorithm is

well trained on the training data and is poorly performed on the testing data.

Using cross validation method, the data is divided into three sets: training, val-

idation and test sets; training data used to train and learn a model, validation

set used to validate the model, test data used to estimate the error rate of the

trained model.

There are various methods used for cross validation. Commonly used methods

are listed below.

- Holdout cross validation: the test data is heldout during the training phase,

thus, there is no overlapping between the training and testing datasets. One

of the main drawback of this method is that all the validation data is not

used during the training phase and the system performance is dependent

on the choice of the training and testing subsets. Also, the data in the

testing set may be significant for training and if it holdouts, the performance

prediction becomes poor.

- K-Fold cross validation: the dataset is divided into k equally sized subsets.

The training and validation are performed in k iterations. In each iteration,

a model is trained on all subsets except one. The left out subset is used to

test the model. The advantage of K-Fold cross validation is that all data

samples are used for both training and testing.

- Leave one-out cross validation: all data samples except one observation are

used for training and one instance of data is used for testing. It is a special

case of K-fold cross validation.

- Repeated K-fold cross validation: the K-fold cross validation is executed

many times [73].

4.5 Discussion

In this chapter, various techniques for detecting moving object from image se-

quences are discussed. The implementation of methods to extract features from
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the foreground object are also explained. Some machine learning techniques

utilised for fall detection are reviewed in this chapter. In Chapter 6 and 7 the

extracted features along with machine learning techniques are used to implement

algorithm for fall detection of elderly. Chapter 7, will describe the experimental

results of applying machine learning techniques and a comparison between them.

The techniques are evaluated using datasets that are mention in Chapter 3.
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Chapter 5

Fall Detection Approach Using

Threshold-Based Methods

5.1 Introduction

Visual-based monitoring systems are capable of providing information on falls

and also other daily living behaviours. Falls can be detected by employing

an automatic fall detection algorithm using intelligent surveillance systems [87].

Threshold-based methods are widely applied to detect falls by using manually

pre-defined threshold values which do not require a learning step to classify falls

[64]. In this study, threshold-based methods to detect falls in a home environ-

ment are proposed. The first approach combines motion information and changes

in the orientation and the ratio of the ellipse to detect a fall event. The second

approach employs three features; motion information, human shape variation and

projection histogram to detect a fall.

This chapter is organised as follows: Section 5.2 presents the results of the

background subtraction. Section 5.3 presents a fall detection approach based on

a combination of motion information and change in the human shape. Section 5.4

presents a fall detection approach based on a combination of motion information,

orientation and projection histogram. Finally, the discussion of the results is

presented in Section 5.5.
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5.2 Background Subtraction Algorithm

The first stage for the proposed fall detection approach is the detection of moving

objects from a video sequence. This is performed via the background subtraction

algorithm explained in Section 4.4.1.

In the segmentation algorithm, the foreground images are extracted from the

background. The inputs to the segmentation algorithm are the background image

and the current frame. The idea is that any pixel in the current frame can be

part of the foreground if its value is different enough from its corresponding value

in the background reference image. Firstly, the RGB image is converted into

grey scale and then an absolute difference between the current frame and the

background reference frame is computed for each pixel to produce the binary

image.

Thereafter, a median filter and morphological operations are used to remove

the noise from the binary image, fill holes and remove small components as well as

improve the segmentation process. In our experiments, different window sizes for

the median filter and different combination of dilatation and erosion operations

were tested. The best results were obtained with a 5 × 5 median filter followed

by dilation operation.

Figure 5.1 shows the segmentation algorithm results for a person walking in

the room.

5.3 Fall Detection Based with Combination of

Motion Information and Change in Human

Shape

This section presents a novel approach for detecting falls based on a combination

of motion information and human shape variation. The motion information of a

segmented silhouette can provide a useful cue for classifying different behaviours.

Also, the variation in human shape can be used to estimate the pose and hence

fall events. The approach presented here extracts motion information, use the

variation in shape and in addition uses the best-fit approximated ellipse around
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a) b)

c) d)

Figure 5.1: Background subtraction algorithm results: a) the background ref-
erence frame, (b) the current frame, (c) binary image (d) the improved binary
image.

the human body to further improve the accuracy of fall detection. The proposed

approach combines a motion feature and a change of the orientation and ratio of

the ellipse features to detect a fall event.

An overview of the proposed system is presented in Section 5.3.1 and the

results obtained from the experiments are shown in Section 5.3.2

5.3.1 System Overview

The proposed approach is developed for fall detection in a home environment and

detecting a fall event based on motion information and changes in the orientation

regarding the shape of a person. An overview of our fall detection system is

shown in Figure 5.2. Firstly, background subtraction is implemented to segment

out moving objects. Afterwards, useful features such as motion, ratio and shape

orientation for detecting falls are extracted. To this aim, two features: motion

and changes in shape are combined for detecting falls.

The first step of the system is to analyse the motion occurring in a given time

window, using the tMHI [66]. The proposed approach is based on the assumption

that the motion is large when a fall occurs. Therefore, the proposed system aims

to detect a large motion on the person in the video sequence using tMHI. Then,

73



5.Fall Detection Approach Using Threshold-Based Methods

Figure 5.2: Flow diagram of the proposed method for human fall detection using
motion, ratio and orientation.

we quantify the motion by calculating the pixel value of motion history image

blob in the current frame, which is then divided by the total number of pixels

in the human silhouette [116]. Figure 5.3 shows typical MHI images for turning

around, walking and falling events.

A second step was taken to analyse the change of the human shape to identify

a fall among other daily activities. An analysis of the moving object is performed

by fitting an approximated ellipse around the human body. The orientation and

the ratio of the fitted ellipse provide convenient information about the body

posture [41]. Figure 5.4 shows the approximated ellipse around the human body

and changes in the ellipse orientation.
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Figure 5.3: MHI images for some activities.

Figure 5.4: The change in orientation of human shape.

5.3.2 Combination of Motion Information and Change in

Orientation

In order to evaluate the performance of the proposed fall detection approach, it

is tested using the publicly available, Le2i fall detection dataset. Our proposed

system considers an indoor environment with a stationary camera monitoring
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a single person. Table 5.1 illustrates the changes on the orientation and the

ratio of ellipse during daily activities and simulated falls. For each activity, the

orientation and ratio are computed for every frame. Based on previous study

[43], the length of the sliding window is 2 seconds and the number of frames per

window is 30 frames.

The size of the tMHI is 240 × 320, which is the same width as that of the

frames in the videos. The tMHI is dependent on the duration, τ , and the decayr, δ.

The duration indicates the temporal extent of the movement. Different duration

values produce different tMHIs.

For each activity, we compute the orientation and ratio of the ellipse in each

frame. Then, the standard deviation of the orientation and the ratio are computed

using (4.30). The coefficient of motion values are used for fall detection. When

a fall occurs, a large motion appears (high Cmotion ) with a significant change in

orientation and ratio, as shown by their standard deviations in Table 5.2.

Based on our experiments, we consider that a large motion is a fall if:

Table 5.1: The change in orientation, θ, and ratio, ρ, of the approximated ellipse
fitting for five different postures: walk, sit, bend,lie on the sofa and fall.

Activity Orientation(θ) Ratio(ρ)
Walk 1.527 3.576
Sit down 1.420 1.4756
Bend down 1.3407 2.5921
Lie on the sofa 1.1431 1.8622
Fall 0.5374 3.324

Table 5.2: Results of the combination of motion information (coefficients Cmotion),
and the change of human shape (standard deviation of orientation, σθ, and stan-
dard deviation of ratio, σρ).

Activity Cmotion σθ σρ
Walk 19.18 0.6831 0.4469
Sit 24.49 0.9394 0.0718
Bend 43.02 0.079932 0.2631
Lie 61.82 0.3608 0.2006
Fall 74.85 0.7460 0.4375
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Figure 5.5: The values of the standard deviation of orientation and ratio of the
fitted ellipse around the human body silhouette.

1. Cmotion > 65%,

2. the standard deviation of orientation, σθ, is higher than 0.60 and,

3. the standard deviation of ratio, σρ, is higher than 0.35.

These thresholds were chosen manually based on observations of our video

sequences. Figure 5.5 shows various activities with the corresponding values of

the standard deviation of the orientation and the ratio.

For walk, bend and sit down activities, no large motion is detected and Cmotion

is lower than 65%. Therefore, the algorithm stops at the first step because of

low motion. For lie activity, the motion is large and a possible fall is consid-

ered. However, the orientation standard deviation and the ratio standard devi-

ation are below the fixed thresholds. Consequently, no fall is detected. The fall

event was detected because the Cmotion was higher than the selected threshold,

Cmotion = 74.85 and the standard deviation of the orientation, σθ, and the stan-

dard deviation of the ratio, σρ, are higher than their corresponding thresholds.

The values of the standard deviation of orientation and the standard deviation

of ratio are 0.75 and 0.44 respectively.

In order to test the performance of tMHI against the original MHI, the same

dataset is used to evaluate both algorithms. The MHI images and tMHI images

are generated using ( 4.3) and (4.4) respectively.

The results show that different values of temporal duration, τ , provide differ-

ent MHI. If the temporal duration value is smaller than the number of frames in
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a video sequence, then the motion information of the action is lost in the MHI

image. If the current frame has no moving object and it is equal to the subse-

quent frame, then the output MHI is a black image . In our experiments the

duration parameter τ is set to one and therefore, pixel values are reduced by one.

In tMHI, the decay parameter is usually greater than one and in our experiments,

the decay parameter, δ, in the tMHI is two.

To evaluate the results of our proposed system, we evaluate the coefficient of

motion using MHI and tMHI methods as shown in (4.5) and (4.6). The compari-

son results for the two motion coefficients are shown in Table 5.3. It is clear from

table 5.3 that tMHI detect fall event with motion variation higher than 65%.

However, MHI fails to detect the fall as the motion coefficient is 64.59% and less

than the proposed threshold.

5.4 Fall Detection Based on Combination of Mo-

tion, Orientation and Projection Histograms

This section presents a novel visual-based fall detection which employs three

unique features; motion information, human shape variation and projection his-

togram to detect a fall. Motion information of a segmented silhouette, which when

extracted can provide a useful cue for classifying different behaviours. Also, the

projection histogram and variation in human shape can be used to describe human

body postures and subsequently fall events. The proposed approach presented

here extracts motion information, using best-fit approximated ellipse around the

human body and in addition projection histogram features to further improve the

Table 5.3: Results of computing motion information (coefficients Cmotion) using
MHI and tMHI.

Activity tMHI MHI
Walk 3.9459 3.8995
Sit down 4.7019 4.5484
Bend down 25.6963 23.5094
Lie on the sofa 55.5288 55.5288
Fall 65.4999 64.5921
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accuracy of fall detection. Experimental results are presented and show high fall

detection rate of 99.81% with partially occluded video data.

An overview of the proposed system is presented in Section 5.4.1; and results

obtained from our experiments are in Section 5.4.2

5.4.1 System Overview

This method was applied for monitoring human activities in a home environment

and detecting a fall event based on motion information, changes in shape ori-

entation and projection histograms. An overview of the proposed fall detection

system is shown in Figure 5.6. Firstly, background subtraction is implemented

to segment out moving objects [94]. Afterwards, useful features such as motion,

shape orientation and histograms for detecting fall from different daily activities

are extracted.

The first step is to analyse the motion occurring in a given time window,

using the tMHI [66]. The proposed method is based on the assumption that

the motion is large when a fall occurs. Therefore, the proposed system aims to

detect a large motion of the person in the video sequence using tMHI. The motion

is quantified by calculating the pixel value of motion history image blob in the

current frame, which is then divided by the number of pixels in the human blob.

A large motion does not necessarily signify a fall, as activities like fast walking

or running may also exhibit such characteristics [95]. Considering that the first

step is not sufficient, a second step was taken to analyse the change of the human

shape to identify a fall among other activities. Analysis of the moving object

is performed by fitting an approximated ellipse around the human body. The

orientation of the fitted ellipse provides convenient information about the body

posture [41].

It is assumed that human fall have greater acceleration than other daily ac-

tivities. However, focusing only on a fast acceleration can result in many false

alarms during fall-like activities like sitting down quickly [61]. Therefore, combin-

ing motion and orientation features helps to discriminate actual fall from other

activities. After the ellipse fitting, the orientation of the ellipse, θ, is taken as

a feature to describe a human body posture. The motion feature, Cmotion, indi-
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Figure 5.6: Flow diagram of the proposed method for human fall detection.

cates the changing rate of human motion and standard deviation of orientation

indicates the changing rate of human shape [9].

Common fall detection algorithms are based on the fact that the fall activity

have high acceleration than other normal activities, this study highlights the

situation when human fall can happen with low motion rate. A typical example is

when a person loses balance and hold onto a furniture to prevent a fall. Therefore,

the third feature which is projection histogram feature is applied to confirm a fall

event.
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5.4.2 Combination of Motion, Orientation and Projection

Histograms

To evaluate the robustness of the fall detection algorithm described in this work,

video data recorded over a period of time and described in Section 4.4.1 was

used. The recorded video is manually segmented into short video clips containing

some activities like walking, setting, bending and fall. In order to segment the

foreground object from the background, a simple background subtraction algo-

rithm [94] is performed to extract the silhouette from the background. After the

silhouettes are acquired through segmentation, features like motion, orientation

of ellipse around the human silhouette and projection histograms are extracted.

The tMHI is then computed to quantify the motion in each time window.

In addition, shape changes of the extracted silhouettes are analysed and differ-

ence of horizontal and the vertical histograms computed. tMHI is dependent on

two parameters; the duration, τ , and the decay, δ, parameters. The duration

parameter decides the temporal extent of the movement and different duration

values produce different tMHIs. When a fall occurs, a large motion appears (high

Cmotion) with a significant change in orientation. In this work, the period of the

sliding window is set to 2 seconds with 30 frames per window. For each activ-

ity, the orientation of the silhouette in each frame and the standard deviation

of orientation are computed using (4.30). Then the standard deviation of the

difference between horizontal and vertical histograms are calculated.

Since the proposed fall detection algorithm is designed mainly for low-cost

low-resolution RGB cameras, recorded data from Cameras #3 (as described in

Section 4.4.1) is used for testing. In our experiments a large motion is described

as a fall if all of the following three conditions are met:

1. if Cmotion > 30%,

2. if the standard deviation of orientation σθ is higher than 0.40,

3. if the standard deviation of difference between horizontal and vertical his-

togram is higher than 20.

The threshold values used in the three conditions were empirically chosen based

on observation of our video sequences. When the standard deviation of the dif-
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ference between the horizontal histogram and vertical histogram is increased dra-

matically, a fall is considered to have occurred.

The results of combining motion information, human shape analysis and the

projection histogram feature from Camera #3 are as shown in Table 5.4. For

walking, bending down, lying and sitting down activities, there is no large motion

associated with them and their computed Cmotion is lower than 30%. In addition,

the orientation standard deviation for these activities are below the fixed thresh-

olds, therefore, a fall event won’t be detected. A fall event would be detected

because the Cmotion is higher than the selected threshold, Cmotion = 41.20% and

the standard deviation of orientation σθ higher than the determined thresholds

0.44.

Examples of normal activities like bending and lying, and fall events are shown

in Figure 5.7. For each image the corresponding tMHI image as well as the

approximately fitted ellipses are shown.

In order to test the robustness of the proposed fall detection algorithm, data

recorded with different cameras mounted at different angles (ceiling-mounted) to

the prime test camera have also been used. Two ceiling-mounted cameras were

used for the robustness test and have different threshold values compared to the

tripod-RGB camera, for detecting fall events. In our experiments a large motion

is described as a fall if all of the following three conditions are met:

1. if Cmotion > 30%,

2. if the standard deviation of orientation σθ is higher than 1.60,

Table 5.4: Combined results of motion information (coefficients Cmotion), standard
deviation of orientation, σθ, and standard deviation of the difference between
horizontal and vertical projection histogram, σ(H−V ), using Camera #3.

Activity Cmotion(%) σθ σ(H−V )

Walking 5.52 0.01 2.78
Sitting 12.55 0.07 7.33
Bending 4.04 0.03 5.48
Lying 9.94 0.05 3.20
Fall 41.20 0.44 42.58
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Activity tMHI Fitting ellipse

Figure 5.7: The tMHI feature and fitting ellipse around the human body for the
human actions.

3. if the standard deviation of difference between horizontal and vertical his-

togram is higher than 20.

These thresholds were empirically chosen based on observation of the ceiling-

mounted video sequences. The results of combining motion information, human

shape analysis and projection histogram features using the front mounted ceiling

Camera #2 are shown in Table 5.5.

A fall is detected in Table 5.5 because the Cmotion is higher than the selected

Table 5.5: Results of combination of motion information (coefficients Cmotion),
standard deviation of orientation, σθ, and standard deviation of the difference
between horizontal and vertical projection histogram, σ(H−V ), for Camera #2.

Activity Cmotion(%) σθ σ(H−V )

Walking 29.50 1.59 10.17
Sitting 31.84 1.61 14.70
Bending 19.36 0.71 8.87
Laying 34.74 0.29 11.09
Fall 33.61 1.64 34.14

83



5.Fall Detection Approach Using Threshold-Based Methods

threshold, Cmotion = 33.61% and the standard deviation of orientation, σθ, is

higher than the selected threshold 1.64.

The proposed algorithm starts by testing the motion for different activities.

For lying and sitting, the motion element is large and a possible fall is considered.

Also, the standard deviation of the orientation is higher than the fixed thresholds

when the person is sitting. This is mainly due to occlusion of the foreground

silhouette. Relying solely on the two features (motion and orientation’s standard

deviation) would classify the sitting event as a fall. Therefore, other local features

such as projection histograms are applied as described in Section 4.3.3 to correctly

classify the sitting event.

As can be seen from Table 5.5 the σ(H−V ) values of the none-fall activities

are below the selected threshold. The results show that the extra feature can

effectively distinguish fall among other activities. According to the results, using

just motion history and analysis of the human shape features, would result in

some sequences like sitting and lying incorrectly classified as fall events. However,

the combination of motion history, change in shape orientation and change in

horizontal and vertical projection histograms eliminates this false detection.

Similarly, the proposed fall detection algorithm was tested using video data

from side-facing ceiling mounted Camera #1. The results of combining motion

information, projection histograms and human shape analysis from video data

using Camera #1 are shown in Table 5.6. Just like the previous two camera

data, the first step was to extract the motion features for the different activities.

For bending, the computed motion feature is greater than the selected threshold

33.25%, but the σθ and σ(H−V ) values are below the selected thresholds. In

contrast, the actual fall event has low motion feature of 23.81% compared to a

threshold value of 30% while the σθ and σ(H−V ) are greater than the corresponding

thresholds. In this case the three conditions were not met, therefore, the fall event

has been misclassified.

The proposed algorithm has further been tested using the publicly available

Le2i fall detection dataset, also been used in [113] and [48]. The results of the pro-

posed fall detection algorithm using the Le2i fall detection dataset are presented

in Table 5.7.

From Table 5.7 the lying and sitting activities have associated motion feature
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greater than the threshold, as if they are fall events. However, the standard

deviation of the orientation is lower than the fixed thresholds. Also, the projection

histograms for these activities have a small value. The fall event is detected

because the motion and the standard deviation of the orientation are higher than

threshold values. In addition, there is a big change in the standard deviation of

the difference between horizontal and vertical histograms when the person falls

down.

5.4.3 Performance Evaluation

In order to evaluate the performance of the proposed algorithm, each video data

was manually segmented into a number of video segments. Each video segment

contains one of the considered activities and its manually labelled as fall or non-

fall segments. As can be observe from Table 5.8, there are 21 video segments

containing fall events (positive samples) and 133 video segments containing other

Table 5.6: Results of combination of motion information (coefficients Cmotion),
standard deviation of orientation, σθ, and standard deviation of the difference
between horizontal and vertical projection histogram, σ(H−V ), for Camera #1.

Activity Cmotion(%) σθ σ(H−V )

Walking 15.80 0.81 11.34
Sitting 14.89 1.74 14.46
Bending 33.25 0.60 5.94
Lying 13.58 0.21 21.75
Fall 23.81 1.67 30.51

Table 5.7: Results of combination of motion information (coefficients Cmotion),
standard deviation of orientation, σθ, and standard deviation of the difference
between horizontal and vertical projection histogram, σ(H−V ), using Le2i fall de-
tection dataset .

Activity Cmotion(%) σθ σ(H−V )

Walking 20.75 0.03 10.57
Sitting 58.19 0.50 2.08
Bending 29.12 1.34 5.76
Lying 49.96 0.06 2.75
Fall 67.58 1.87 20.45

85



5.Fall Detection Approach Using Threshold-Based Methods

Figure 5.8: The accuracy results depend on threshold levels.

normal activities (negative samples).

In order to optimise the detection rate of the proposed fall detection approach,

various threshold values of all features were tested as below.

- Case A: (Cmotion < 10, σθ < 0.05 and σ(H−V ) < 5).

- Case B: (Cmotion < 20, σθ < 0.15 and σ(H−V ) < 10).

- Case C: (Cmotion < 30, σθ < 0.30 and σ(H−V ) < 15).

- Case D: (Cmotion > 30, σθ > 0.40 and σ(H−V ) > 20).

Figure 5.8 presents the accuracy results of different threshold levels. Exper-

iments results shown that the proposed fall detection approach achieves high

accuracy of 99.82% by setting three conditions as specified in Case D.

The first row in Table 5.8, shows that the proposed system successfully detects

human fall in 20 video sequence out of 21 videos and fails for one video sequence.

As can be seen from the second row, all normal activities have been detected cor-

rectly as non-fall events. The performance evaluation is computed automatically

given the labeled images and results from implemented fall detection algorithm.

There are four possible outcomes for testing a sequence as a fall event which

are defined as follows:
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- True Positive (TP): a video segment contains a fall, and is correctly detected

as a fall.

- False Positive (FP): a video segment does not contain falls, but is incorrectly

detected as a fall.

- True Negative(TN): a video segment does not contain falls, and is correctly

detected as non-fall.

- False Negative(FN): a video segment contains a fall, but is incorrectly de-

tected as not a fall.

The performance of the fall detector was evaluated with respect to accu-

racy, False Positive Rate (FPR), positive predictive value (precision), negative

predictive value, sensitivity and specificity. They were calculated based on the

definitions presented below.

- Accuracy=(TP+TN)/(TP+TN+FP+FN).

- The false positive rate= FP/(FP+TN).

- Positive predictive value (Precision)=TP/(TP+FP).

- Negative predictive value =TN/(TN+FN).

- Sensitivity= =TP/(TP+FN).

- Specificity= TN/(TN+FP).

Table 5.9 represents the performance of the proposed fall detection algorithm.

The algorithm achieves 100% specificity and this means that all normal daily

activities are assigned to the non-fall class. A perfect sensitivity implies that

most falls are recognised as a fall event. The accuracy of human fall detection is

99.82% while maintaining small false alarms.
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5.5 Discussion

In this chapter, efficient approaches for fall detection were proposed. The first ap-

proach is based on a combination of timed motion history and variation in human

shape. The combination of motion and change in the human shape offers crucial

information about human activities. Firstly, tMHI is implemented to quantify

the motion of the person, then the person is approximated by an ellipse using

moments to detect a change in the human shape by computing the orientation

and ratio of the ellipse [87]. Moving objects is extracted using the tMHI method

and then an analysis of the moving object is performed to detect changes in the

human shape orientation and ratio.

The second approach is based on a combination of timed motion history,

variation in human shape and projection histograms. The local feature which

is based on projection histograms is applied to identify fall among other daily

activity. A novel feature, namely the standard deviation of the difference between

horizontal and vertical histograms is applied to confirm whether or not an event is

a fall. Thus, when standard deviation of orientation is higher than the threshold

value and a large motion information is detected.

Threshold-based fall detection methods are simple and cost- effective meth-

Table 5.8: Detection accuracy

Activity Total Samples Detected Not detected
Falls 21 20 1
Activities of other daily living 133 133 0

Table 5.9: The performance of fall detection system based on motion, orientation
and histogram features

Description Obtained Value
Sensitivity 95.23%
specificity 100%
false positive rate 0%
Positive predictive value 100%
Negative predictive value 99.25%
Accuracy 99.82%
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ods. However, the performance heavily depends on the fixed threshold level.

Moreover, manually defining threshold values is difficult, as several activities of

daily living (ADLs) like quickly sitting or laying can produce high motion which

can be detected as fall and cause a high number of false alarms. Each dataset

has different camera angle and lighting conditions. Thus, for each dataset it is

necessary to determine threshold values that are the best to detect falls. More-

over, predetermine threshold values do not generalise well for unseen persons.

Therefore, the system needs to be adapted for monitoring different people.

Chapter 6 and Chapter 7 will be conducted to apply various machine learning

algorithms to automatically classify fall and non-fall activity, as the proposed fall

detection algorithm is heavily reliant on pre-defined threshold values.
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Chapter 6

Fall Detection Approach Using

Neural Network

6.1 Introduction

This study presents a novel visual-based fall detection approach to support in-

dependent living for older adults through analysing the motion and shape of the

human body. The proposed approach employs a new set of features to detect

a fall. Motion information of a segmented silhouette can provide a useful cue

for classifying different behaviours, while variation in shape and the projection

histogram are used to describe human body postures and subsequent fall events.

The proposed approach extracts motion information using the best-fit approxi-

mated ellipse and a bounding box around the human body produces projection

histograms and determines the head position over time, to generate 10 features to

identify falls. These features are fed into a multilayer perceptron neural network

for falls detection.

The rest of this chapter is organised as follows: an overview of the proposed

system is presented in Section 6.2. Section 6.3 describes in detail the features

used. Section 6.4 discusses the use of a neural network for identification of falls.

Details of the experiments conducted on the UR Fall Detection dataset is explain

in Section 6.5. Section 6.6 presents the experiments performed on our recorded

video dataset. Pertinent conclusions are presented in Section 6.7.
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6.2 System Overview

This study proposes a method for monitoring human activities in a home en-

vironment and detecting a fall event based on motion information, changes in

shape orientation, the position of the human head and projection histograms.

An overview of the proposed fall detection system is shown in Figure 6.1. The

proposed fall detection system includes four steps: data collection, foreground

segmentation, feature extraction and fall detection. Background subtraction is

implemented to segment out moving objects [94]. This method uses the difference

between the current image and the background image to detect moving objects,

which is in our case used to extract the human silhouette. The next step is to

track the moving object to recognise its motion by identifying the object position

in every frame. Afterwards, useful features such as motion information, shape

orientation, temporal change of the head location and histograms for detecting

a fall from other daily activities are extracted. The proposed method exploits

motion, histogram and shape features based on the observation that human falls

often involve drastic shape changes and abrupt motions as compared to other

activities.

The first stage of the system is to analyse the motion occurring in a given

time window, using tMHI [66]. The motion is quantified by calculating the pixel

value of the motion history image blob in the current frame, which is then divided

by the number of pixels in the human blob. The second stage is to analyse the

change of the human shape. An analysis of the moving object is performed by

fitting an approximate ellipse around the human body. The orientation of the

fitted ellipse provides information about the body posture [41]. After the ellipse

fitting, the orientation of the ellipse and the ratio between the major semi-axis a

and the minor semi-axis b are used as features to describe human body posture

in a general way. However, these features alone cannot describe postures in

detail for distinguishing different activities [121], therefore further features were

explained. A bounding box was used to surround the foreground object, then

the y-coordinate of the top left point of the bounding box was computed and the

absolute difference of y-coordinates in successive frames were used as features.

It is assumed that human falls have a higher acceleration than other daily
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Figure 6.1: Flow diagram of the proposed human fall detection approach.

activities. However, focusing only on fast acceleration can result in many false

alarms during fall-like activities like sitting down quickly [61]. Therefore com-

bining motion with human shape helps to discriminate actual fall from other

activities. After ellipse fitting, the orientation, ratio, major semi-axis and minor

semi-axis are taken as features to describe human body posture. The motion

feature Cmotion indicates the changing rate of human motion and the orientation

feature indicates the changes on the human shape [9].

Our previous study [10] highlighted the scenario of a human fall occurring

at low speed. A typical example is when a person loses their balance, holds

onto furniture to prevent a fall and yet still falls on the ground. Therefore an

additional feature, the projection histogram, is computed to confirm a fall event

[10]. Occlusion occurs when a relevant area of the person is covered or when

the person moves behind an object and consequently part of his/her body is not

visible by the camera [32]. To deal with the occlusion problem, the proposed fall

detection approach tracks the human head in consecutive frames. Tracking the

head position of the person can provide useful information, as the head tends

to be visible most of the time. Finally, the extracted features are used as input

vectors to the MLP neural network for falls and non-falls event classification.

6.3 Selected Features

Based on the information provided in Section 4.3, for each video sequence, the

moving object is detected and 10 features. The selected feature vector F is given

by:

F = [Cmotion, θ, ρ, a, b,Hz(y) − V t(x), y, σy, |yi − yi−1| , σ|yi−yi−1|] (6.1)
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Figure 6.2: Ellipse fitting and bounding box around human body.

.

A description of the selected features is provided in Section 4.3.5. Figure 6.2

illustrates the features extracted from the fitted ellipse and the enclosed bounding

box.

For every video sequence, 20 windows of frames with an overlap of 19 frames

per window are used to extract features. For example, the first window contains

frames from 1 to 20, the second window contains frames from 2 to 21 and so

on. The features are extracted from every frame, and from every sequence of 20

frames, is generating the result feature vector which is then used as the input to

the neural network to detect the fall. The features vector is then normalised.

6.4 Falls Detection with a Neural Network

In order to classify between falls and non-fall activities, the feature vector was fed

as into one layer Multilayer Perceptron (MLP) Neural Network, which is shown

schematically in Figure 6.4. The number of neurons in the hidden layer that gives

higher accuracy is ten as shown in Figure 6.3. The hidden layer makes use of

the scaled conjugate gradient algorithm. The use of this algorithm enables the

network to perform well despite the dynamic range of the inputs, by reducing the

number of iterations required when some features are much larger than others.
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Figure 6.3: The accuracy of the proposed approach depend on the number of
neurons in the hidden layer.

The outputs of the hidden layer are passed to the output layer, from where the

decisive outputs are generated. A 10-fold cross-validation strategy was used to

evaluate the methodology. The whole data was divided into 10 subsets of equal

size, for each fold a NN model was trained on all the subsets except one . The left

out subset was used to test the model. This process was repeated until all folds

were used to either train or test the model. The algorithm for activities shown

in Figure 6.6.

The data was previously normalised with zero mean and standard deviation

equal to 1, so that it consisting with the transfer function was kept. A mean

squared error function was chosen as the evaluation criterion. This function

minimises the mean of the squares of the errors produced in each iteration and

updates the network weights and biases accordingly.

The MATLAB neural network toolbox was utilised to build the ANN model.

All features extracted from the images are gathered in a large cell array. Each row

represents 10 features of an image. Figure 6.5 illustrate the process of detecting

falls with a neural network.
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Figure 6.4: Fall detection neural network architecture.

6.5 Experiments with the UR Fall Detection Dataset

The first group of experiments were conducted using the UR Fall Detection

dataset [62], which contains 30 fall scenarios recorded by two Kinect sensors and

an accelerometer and 40 daily activities using one Kinect sensor parallel to the

floor. The normal daily activities included walking, sitting, lying down, bending

and crouching down. Some of these videos were recorded in low light conditions

and some videos present examples of occlusion. Falls were simulated in different

directions with respect to the camera view. Different types of fall incidents were

recorded to include forward, backward and sideways falls.

In order to segment out the foreground object from the background, a simple

background subtraction algorithm [94] was employed to extract the silhouette

from the background. After the human silhouettes were extracted through seg-

mentation, the second step was to extract useful features from the human sil-
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Figure 6.5: The procedure of the proposed approach to classify activities.

houette to detect falls. These are the features discussed and defined in Section

4.3. The values associated with each feature during a daily activity and a fall are

shown in Figure 6.7.

The whole data samples (7177 samples with 10 features) were used.The ex-

periments were done using 10-fold cross-validation. The training samples were
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created from the extracted feature vector and stored along with the target output

values corresponding to the specific input patterns. The fully trained neural net-

work was then used on the test data to classify the patterns associated with the

activities of the humans and generate the outputs corresponding to the respective

activities, which in our case were either fall or non-fall activities.

In order to optimise the final classification rate of the proposed approach,

various combinations of features were tested. The features combinations are

listed as below.

- Case A: The first row of the Table 6.1 presents the recognition results in

which the input features of the MLP network used are motion, the orien-

tation and the ratio of the ellipse, and the projection histogram features.

This subset of features corresponds to those we used in our previous work

[10] on our own dataset, and includes the main 4 motion features. The pro-

posed projection histogram feature are computationally efficient and can

effectively distinguish fall among other activities.

- Case B: The second row in Table 6.1 presents the recognition results where

the input features of MLP network include motion, the orientation, the

ratio, the major semi-axis and the minor semi-axis of the ellipse, and pro-

jection histogram. Thus this row adds the 2 semi-axes of the ellipse, giving

more information on orientation, size and change of proportion (potentially

showing someone crumpling as they fall).

- Case C: The third in Table 6.1 presents the recognition results obtained

using features of motion, the orientation, the ratio of the ellipse, projec-

tion histogram, y-coordinate of the head point, the standard deviation of

y-coordinate, the absolute difference of y-coordinate and the standard devi-

ation of absolute difference of y-coordinate. The combine the basic motion

characteristics with the detailed behaviour of the head in terms of its posi-

tion and its position variance.

- Case D: In order to further validate our feature sets, the data in Figure

6.7 was examined, and only those features which exhibited obviously large
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changes were used. These were the motion, the y coordinate, the ratio and

the major semi-axis (as shown in graphs a,c, e and g).

- Case E: The last row in the Table 6.1 shows the recognition results ob-

tained using all features - motion, the orientation, the ratio, the major

semi-axis and the minor semi-axis of the ellipse, projection histogram fea-

tures, y-coordinate of head point, the standard deviation of y-coordinate,

the absolute difference of y-coordinate and the standard deviation of abso-

lute difference of y-coordinate.

6.5.1 Performance Evaluation and Recognition Results on

the UR Fall Detection Dataset

The performance of the fall detector was evaluated with respect to accuracy,

false positive rate, precision, sensitivity and specificity. They were calculated as

stated in Section 5.4.3. In addition, two performance measures; the F-score and

the False Negative Rate (FNR) were computed as follow:

- F-score= 2TP/ (2TP + FP + FN);

- The false negative rate= FN/(FN+TP);

Using all the features, our approach achieves 97.38% specificity, which means

most daily activities are assigned to the non-fall class. A high sensitivity implies

that most falls are recognised as a fall event. The accuracy of the human fall

detection system is 99.24%. The proposed system shows precision of 99.60%

while maintaining a low rate of false alarms.

From the curves in Figure 6.7, it is possible to infer that the more significant

features characterising the fall events are: motion, ratio, the major-semi axis and

the y-coordinate of the head point. Table 6.1 shows that these key features as in

group D achieved similar accuracy to features group B which includes six features.

However, using only these features the system achieves an accuracy of about

92.13% and low specificity (true negative rate) 58.93%. This means that some

normal activities such as sitting down and lying are detected as falls, and these

features are not sufficient to discriminate a real fall from a person lying or sitting
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down. It appears that these features cannot always distinguish between activities

when there is a high degree of similarity in terms of high motion, or when the

ratio of the approximated ellipse is nearly the same for both non-fall and fall

activities. This can give rise to false positives.

The performance values (sensitivity of 99.52%, specificity of 97.38%, precision

of 99.60% and accuracy of 99.24%) seem to be good considering that we are using

only RGB images and modest hardware.

The experiments were repeated using ANN with two hidden layers; each hid-

den layer has 10 neurons. The whole data samples (7177 samples with 10 features)

were used with 10-fold cross-validation method. Table 6.2 shows the recognition

results of the proposed fall detection approach using two hidden layers. The

proposed approach shows a high detection rate of 99.39% while when using only

one hidden layer the detection rate was 99.24%. However, when using one hid-

den layer the Epoch= 6 iterations while with two hidden layer the Epoch=22

iterations. Therefore, using ANN with one hidden layer is more effective for the

purpose of fall detection.

6.6 Experiments on Recorded Video Data

The second group of experiments were performed on the collected video dataset.

The whole database contains 23954 samples with 10 features. A 10-fold cross-

validation strategy was used to evaluate the methodology.

Table 6.1: Recognition results on UR Fall Detection datasets using different
combination of features.

Method Accuracy F-Score FPR FNR Precision Sen. Spe.
Case A 4
features

88.69% 93.82% 79.02% 0.91% 89.08% 99.09% 20.98%

Case B 6
features

92.77% 95.94% 44.75% 1.46% 93.47% 98.54% 55.25%

Case C 8
features

96.35% 97.91% 16.89% 1.61% 97.43% 98.39% 83.11%

Case D
4 key
features

92.13% 95.54% 41.07% 0.027% 93.91% 97.23% 58.93%

Case E 10
features

99.24% 99.56% 02.62% 0.48% 99.60% 99.52% 97.38%
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Again, in order to evaluate the performance of the fall detection approach,

the same subsets of input features.

- Case A: The first row in Table 6.3 presents the recognition results in which

the input features of MLP network used are motion, the orientation and

ratio of the ellipse, and projection histogram features.

- Case B: The second row in Table 6.3 presents the recognition results where

the input features of MLP network include motion, the orientation, the

ratio, the major semi-axis and the minor semi-axis of the ellipse, and pro-

jection histogram features.

- Case C: The third row in Table 6.3 presents the recognition results obtained

using features of motion, the orientation, the ratio of the ellipse, projec-

tion histogram, y-coordinate of the head point, the standard deviation of

y-coordinate, the absolute difference of y-coordinate and the standard de-

viation of absolute difference of y-coordinate.

- Case D: The last row in Table 6.3 shows the recognition results obtained

using all features - motion, the orientation, the ratio, the major semi-axis

and the minor semi-axis of the ellipse, projection histogram features, y-

coordinate of head point, the standard deviation of y-coordinate, the ab-

solute difference of y-coordinate and the standard deviation of absolute

difference of y-coordinate.

Table 6.2: Recognition results on UR Fall Detection datasets using two hidden
layers.

Description Performance Value
Accuracy 99.39%
F-Score 99.65%
Precision 99.45%
Sensitivity 99.85%
specificity 96.40%
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6.6.1 Performance Evaluation and Recognition Results on

the Recorded Video Dataset

The experiments were performed using 10 fold cross-validation. The results using

different combination of features are given in Table 6.3. The Experiments results

show that the highest recognition accuracy (99.94%) was obtained using all the

proposed features.

The features extracted from the head of the person ( in Case C ), improve

the performance of the proposed approach, by using the features extracted from

the head the accuracy improved from 98.95% to 99.89%, the specificity increased

from 64.19% to 97.82%. From the results reported in this chapter, it can be

concluded that every feature in the proposed approach is essential to accurately

identify falls.

Using all the features, the algorithm achieves 98.69% specificity and this means

that most daily activities are assigned to the non-fall class. A high sensitivity

implies that most falls are recognised as a fall event. The proposed system shows

a high detection rate of 99.94% while maintaining a low rate of false alarms.

6.6.2 Evaluating the Proposed Fall Detection in Different

Environments

In order to evaluate the proposed fall detection approach, various experiments

were carried out in different environments performed by different participants.

These experiments are developed as described below.

Table 6.3: Recognition results on our recorded video dataset using different com-
bination of features.

Method Accuracy F-Score FPR FNR Presision Sen. Spe.
Case A
4 features

98.95% 99.46% 0.358% 3.183% 98.97% 99.97% 64.19%

Case B
6 features

99.06% 99.52% 0.327% 1.273% 99.05% 99.99% 67.25%

Case C
8 features

99.89% 99.95% 0.021% 4.456% 99.94% 99.96% 97.82%

Case D
10 features

99.94% 99.97% 0.013% 2.546% 99.96% 99.97% 98.69%
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- Case A: The first row in Table 6.4 presents the recognition results in which

the fall detection approach employs neural network that was trained and

tested using the same person (A) in the same environment (Living room).

- Case B: The second row in Table 6.4 presents the recognition results where

the neural network was trained and tested by the same person in different

environments. Thus, for example, the neural network was trained using

person (A) in environment (Living room) and tested by using the same

person (A) in different environment (Bedroom).

- Case C: The third row in Table 6.4 shows the recognition results of the

neural network trained using different persons in the same environment.

That is, the neural network was trained using person (A) in environment

(Living room) and tested on person (B) in the same environment (Living

room).

- Case D: The last row in Table 6.4 shows the recognition results of the

neural network using different persons in different environments. That is,

the neural network was trained using person (A) in environment (Living

room) and tested on person (B) in different environment (Bedroom).

The experiments were performed using all ten features, with ten input neural

to the neural network, The 10 K-fold cross validation method was used. In all

cases, both training data and testing data contain various ADL events and falls

in various directions.

The proposed approach achieves high detection rate when presented with a

new, unfamiliar domestic environment. The results shown in Table 6.4 show that

the proposed approach is able to perform well in different scenarios. In all cases

the proposed approach obtains outstanding performance in terms of accuracy

(100%), sensitivity (100%) and specificity (100%).

6.7 Discussion

The work presented in this chapter has focused on investigating a relatively low-

cost and reliable fall detection approach for older adults based on computer vision
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Table 6.4: Recognition results of the proposed fall detection using neural network.

Method Case A Case B Case C Case D
Accuracy 100% 100% 99.54% 100%
F-Score 100% 100% 99.96% 100%
FPR 0% 0% 0.01% 0%
FNR 0% 0% 2.35% 0%
Precision 100% 100% 99.95% 100%
NPV 100% 100% 99.47% 100%
Sen. 100% 100% 99.98% 100%
Spe. 100% 100% 98.94% 100%

techniques. The approach presented here employs enhanced features which are

extracted from the human silhouette. These features are the motion information,

orientation, ratio, the major semi-axis and the minor semi-axis of the fitting

ellipse, the projection histogram, the y-coordinate of the head point, the standard

deviation of y-coordinate, the absolute difference of y-coordinate and the standard

deviation of absolute difference of y-coordinate.

Experimental results show that the proposed algorithm is reliable for fall de-

tection. The proposed approach is based on a combination of timed motion

history and variation in human shape. The combination of motion and change

in the human shape offers crucial information about human activities. Firstly,

tMHI is implemented to quantify the motion of the person. The person is approx-

imated by an ellipse using moments to detect a change in the human shape by

computing the orientation, the ratio, the major semi-axis and the minor semi-axis

of the ellipse [87]. In addition, the local feature based on projection histograms is

applied to identify a fall among other daily activities. Tracking of head position

improve the performance of the presented system. These features were fed into a

MLP Neural Network for fall classification. It can be observed that the proposed

algorithm produces a high recognition rate of 99.60% while maintaining a low

false alarm rate of 2.62%.

The combination of features is significant. The histogram feature helps in

identification of sudden changes in the human body shape. Adding the orientation

feature helps in characterising a human’s fall because it has less variation during

the frames of the video sequence until a fall happens. Then the orientation will
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change suddenly until the human body reaches a prone position after the fall.

When a large motion is detected, the orientation and ratio of the ellipse change

suddenly and at the same time, the histograms decrease rapidly. This means a

fall event is considered possible. The results have shown that the use of major and

minor semi-axis of the ellipse contributes towards a more accurate fall detection

system. Additionally, head features are applied for reliable classification of motion

and determination of a fall event.

From the analysis, the system achieved the best performance and lowest false

alarm rate after adding the difference between the horizontal and vertical projec-

tion histograms, the standard deviation of y-coordinate and the absolute differ-

ence of y-coordinate as input features. The detection results obtained using head

features have shown that the best performance regarding accuracy and specificity

is obtained when using all ten features together.

The experiments performed on the publicly available fall detection datases;

UR Fall Detection dataset were used to verify the universality of the proposed

approach.

In Chapter 7, various machine learning methods including SVM, KNN and

bagging tree are tested and compared against the performance achieved by the

use of the MLP.
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Figure 6.6: Fall classification algorithm.
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a) b)

c) d)

e) f)

g) h)

Figure 6.7: Features used to distinguish between normal daily activities and fall.
Normal daily activities include walking, sitting, bending, crouching and lying
down. Selected features are a) coefficient of motion b) the orientation of the
ellipse c) the ratio of ellipse d) the major semi-axis e) the minor semi-axis f)
the difference between the horizontal and vertical projection histograms g) the
y-coordinate of the head point h) the absolute difference of y-coordinate

.
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Chapter 7

Fall Detection Approach Using

Other Machine Learning

Methods

7.1 Introduction

In support of independent living for older adults, novel camera-based fall detec-

tion approaches were proposed in this research study. The proposed approach

extracts 10 features from RGB images representing the motion and shape of the

human body to identify falls. Motion information of a segmented silhouette can

provide a useful cue for classifying different behaviours, while variation in shape

and the projection histogram can be used to describe human body postures and

subsequent fall events. The proposed approach represents the change of the hu-

man body using the best-fit approximated ellipse and a bounding box around the

human body, produces projection histograms and determines the head position

over time. These features are fed into a number of machine learning algorithms

for fall classification. The proposed approach is validated with the publicly avail-

able UR Fall Detection dataset and it has outperformed many of the existing

methods.

Features extracted from the human silhouette are fed into different classifiers

to enhanced their performances. The classifiers used include SVM, KNN and
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Bagging tree. This chapter presents the following components:

- using the selected combination of features based on the motion and the

change in human shape to increase the accuracy of the proposed fall detec-

tion approach,

- training machine learning algorithms to classify falls,

- evaluating the proposed fall detection approach on publicly available dataset;

UR Fall Detection dataset and the recorded video data, and compare the

performance to that achieved by the state-of-the-art methods.

In Section 7.2 fall classification results are presented. The comparison with

the state of the art methods is stated in Section 7.3. The conclusions of this

chapter are drawn in Section 7.4

7.2 Experimental Dataset and Process

Experiments were conducted using the UR Fall Detection dataset and the recorded

video data. This section illustrates the experimental details on both datasets us-

ing the proposed fall detection approach.

7.2.1 Data Pre-processing

In order to segment out the foreground object from the background, a simple

background subtraction algorithm [94] was used to extract the silhouette from

the background. After the silhouettes were extracted through segmentation, the

second step was to extract useful features from the human silhouette to detect

falls. These are the features discussed and defined in Section 4.3.

For this study, UR Fall Detection dataset is used. This dataset includes 7177

samples with 10 features. Furthermore, recorded video data from our experiments

is used for further evaluation. The dataset contains 23954 with 10 features.

For both datasets, the training samples were created from the selected fea-

tures vectors and stored along with the target output values corresponding to
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the specific classes. The fully trained machine learning classifier used on the test

data to classify fall and non-fall activities.

For every video sequence, 20 frames per window with an overlap of 19 frames

per window are chosen. For example, the first window contains frames from frame

1 to frame 20, the second window will contain frames from frame 2 to frame 21

and so on. The features extracted from every frame, and from every sequence of

20 frames are used to generate one feature vector which is used as an input to the

classifiers for fall detection. A 10-fold cross-validation method was used in which

the whole data was divided into 10 subsets, each subset is used for testing and

the remainder for training. The training and testing process was repeated for all

possiple combinations of the ten sets.

7.2.2 Falls Classification and Detection Techniques

This section presents the evaluation and results of the proposed fall detection

approach tested with same dataset. Therefore, the experimental process were

carried out using one dataset each time. The total number of features 10 are fed

into one of the machine learning algorithms to classify falls.

Neural Network In order to classify between falls and non-fall activities,

Table 7.1: Recognition results of the proposed fall detection approach using UR
Fall Detection dataset.

Method Accuracy F-Score Presision Sensitivity Specitifity
NN 99.24% 99.56% 99.60% 99.52% 97.38%
SVM 93.56% 96.18% 99.45% 93.12% 96.54%
KNN 99.45% 99.68% 99.59% 99.77% 97.31%
Bagging 99.20% 99.54% 99.09% 100% 93.94%

Table 7.2: Recognition results of the proposed fall detection approach using
recorded video data.

Method Accuracy F-Score Presision Sensitivity Specitifity
NN 99.94% 99.97% 99.96% 99.97% 98.69%
SVM 99.20% 99.59% 100% 99.18% 100%
KNN 99.96% 99.98% 99.97% 99.99% 98.82%
Bagging 100% 100% 100% 100% 100%
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the feature vector was fed as input to a Multilayer Perceptron Neural Network

(MLPNN). The number of neurons in the hidden layer is ten. The hidden layer

makes use of the scaled conjugate gradient algorithm. The outputs of the hidden

layer are passed to the output layer, from where the decisive outputs are gener-

ated. The data were normalised with zero mean and standard deviation equal to

1. A mean squared error function was chosen as the evaluation criterion.

The optimal parameters were selected during the training phase (parameter

tuning phase) which correspond to the maximum classification accuracy. In the

case of the neural network, we varied the classifier parameters to select the optimal

MLP architecture (one hidden layer with ten (10) neurons) which corresponds to

the best classification rate. From Table 7.1, we can notice that the experiments

with UR Fall Detection dataset shows that our approach can achieve a 99.24% ac-

curacy, 99.52% sensitivity and 97.38% specificity. In addition, Table 7.2 indicates

that our approach tested with the recorded video data provides a high accuracy

of 99.94% with 99.97% and 98.69% sensitivity and specificity respectively.

Support Vector Machine The data were classified using SVM classifier.

Different SVM-kernel were iteratively tested, and two hyper-parameters( sigma σ

and C) and the ones that gave the highest accuracy were selected. The quadratic

kernel used to separate the training and testing data. The SVM with quadratic

kernels and (σ = 0.125 and C = 128) provides an accuracy of 93.56% tested with

the UR Fall Detection dataset and 99.20% tested with recorded video data.

K Nearest Neighbour For the KNN classification, the optimal K value

depends on the data. The K value is used for determining the nearest neighbours

of a point. The parameter K was varied from 1 to 20 to select the optimal value.

Based on the highest accuracy, the corresponding value of K is 3.

Table 7.1 shows that the KNN classifier outperforms the NN and SVM and

allows us to identify the fall events with better accuracy, F-score and sensitivity

on both datasets. The KNN classifier achieves the highest accuracy of 99.45%.

However, NN provides better precision and specificity.

Bagging For the bagging-based method, the number of iterations (the num-

ber of generated binary decision trees) that gave the higher accuracy is 100 trees.

Table 7.1 show that bagging method is superior with respect to sensitivity 100%

and achieve up to 99.20% accuracy. The results presented in Table 7.2 demon-

110



7. Fall detection Approach Using Other Machine Learning Methods

Figure 7.1: Accuracy of machine learning techniques to detect falls using UR Fall
Detection.

strate that the bagging-based method outperformed all other machine leaning

methods with 100%. The experimental results presented in Table 7.1 and Ta-

ble 7.2 demonstrate that our selected features give promising results using NN,

KNN and Bagging algorithm. In addition, the bagging tree provides the highest

sensitivity which reveals its ability to detect real falls. The highest specificity

value is obtained by the NN algorithm which reflects the capacity to avoid false

positives (FPs), since only a reduced number of like-fall activities was confused

as real falls.

Figure 7.1 shows the accuracy percentage of the proposed fall detection ap-

proach over different machine learning techniques tested with UR Fall Detection

dataset. Figure 7.2 presents the accuracy percentage of the proposed fall detec-

tion approach of different machine learning techniques tested with recorded video

data.

111



7. Fall detection Approach Using Other Machine Learning Methods

Figure 7.2: Accuracy of machine learning techniques to detect falls using recorded
video data.

7.2.3 Falls Classification and Detection Techniques with

a Different Dataset

While previous experiments considered training and testing the classifies on each

dataset individually, this section presents experiments which do training on one

dataset and testing on the other one.

In this case, all video segments from the UR Fall Detection dataset, 7177

samples with 10 features were used for training and all video segments from the

recorded video data, 23954 samples with 10 features were used for testing and

then vice versa. It can be noticed from Table 7.3 that the proposed fall detec-

tion approach achieves a high accuracy 99.48%, precision 99.65% and specificity

97.63% using a KNN classifier. Similarly, Table 7.4 shows that the KNN classifier

outperforms other methods with accuracy up to 99.97% and precision 99.97%.

Experimental results prove that the proposed fall detection approach have

a generatic feature. Even though, the approach has been tested in two differ-

ent datasets, obtaining state of the art results on both of them. To the best

of the knowledge, the proposed approach is the first one achieving such results
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on different datasets. Notice that both datasets present different characteristics

as explained in Section 4.4.1. The UR Fall Detection dataset contains totally

different scenarios in contrast to the recorded video data. Although, there are

significant differences among both dataets, the proposed approach achieves good

results, which could be considered as a solid proof of the generality of the pro-

posed fall detection approach. The KNN classifier outperforms other machine

learning algorithms in terms of accuracy and precision.

7.3 Comparison with the State of the Art Meth-

ods

The proposed fall detection approach was compared with the most cited fall

detection approaches in the literature. Related results on UR Fall Detection

dataset using only RGB images are shown in Table 7.5.

Min et al [77] propose a fall detection method for falls against furniture using

a R-CNN to obtain the information of locations and objects in the scene. Ex-

periments on UR Fall detection dataset achieves an accuracy of 95.50%,where,

the AUROC was 94%. However, the proposed approach is accurate in predicting

Table 7.3: Recognition results of the proposed fall detection approach using UR
Fall Detection dataset for the training and recorded video data for testing

Method Accuracy F-Score Precision Sensitivity Specificity
NN 98.89% 99.36% 99.31% 99.41% 95.32%
SVM 96.22% 98.03% 97.11% 98.96% 44.80%
KNN 99.48% 99.70% 99.65% 99.76% 97.63%
Bagging 98.89% 99.36% 98.89% 99.84% 92.47%

Table 7.4: Recognition results of the proposed fall detection approach using
Recorded video data for the training and UR Fall Detection dataset for testing.

Method Accuracy F-Score Precision Sensitivity Specificity
NN 99.90% 99.95% 99.94% 99.96% 97.77%
SVM 96.24% 98.05% 96.59% 99.55% 34.14%
KNN 99.97% 99.98% 99.97% 100% 88.97%
Bagging 99.83% 99.91% 99.83% 100% 93.85%
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non-fall activities, with a detection rate of 99.45%.

Marcos et al. [81] employ a CNN to detect falls. Their method obtains

an accuracy of 95%, sensitivity and specificity were 100% and 92% respectively.

Adopting a CNN, yields better sensitivity than the proposed approach. On the

other hand, its specificity is low which means that some daily activities are mis-

classified as falls.

The proposed fall detection system performs better than the compared deep

learning approaches presented in [77] and [81]. The reason may be that deep

learning approaches require large training datasets to achieve good performances.

Due to the limited training data obtained from UR Fall Detection dataset, the

proposed soluation was more suitable than the deep learning approaches. In

addition, deep learning approaches are computationally expensive as they require

expensive GPUs and fast CPU to train large datasets, containing millions of

images. Moreover, machine learning algorithms are easier to tune as deep learning

is usually used as a black box.

Kwolek and Kepski [62] present an embedded system for fall detection based

on acceleration data and depth maps. The system achieves an accuracy of 90%,

precision of 83.30%, sensitivity 100% and specificity 80%.

It is worth mentioned that the above fall detection approaches combine in-

formation from several cameras or embedded systems which involve information

from both video data and acceleration data extracted from an accelerometer.

While, in the proposed approach only a single camera is used.

Table 7.5: Comparison of Existing Methods using the same database. Where no
values were given by the authors, the fields are blank.

Method Accuracy Precision Sensitivity Specificity
R-CNN [77] 95.50% −% − −
Convolutional NN [81] 95% − 100% 92%
SVM [62] 90% 83.30% 100% 80%
SVM [50] 96.66% 93.55 100% 94.93%
SVM [122] 99.83% − 100% 100%
SVM/Adaboost [25] 99.42% 95.91% 92.15% 99.79%
SVM [110] − − 93.70% 92.00%
Proposed fall detection approach 99.45% 99.59% 99.77% 97.31%
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Harrou et al. [50] introduce a fall detection approach based on the combination

of a (MEWMA) and a SVM classifier. The results report an accuracy of 96.66%,

precision of 93.55%, sensitivity of 100% and specificity of 94.93%.

Yun and Gu. [122] propose a method for fall detection through analysing

dynamic shape and motion of human body regions on Riemannian manifolds.

The results show a high detection rate of 99.83% with sensitivity of 100% and

specificity of 100%.

Charfi et al. [25] present a fall detection method using SVM and Adap-

tive Boosting algorithms. The results show an accuracy of 99.42%, precision of

95.91%, sensitivity of 92.15% and specificity of 99.79%.

Wang et al. [110] propose fall detection method using multiple cameras and

a SVM classifier to distinguish fall and non-fall activities. Their method achieves

93.70% sensitivity and 92.0% specificity. Their experiments are performed using

30 frames per window, where the proposed approach outperforms their results by

using only 20 frames per window. More precisely, the proposed system obtained

a sensitivity of 99.77% and a specificity of 97.31%, while Wang et al achieves only

93.70% and 92.0% for the same metrics, respectively.

The proposed approach exhibited an accuracy higher than all other approaches

except the method presented in [122]. The results presented in Table 7.5 show

that the proposed fall detection approach highly improves the classification per-

formance. The proposed fall detection approach is about 9% more accurate than

[62] and 5% more accurate than [77] and [81].

The experimental results demonstrate that the proposed fall detection ap-

proach obtained one of the best fall detection methods in the literature. Even

though using of a simple extracted feature, the results are outstanding as com-

pared to the fall detection approaches that use similar or advanced machine learn-

ing algorithms. It is considered that the main reason behind the success of the

proposed approach is the selected features are robust and effective to discriminate

between fall and non-fall activities.

The results in Table 7.5, show that the proposed fall detection approach in this

thesis performs better than all other methods by a large margin on the aspects of

the precision. This demonstrates that the proposed fall detection approach can

effectively predict falls. The proposed method achieves a precision of 99.59%,
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while the highest value of the precision of other methods is 95.91%. Moreover,

the proposed approach achieves the best specificity of 97.31% among all methods

except two methods [122] and [25]. This means that the proposed approach can

classify most daily activities correctly as non-fall activities.

7.4 Discussion

The work presented in this study has mainly focused on evaluating the proposed

fall detection approach based on computer vision techniques. The approach pre-

sented here employs enhanced features which are extracted from human silhou-

ettes. Then the features are fed into machine learning algorithms to classify falls.

The experimental results show that the proposed algorithm using these features

is reliable for fall detection. The results also demonstrate that the proposed set

of features achieves good performance tested with various machine learning clas-

sifiers on a publicly available dataset. The KNN achieves better classification

performance in terms of accuracy 99.45% comparing to the other methods. The

ANN provides a better precision 99.60% and specificity 97.38% and this reflects

its capability to correctly classifying daily activities and fall events.
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Chapter 8

Conclusions and Future Works

8.1 Thesis Summary

The work presented in this thesis is a novel attempt to automatically detect fall

incidents to support independent living for older adults in indoor environments.

Based on the results obtained from the used techniques, it can be concluded

that the ability to distinguish a fall action depends mainly on the quality of

the classifier inputs. Therefore, the features of the extracted human silhouette

play a key role in the effectiveness and robustness of detecting human falls. The

proposed approaches were based on a combination of visual features to decide if

a fall has happened in a video sequence.

The aim of this research was to investigate appropriate methods for detect-

ing falls through analysing the motion and the shape of the human body. To

achieve the project aim, a video-based system for detecting falls is proposed. The

proposed system consists of three steps: detection of moving objects in a frame,

tracking such objects from frame to frame and then analysis of object tracks to

understand the behaviour.

The video data provided for testing the proposed fall detection approaches

were collected from real environments as well as from publicly available datasets.

The recorded video data contains simulated falls and daily activities collected in

realistic situations. The reason for collecting video data was to provide enough

experimental data for this research. The data was obtained from the visual record-
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ing of an indoor environment where participants simulated falls and performed

usual activities in a domestic setting. The data was acquired using a static cam-

era. The data is needed to enable the development of methods to automatically

identify and distinguish between activity associated with daily living of occupants

and that associated with abnormal behaviour such as fall events.

The video data sequences are used to extract robust features which describe

the change in human shape and to discriminate falls from other activities like

lying and sitting. These features are based on motion, changes in the human

shape, projection histogram and temporal change of head position. The features

extracted from the human silhouette are finally fed into various machine learning

classifiers for fall detection. The experimental results proved that the proposed

approach clearly discriminate a fall event from other daily activities.

In summary, throughout this research, original knowledge on visual-based

human fall detection was gained. The research conclusions with critical discussion

and the direction for future work are presented in the remaining sections of this

chapter.

8.2 Concluding Remarks

This thesis attempts to provide fall detection approaches for supporting older

adults in indoor environments. The conclusions for the various aspects of the

project are presented below:

8.2.1 Fall Detection Approach Using Threshold-Based Meth-

ods

This thesis presents novel threshold-based approaches to detect falls for an older

person in a home environment. The first approach combines a motion feature

and a change of the orientation and the ratio features to detect a fall event.

The second approach employs three features; motion information, human shape

variation and projection histogram to detect a fall.

The first approach investigated the effectiveness of motion information ex-

tracted by the tMHI method, using variation in shape and fits an approximated
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ellipse around the human body to further improve the accuracy of fall detection.

The second approach proposes a novel feature based on computing the standard

deviation of the difference of the horizontal and the vertical histograms. The

proposed fall detection approach based on a combination of timed motion his-

tory, variation in human shape and projection histograms achieves an accuracy

of 99.82% while maintaining small false alarms.

Threshold-based fall detection methods are simple and cost-effective methods.

However, the performance heavily depends on the fixed threshold level. For each

dataset, it is necessary to determine threshold values that are the best to detect

falls. Moreover, threshold values need to be adapted for monitoring different

people.

8.2.2 Fall Detection Approach Using Neural Network

This thesis highlights the need for extracting a number of features from binary

human silhouettes for fall detection. For each video sequence, the moving object

is detected, and 10 unique features represented in the feature vector F are used

to identify falls. These features are coefficient of motion, the orientation of the

ellipse, the ratio of the ellipse, the major semi-axis, the minor semi-axis of the

ellipse, the difference between the horizontal and vertical projection histograms,

the y-coordinate of the head point, and the standard deviation of the absolute

difference of y-coordinate. These features are fed into a multilayer perceptron

neural network for fall classification.

Experimental results show efficiency and reliability of the proposed fall de-

tection approach with high fall detection rate of 99.60% tested with UR Fall

Detection dataset. Additionally, A set of experiments have been conducted using

our recording dataset, the results indicate that the proposed approach achieves

high fall detection rate 99.94% and low false alarm 0.02%.

The overall performance of MLP Neural Network was better than the per-

formance of threshold-based algorithms. The MLP Neural Network achieves an

accuracy of 99.94%, while threshold-based methods achieves 99.82% tested with

recording dataset.
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8.2.3 Fall Detection Approach Using Various Machine Learn-

ing Methods

This thesis also shows that the extracted features allow discrimination of falls

from other activities like lying and sitting. These features are based on motion,

change in the human shape, projection histogram and temporal change of head

position. The proposed fall detection approach is evaluated by other machine

learning techniques such as, support vector machine, K-Nearest Neighbour and

Bagging tree. Experimental results show that the proposed algorithm using these

features is reliable for fall detection. We demonstrate that the proposed set of

features achieves good performance with various machine learning classifiers on

publicly available dataset. Additionally, the results and knowledge gained from

this research demonstrate that the NN provides a better precision 99.60% and

specificity 97.38% and this reflects its capability to correctly classify activities

like falls as non-fall events. The proposed system is able to successfuly classify

the daily activities from falls.

In general, the major findings of this work in terms of detecting falls from

visual data, and using various computer vision techniques are listed below.

1. Timed Motion History Images provide coherent motion information to rep-

resent the motion trail of a moving object over time.

2. The use of the major semi-axis and minor semi-axis of the ellipse fitted

around the human silhouette as features increases the accuracy of the pro-

posed fall detection.

3. Introducing a new feature based on computing the maximum values of

foreground pixels in the horizontal and vertical histograms, as well as the

difference between maximum values helps to effectively discriminate fall

among other activities.

4. A new feature extracted from the person’s head was explored. The differ-

ence of the y-coordinate of the person head as well as the standard deviation

of the difference of y-coordinate of the person head improves the accuracy

and the sensitivity of the proposed fall detection approach.
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5. Identifying the best combinations of features capable of effectively detecting

a fall.

6. The demonstrated results indicate that machine learning methods outper-

formed the threshold methods for fall detection. Additionally, the results

presented in this research show that the selected features perform well with

various machine learning techniques.

7. The results demonstrate that using the right selection of features can out-

perform more heavily computational techniques (e.g Convolution neural

network).

In the remaining part of this chapter, some future work is proposed.

8.3 Future Work

In a real-life situation many different factors affect the performance of fall de-

tection system. First of all, in real environments background is changed when

added static object or move a piece of furniture. Therefore, more advanced fore-

ground detection techniques using Convolution Neural Network [77] could be

implemented for more reliable system performance.

The proposed fall detection system is implemented for monitoring a single

person at home and is not adequate for monitoring multiple people. According

to [118] people counting techniques can be used to counting number of people.

Firstly, moving people are detected as foreground regions and then each person

is tracked through consecutive frames using a correlation-based algorithm. The

other scenario when an older adult has a pet, in this case only the extracted

foreground region corresponding to the human body silhouette are used for fall

detection. The extracted foreground region can be determined by using object

classification techniques.

The proposed fall detection system can only work in the presence of a good

intensity of light and further improvements are needed to deal with poor light-

ing conditions such as lighting changes, different type of light source, and dark

environment. A possible salutation is to use low-cost infrared systems detecting
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moving object. In addition, occlusion in the indoor environment is another prob-

lem which can be addressed by using multiple cameras to make sure that the

human body is visible in at least one camera view.

There are several lines of research arising from this work which should be

pursued. Some suggetions are listed below.

- Further improvements on the segmentation algorithm could be one of future

tasks of this research. A more efficient background subtraction algorithm

could be applied for a better human silhouette segmentation.

- In order to increase the robustness of the proposed fall detection approach,

multiple cameras in a single scene could be another suggestion for the future

work. Although the achieved results for fall detection are encouraging using

only a single camera, the classification performance could be improved fur-

ther by using multiple cameras, since a single camera limits the view angle

of the scene.

- From information aspects, instead of using only the video data, some data

from additional sensors like accelerometer could be extracted, with the aim

of increasing the detection rate. Several sensors have been shown to give

a better result when combined with camera sensor. These types of sensors

will be considered for future work. However, this work is already a step

forward towards high-performance fall detection systems.

- Using the 3D information from a depth camera like the Microsoft Kinect to

obtain additional depth information for a better human silhouette segmen-

tation could be studied.

- Defining normal inactivity zones such as bed, chair or other typical furniture

in the scene could decrease the false positives and give more robustness for

the fall detection system.

- It will be interesting to extend the work to develop deep learning ap-

proaches. The deep neural network extracts the most discriminate features

from consequent images based on the training data, and hence, covers more

real-life scenarios.
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Fall recognition is a positive step in support of independent living. However,

the goal of older adults safety and fall prevention to be achieved.
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