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We prove Nehari’s theorem for integral Hankel and Toeplitz operators on simple

convex polytopes in several variables. A special case of the theorem, generalizing the

boundedness criterion of the Hankel and Toeplitz operators on the Paley–Wiener space,

reads as follows. Let � = (0, 1)d be a d-dimensional cube, and for a distribution f on

2�, consider the Hankel operator

�f (g)(x) =
∫

�

f (x + y)g(y) dy, x ∈ �.

Then �f extends to a bounded operator on L2(�) if and only if there is a bounded

function b on Rd whose Fourier transform coincides with f on 2�. This special case

has an immediate application in matrix extension theory: every finite multilevel block

Toeplitz matrix can be boundedly extended to an infinite multilevel block Toeplitz

matrix. In particular, block Toeplitz operators with blocks that are themselves Toeplitz

can be extended to bounded infinite block Toeplitz operators with Toeplitz blocks.

1 Introduction

For an open connected set � ⊂ Rd, d ≥ 1, let

� = � + � = {x + y : x ∈ �, y ∈ �},
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2 M. Carlsson and K.-M. Perfekt

and consider a distribution f defined on �. The associated general domain Hankel

operator �f = �f ,� is the (densely defined) operator �f : L2(�) → L2(�), given by

�f (g)(x) =
∫

�

f (x + y)g(y) dy, x ∈ �,

where dy is the Lebesgue measure on Rd.

The case � = R+ = (0, ∞) for d = 1 corresponds to the class of usual Hankel

operators; when represented in the appropriate basis of L2(R+), the operator �f ,R+ is

realized as an infinite Hankel matrix {an+m}∞n,m=0 [31, Ch. 1.8]. Nehari’s theorem [25]

characterizes the bounded Hankel matrices of this type, but it has an equivalent version

for operators of the type �f : L2(R+) → L2(R+), which reads as follows (we again refer

to [31, Ch. 1.8], Theorem 8.1). For a function g on Rd, we let ĝ = Fg denote its Fourier

transform,

ĝ(ξ) = Fg(ξ) =
∫
Rd

g(x)e−2π ix·ξ dx, ξ ∈ Rd.

Theorem. Suppose that f is a distribution in R+, f ∈ D′(R+). Then �f : L2(R+) →
L2(R+) is bounded if and only if there exists a function b ∈ L∞(R) such that b̂|

R+ = f .

Moreover, it is possible to choose b so that

‖�f ‖ = ‖b‖L∞ . (1.1)

Nehari’s theorem is canonical in operator theory. The two most common proofs proceed

either by factorization in the single variable Hardy space or by making use of the

commutant lifting theorem.

For d > 1, the operators �f ,Rd+ , � = Rd+, correspond to (small) Hankel operators

on the product domain multi-variable Hardy space H2
d. In this case, the analogue of

Nehari’s theorem remains true, apart from (1.1), but it is significantly more difficult

to prove. It was established by Ferguson and Lacey (d = 2) and Lacey and Terwilleger

(d > 2) [18, 23]. A precise statement is given in Theorem 2.1.

The main purpose of this article is to prove Nehari’s theorem when � ⊂ Rd is a

simple convex polytope. When � is convex note that � + � = 2�.

Theorem 1.1. Let � be a simple convex polytope, and let f ∈ D′(�) where � = 2�.

Then �f : L2(�) → L2(�) is bounded if and only if there is a function b ∈ L∞(Rd) such

that b̂|� = f . There exists a constant c > 0, depending on �, such that b can be chosen
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Nehari’s Theorem in Several Variables 3

to satisfy

c‖b‖L∞ ≤ ‖�f ‖ ≤ ‖b‖L∞ .

When d = 1, the only open connected sets � ⊂ R are the intervals � = I. In

this case, Theorem 1.1 is due to Rochberg [35], who called the corresponding operators

�f ,I Hankel/Toeplitz operators on the Paley–Wiener space. They have also been called

Wiener–Hopf operators on a finite interval [30]. These operators have inspired a wealth

of theory in the single variable setting—see Section 2.5, where we shall interpret

Theorem 1.1 in the context of Paley–Wiener spaces.

Even for d = 1, our proof of Theorem 1.1 appears to be new. However, in several

variables our proof relies on the Nehari theorem of Ferguson–Lacey–Terwilleger and can

therefore not be used to give a new proof of their results.

We shall also consider general domain Toeplitz operators �f = �f ,� : L2(�) →
L2(�). In this context, f is a distribution defined on � = �−�, and �f is densely defined

via

�f (g)(x) =
∫

�

f (x − y)g(y) dy, x ∈ �.

If � after a translation is invariant under the reflection x �→ −x, then the

classes of Hankel operators �f ,� and Toeplitz operators �f̃ ,� are essentially the same,

and Theorem 1.1 immediately yields a boundedness result. This reasoning is applicable

to the cube � = (0, 1)d, for example.

Corollary 1.2. Let � be a simple convex polytope such that for some z ∈ Rd it holds

that � + z = −� − z. Let f ∈ D′(�), � = � − � = 2� + 2z. Then �f is bounded if and only

if there exists a function b ∈ L∞(Rd) such that b̂|� = f . There exists a constant c > 0,

depending on �, such that b can be chosen to satisfy

c‖b‖L∞ ≤ ‖�f ‖ ≤ ‖b‖L∞ .

On the other hand, when � is a proper convex unbounded set, containing an

open cone say, it is clear that the boundedness characterizations of �f ,� and �f ,�

may be completely different; plainly explained by the fact that � = � − � = Rd

in the Toeplitz case, while � = � + � = 2� � Rd for Hankel operators. In this

setting, identifying the boundedness of �f carries none of the subtleties of Nehari-

type theorems. In Theorem 6.1 we obtain the expected boundedness result for a class
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4 M. Carlsson and K.-M. Perfekt

of “cone-like” domains �. Rather than giving a precise statement here, let us record the

following corollary of Theorem 6.1.

Corollary 6.2. Let � ⊂ Rd be any open connected domain such that

(1, ∞)d ⊂ � ⊂ (0, ∞)d,

and let f ∈ D′(Rd). Then �f : L2(�) → L2(�) is bounded if and only if f is a tempered

distribution and ‖f̂ ‖L∞(Rd) < ∞, and in this case

‖�f ‖ = ‖f̂ ‖L∞ .

In the final part of the paper we shall give an application of Theorem 1.1 to

matrix completion theory, essentially obtained by discretizing Corollary 1.2 when � is

a cube. To avoid introducing further notation, we shall only state the result in words

for now. Recall that a Toeplitz matrix is one whose diagonals are constant. An N × N

d-multilevel block Toeplitz matrix is an N × N Toeplitz matrix whose entries are N ×
N (d − 1)-multilevel block Toeplitz matrices. Here N could be finite or infinite. A 1-

multilevel block Toeplitz matrix is simply an ordinary Toeplitz matrix. A 2-multilevel

block Toeplitz matrix is what is usually considered a block Toeplitz matrix where each

block itself is Toeplitz.

Theorem 7.1. Every finite N ×N d-multilevel block Toeplitz matrix can be extended to

an infinite d-multilevel block Toeplitz matrix bounded on �2, with a constant that only

depends on the dimension d.

For scalar Toeplitz matrices (d = 1) this result is well known [5, 26, 36, 38],

although not as firmly cemented in the literature as the Nehari theorem itself; see

[28, Ch. V.2, V.8] for a proof based on Parrot’s lemma and a discussion of the result’s

history. For d = 1, the converse deduction of Theorem 1.1 starting from Theorem 7.1

can be found in [13].

The paper is laid out as follows. In Section 2 we will give a more formal

background and introduce necessary notation. We will also discuss the relationship

between �f ,�, Paley–Wiener spaces, and co-invariant subspaces of the Hardy spaces.

In Section 3 we will prove approximation results for distribution symbols with respect

to Hankel and Toeplitz operators, allowing us to reduce to smooth symbols. Section 4

briefly outlines what we need to know about convex sets and polytopes. In Section 5
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Nehari’s Theorem in Several Variables 5

we prove Theorem 1.1, our Nehari theorem for Hankel operators. We also indicate how

the proof extends to certain unbounded polyhedral domains. In Section 6 our main

result on Toeplitz operators is shown, Theorem 6.1. Finally, Section 7 gives the proof of

Theorem 7.1.

2 Further background and related results

2.1 Hankel operators on multi-variable Hardy spaces

Let us begin by placing Hankel operators �f into the context of classical Hankel

operators on Hardy spaces. As before, for g ∈ L2(Rd), let ĝ = Fg denote its Fourier

transform,

ĝ(ξ) = Fg(ξ) =
∫
Rd

g(x)e−2π ix·ξ dx, ξ ∈ Rd.

For the inverse transform we write F−1(g) = ǧ. The product domain Hardy space H2
d is

the proper subspace of L2(Rd) of functions whose Fourier transforms are supported in

the cone Rd+, R+ = (0, ∞),

H2
d =

{
G ∈ L2(Rd) : supp Ĝ ⊂ Rd+

}
.

We let Pd : L2(Rd) → H2
d denote the orthogonal projection and let J : L2(Rd) → L2(Rd) be

the involution defined by JG(x) = G(−x), x ∈ R.

Consider �f = �f ,� for � = Rd+ with f ∈ L2(Rd+). For a dense set of g, h ∈ L2(Rd+)

we have that

〈�f g, h〉L2(Rd+)
= 〈 f̌ Jǧ, ȟ〉H2

d
. (2.1)

It follows that the (possibly unbounded) operator �f : L2(Rd+) → L2(Rd+) is unitarily

equivalent to the small Hankel operator Zf̌ : H2
d → H2

d,

Zf̌ G = Pd( f̌ · JG).

Note that any b such that b̂|
R

d+ = f generates the same Hankel operator as f̌ , Zb = Zf̌ .

To justify the above computation easily we assumed that f ∈ L2(Rd+). An

approximation argument is needed to consider general symbols f , which may only be

distributions in Rd+. We provide this later in Proposition 3.2. We can then read off the

boundedness of �f from the boundedness of the corresponding Hankel operator on H2
d.

When d = 1 and � = � = R+, the analogue of Theorem 1.1 is exactly the classical
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6 M. Carlsson and K.-M. Perfekt

Nehari theorem. In higher dimensions the corresponding theorem is due to Ferguson–

Lacey–Terwilleger [18, 23]. In our notation, their results read as follows.

Theorem 2.1. Suppose � = � = Rd+ and that f is a distribution in Rd+, f ∈ D′(Rd+). Then

�f : L2(Rd+) → L2(Rd+) is bounded if and only if there exists a function b ∈ L∞(Rd) such

that b̂|
R

d+ = f . Moreover, there exists a constant c > 0, depending on d, such that b can

be chosen to satisfy

c‖b‖L∞ ≤ ‖�f ‖ ≤ ‖b‖L∞ . (2.2)

For d > 1 it is not possible to take c = 1 in (2.2), see for example [29]. This

result, as stated in [18, 23], requires that f ∈ L2(Rd+). The extension to the more general

situation considered here is a technicality, but for completeness the details are provided

in Section 3.

2.2 Hankel operators on bounded domains

We now discuss bounded domains �, the setting of our main result. The only convex

bounded domains in R are the intervals I ⊂ R. Translations, dilations, and reflections

carry the operator �f ,I onto �f̃ ,J , where J ⊂ R is any other interval and f̃ arises from

transforming f appropriately. In one variable it thus suffices to consider operators

�f ,(0,1) where � = (0, 1). Rochberg [35] called these operators Hankel operators on the

Paley–Wiener space and proved Theorem 1.1 in the one-dimensional case.

In the same article [35], it is posed as an open problem to characterize the

bounded Hankel operators �f ,� when � is a disc in R2. We are not able to settle this

question, but Theorem 1.1 does provide the answer when � = (0, 1)d is a cube in Rd.

As we will see, the Hankel operators �f ,(0,1)d constitute a natural generalization of the

Hankel operators on the Paley–Wiener space. On a technical level, the reason that we are

able to prove Theorem 1.1 when � is a simple convex polytope, but not when � is a ball,

is that we rely on Theorem 2.1. In applying Theorem 2.1 to our situation, the corners

of the boundary of � are actually of help rather than hindrance. We consider the case

of a ball to be an interesting open problem for which we do not dare to make a firm

conjecture. In view of Fefferman’s disproof of the disc conjecture [17], Nehari theorems

might turn out to be quite different for balls and polytopes.

2.3 Toeplitz operators

When d = 1 and � = R+, � = R, the operators �f are known as Wiener–Hopf

operators [11, Ch. 9]. Analogously with Hankel operators, these can be shown to be
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Nehari’s Theorem in Several Variables 7

unitarily equivalent to Toeplitz matrix operators on �2(N). In this case the boundedness

characterization is easy to both state and prove

‖�f ‖ = ‖f̂ ‖L∞ . (2.3)

In Theorem 6.1 we extend (2.3) to Toeplitz operators �f ,� for a class of “cone-like”

domains � ⊂ Rd, for which � = � − � = Rd.

2.4 Truncated correlation operators

For open connected sets �, ϒ ⊂ Rd it is also convenient to introduce the more general

“truncated correlation operators” 
f ,ϒ ,� : L2(ϒ) → L2(�), defined by


f (g)(x) =
∫

ϒ

f (x + y)g(y) dy, x ∈ �,

where f lives on � = �+ϒ . This class of operators includes both general domain Hankel

and Toeplitz operators, by letting ϒ = � and ϒ = −�, respectively.

For our purposes, general truncated correlation operators will only appear in

intermediate steps toward proving the main results, but they also carry independent

interest. They were introduced in [1], where their finite rank structure was investigated.

In [2] it was shown that they have a fundamental connection with frequency estimation

on general domains, motivating the practical need for understanding such operators,

not only on domains of simple geometrical structure. In [3] it is explained how one

may infer certain results for the integral operators 
f from their discretized matrix

counterparts. We warn the reader that in naming the operators �f , �f , and 
f we

have slightly departed from previous work, reserving the term (general domain) Hankel

operator for truncated correlation operators of the form 
f ,�,�.

2.5 Hankel operators on multi-variable Paley–Wiener spaces

Another viewpoint is offered through co-invariant subspaces of the Hardy spaces H2
d.

For a domain � ⊂ Rd, let PW� denote the subspace of L2(Rd) of functions with Fourier

transforms supported in �,

PW� = {G ∈ L2(Rd) : supp Ĝ ⊂ �}.

In the classical case � = (0, 1) ⊂ R, note that

PW(0,1) = H2
1 � {G ∈ H2

1 : supp Ĝ ⊂ [1, ∞)} = H2
1 � θH2

1 ,
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8 M. Carlsson and K.-M. Perfekt

where

θ(x) = ei2πx, x ∈ R.

Hence PW(0,1) is the ortho-complement (in H2
1 ) of θH2

1 , the shift-invariant subspace of H2
1

with inner factor θ . This space is usually denoted Kθ ,

PW(0,1) = Kθ := (θH2
1 )⊥.

By a calculation similar to (2.1) we see that �f ,(0,1) is unitarily equivalent to the

compression of the Hankel operator Zf̌ to PW(0,1),

�f ,(0,1) � PPW(0,1)
Zf̌ |PW(0,1)

,

where PPW(0,1)
: H2

1 → PW(0,1) denotes the orthogonal projection onto PW(0,1). Such

truncated Toeplitz and Hankel operators are now very well studied on general Kθ -

spaces [6, 7, 9, 10, 14, 20, 27, 30, 36].

In the case of the cube � = (0, 1)d ⊂ Rd, d > 1, the Hankel operator �f ,� may, just

as for d = 1, be understood as the compression of a Hankel operator to a co-invariant

subspace of H2
d. Namely,

PW(0,1)d = {G ∈ H2
d : supp Ĝ ⊂ [0, 1]d} = {G ∈ H2

d : supp Ĝ ⊂ Rd+ \ (0, 1)d}⊥.

If G ∈ H2
d ∩ L∞(Rd), it is clear that GPW⊥

(0,1)d ⊂ PW⊥
(0,1)d , since

F(GH)(ξ) =
∫
R

d+
Ĝ(y)Ĥ(ξ − y) dy = 0, H ∈ PW⊥

(0,1)d , ξ ∈ [0, 1]d.

Hence PW⊥
(0,1)d ⊂ H2

d is an invariant subspace (under multiplication by bounded

holomorphic functions), and as before we have that

�f ,(0,1)d � PPW
(0,1)d

Zf̌ |PW
(0,1)d

,

where PPW
(0,1)d

: H2
d → PW(0,1)d denotes the orthogonal projection onto PW(0,1)d .

Finally, let us briefly discuss the viewpoint of weak factorization. The Hardy

space H1
d is defined as the closure of F−1(C∞

c (Rd+)) in L1(Rd). Similarly, we define PW1
� as

the closure of F−1(C∞
c (�)) in L1(Rd). As is well known, see for example [24, Theorem 6.4],

Theorem 2.1 is equivalent to the fact that H1
d is the projective tensor product of two
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Nehari’s Theorem in Several Variables 9

copies of H2
d,

H1
d = H2

d � H2
d, (2.4)

with equivalence of norms. Here the projective tensor product norm on X�X, X a Banach

space of functions, is given by

‖G‖X�X = inf

⎧⎨⎩∑
j

‖Gj‖X‖Hj‖X : G =
∑

j

GjHj, Gj, Hj ∈ X

⎫⎬⎭ ,

X � X being defined as the completion of finite sums
∑

j GjHj in this norm.

The reason that Theorem 2.1 is equivalent to (2.4) is the following: by (2.1), �f ,Rd+
is bounded if and only if

|〈f̌ , GH〉H2
d
| ≤ C‖G‖H2

d
‖H‖H2

d
,

which means precisely that f̌ induces a bounded functional on H2
d � H2

d, f̌ ∈ (H2
d � H2

d)∗.

On the other hand, the existence of b ∈ L∞(Rd) such that b̂|
R

d+ = f |
R

d+ , so that 〈f̌ , GH〉H2
d

=
〈b, GH〉H2

d
, G, H ∈ H2

d, means, by the Hahn–Banach theorem, precisely that f̌ ∈ (H1
d)∗.

Theorem 1.1 yields a similar weak factorization theorem for Paley–Wiener

spaces. We postpone the proof to Section 5, but mention now that corresponding weak

factorization for Kθ spaces plays an important role in [6] and [9]. Corollary 5.3 might also

be compared to the results in [37], where weak factorization for multivariate analytic

polynomials is deduced as a consequence of Theorem 2.1.

Corollary 5.3. Let � be a simple convex polytope, and let � = 2�. Then

PW1
� = PW� � PW�.

The norms of these Banach spaces are equivalent.

2.6 Brief historical overview

Z. Nehari published his famous theorem in 1957 [25], inspiring the search for analogous

statements in other contexts; positive results are themselves often referred to as Nehari

theorems. The most natural inquiries are perhaps those related to Hankel operators on

Hardy spaces of several variables. Nehari’s theorem for the Hardy space of the unit ball

was proven by Coifman, Rochberg, and Weiss in 1976 [15, Thm. VII], but this setting is

rather different from the one considered in this paper.
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10 M. Carlsson and K.-M. Perfekt

For the product domain Hardy space H2
d, Hankel operators can be defined by

either projecting on H2
d or on the larger space L2(Rd) � H2

d. The 1st option leads to the

“small” Hankel operators considered in Section 2.1, while the 2nd type of operator is

commonly referred to as a “big” Hankel operator. In the notation of Section 2.4, a small

Hankel operator is an operator 
f ,Rd+,Rd+ = �f ,Rd+ , whereas big Hankel operators are of

the form 

f ,Rd+,Rd\Rd+

. When transferred to operators on the Hardy space of the polydisc,

small Hankel operators correspond, in the standard basis, to infinite matrices with a

certain block Hankel structure (cf. Section 7).

The big Hankel operators were extensively studied by Cotlar and Sadosky. In

particular, boundedness of the big Hankel operators was characterized in terms of

certain BMO type estimates in [16]. Small Hankel operators were investigated by Janson

and Peetre [22] in 1988. They introduced “generalized Hankel and Toeplitz operators”

as particular cases of a more general class of pseudo-differential operators called

paracommutators. In their terminology, an operator of the form 
f ,�,ϒ is a generalized

Hankel operator if � and ϒ are open cones and � ∩ (−ϒ) = {0}, whereas it is called

Toeplitz if �∩(−ϒ) �= ∅. Hence the general domain Hankel operators �f ,� are generalized

Hankel operators a lá Janson–Peetre whenever � is a cone with mild restrictions, while

�f ,� is a generalized Toeplitz operator a lá Janson–Peetre for every open cone �. In the

Toeplitz case, a full boundedness characterization is given in [22, p. 482]. In the Hankel

case, only sufficient conditions for boundedness and Schatten class membership are

provided, in terms of BMO and Besov spaces, respectively.

As previously mentioned, R. Rochberg considered Hankel operators for bounded

domains in 1987 [35], studying the case of a finite interval in one dimension. Further-

more, he posed as an open problem to understand the case when � ⊂ R2 is a disc. In this

latter setting, L. Peng [32] characterized when �f ,� belongs to the Schatten class Sp, for

1 ≤ p ≤ 2, in terms of certain Besov spaces adapted to the disc. L. Peng also carried out

a similar study [33] for the case of the multidimensional cube, � = (−1, 1)d, describing

membership in Sp for all p, 0 < p < ∞, as well as giving a sufficient condition for

boundedness.

Since then it seems that the field did not see progress until the results of

Ferguson–Lacey–Terwilleger [18, 23] settled the issue of boundedness of small Hankel

operators.

3 Distribution symbols

Let �, ϒ ⊂ Rd be any open connected sets and let f ∈ D′(�) be a distribution on �,

� = � + ϒ . We follow the notation of [21] in our use of distributions. We then define
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Nehari’s Theorem in Several Variables 11

the truncated correlation operator 
f as an operator 
f ,ϒ ,� : C∞
c (ϒ) → C∞(�) by the

formula


f (ϕ)(x) = (f , Txϕ), x ∈ �,

where (f , ϕ) denotes the action of f on ϕ and

Txϕ(·) = ϕ(· − x).

We reserve the notation 〈f , ϕ〉 for scalar products that are anti-linear in the 2nd entry.

Since Txϕ is compactly supported in � for x ∈ �, it follows that 
f (ϕ) this is

well defined and smooth in � (see, e.g., [21, Theorem 4.1.1]). Since C∞
c (ϒ) is dense in

L2(ϒ), 
f gives rise to a densely defined operator on the latter space, which extends to

a bounded operator 
f : L2(ϒ) → L2(�) if and only if

‖
f ‖ = sup

{‖
f (ϕ)‖L2(�)

‖ϕ‖L2(ϒ)

: ϕ ∈ C∞
c (ϒ), ϕ �= 0

}
< ∞.

It is clear that 
f (ϕ)(x) = ∫
f (x + y)ϕ(y) dy whenever f ∈ L1

loc(�). By slight abuse of

notation, we write the action of 
f in this way even when f is not locally integrable.

The central question in this paper is the following: for which domains ϒ and

� is the boundedness of 
f equivalent to the existence of a function b ∈ L∞(Rd) such

that b̂|� = f ? Some care must be taken in interpreting this question. For example, the

prototypical example of a bounded Hankel operator is the Carleman operator

�1/x,R+ = 
1/x,R+,R+ .

The symbol f (x) = 1
x χ

R+(x) is in this case not a tempered distribution on R (so the

meaning of f̌ is unclear)—it is, however, the restriction of the tempered distribution

p. v. 1
x to R+. An example with a delta function makes it clear that it is not necessary for

f to be locally integrable in � either.

We first record the answer to our question in the trivial direction.

Proposition 3.1. Consider any connected open domains �, ϒ ⊂ Rd, with associated

domain � = ϒ+�. Let b ∈ L∞(Rd) be given and suppose f = b̂|�. Then 
f : L2(ϒ) → L2(�)

is bounded and

‖
f ‖ ≤ ‖b‖L∞ . (3.1)
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12 M. Carlsson and K.-M. Perfekt

Proof. For ϕ ∈ C∞
c (ϒ) we have that


f (ϕ) = FMbJF−1ϕ|�,

where Mb is the operator of multiplication by b. The statement is obvious from here. �

Next we establish two technical results on the approximation of distribution

symbols by smooth compactly supported functions, Propositions 3.2 and 3.3. They will

help us to overcome the technical issues mentioned earlier, in particular allowing us to

deduce Theorem 2.1 from the corresponding statements in [18, 23].

Given open connected domains �, ϒ ⊂ Rd, let
(
ϒn

)∞
n=1 be an increasing sequence

of connected open subdomains ϒn ⊂ ϒ such that

dist(ϒn, ∂ϒ) > 1/n, ∪∞
n=1ϒn = ϒ .

Note that �n = ϒn + � is also increasing and satisfies

dist(�n, ∂�) > 1/n, ∪∞
n=1�n = �.

Let ψ ∈ C∞
c (Rd) be a fixed non-negative function with compact support in the

ball B(0, 1/2) such that
∫
Rd ψ(x) dx = 1. For n ≥ 1 let

ψn(x) = ndψ(nx),

so that (ψn)∞n=1 is an approximation of the identity. Since f ∈ D′(�) and supp ψn ⊂
B(0, 1/2n), the convolution f ∗ ψn is well defined as a function in C∞(�2n). Let ρn be a

smooth cut-off function that is 1 in a neighborhood of �n but zero in a neighborhood of

�c
2n, and note that ρn( f ∗ ψn) then naturally defines a function in C∞(Rn). Finally, for a

non-negative function η ∈ C∞
c (Rd) with ‖η‖L2 = 1, let ω = η ∗ η̃, where η̃(x) = η(−x). Then

ω ∈ C∞
c (Rd) and

ω(0) = ‖ω̂‖L1 = 1.

Let ωn(x) = ω(x/n). We introduce

fn = ωnρn( f ∗ ψn)
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Nehari’s Theorem in Several Variables 13

as an approximant of f , where the role of ωn is to enforce compact support in case � is

unbounded. By construction, fn ∈ C∞
c (�) and it is straightforward to check that fn → f

in D′(�). As for 
fn,ϒn,�, we have the following result.

Proposition 3.2. Let �, ϒ be connected open domains, � = ϒ + �, and suppose f ∈
D′(�). For n ≥ 1, let �n = ϒn + � and fn be constructed as above. Then

‖
fn,ϒn,�‖ ≤ ‖
f ,ϒ ,�‖.

Proof. We can assume that ‖
f ,ϒ ,�‖ < ∞, since otherwise there is nothing to prove.

First note that

ωn(x) =
∫
Rd

ndω̂(nξ)e2π ix·ξ dξ ,

the integrand on the right having L1-norm equal to ‖ω̂‖L1(Rd). Letting gn = ρn(f ∗ ψn), we

have for ϕ ∈ C∞
c (ϒn) and x ∈ � that


fn
(ϕ)(x) =

∫
ϒn

∫
Rd

ndω̂(nξ)e2π i(x+y)·ξ dξ gn(x+y)ϕ(y) dy =
∫
Rd

ndω̂(nξ)e2π iξ ·x
gn
(ϕξ )(x) dξ ,

where ϕξ (y) = e2π iy·ξ ϕ(y). Since ‖ϕξ‖L2 = ‖ϕ‖L2 it follows by the triangle inequality (for

L2-valued Bochner integrals) that

‖
fn,ϒn,�‖ ≤ ‖ω̂‖L1‖
gn,ϒn,�‖ = ‖
gn,ϒn,�‖.

This reduces our task to proving that the operators


gn,ϒn,� = 
ρn(f ∗ψn),ϒn,� = 
f ∗ψn,ϒn,�

are uniformly bounded in n. We have for ϕ ∈ C∞
c (ϒn) and x ∈ � that


f ∗ψn
(ϕ)(x) =

∫
Rd

∫
Rd

f ((x + y) − z)ψn(z) dzϕ(y) dy

=
∫
Rd

f (x + z)

∫
Rd

ψn(y − z)ϕ(y) dy dz = 
f (ψ̃n ∗ ϕ)(x),

where ψ̃n(x) = ψn(−x). Since

‖ψ̃n ∗ ϕ‖L2(ϒ) ≤ ‖ψn‖L1‖ϕ‖L2(ϒn) = ‖ψ‖L1‖ϕ‖L2(ϒn) = ‖ϕ‖L2(ϒn),

this completes the proof. �
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14 M. Carlsson and K.-M. Perfekt

Proof of Theorem 2.1. Suppose that �f ,Rd+ = 
f ,�,ϒ is bounded, where � = ϒ = Rd+. In

this case, we let ϒn = (2/n, ∞)d. By Proposition 3.2 we then have that

‖�fn,ϒn
‖ ≤ ‖
fn,ϒn,�‖ ≤ ‖�f ,Rd+‖, n ≥ 1.

Since ϒn = zn + Rd+, zn = (2/n, . . . , 2/n), we have that

�fn,ϒn
(g)(x) = �f̃n,Rd+

(g̃)(x − zn),

where f̃n(x) = fn(x + 2zn) and g̃n(x) = g(x + zn). Since f̃n ∈ L2(Rd+), the computation that

led to (2.1) is justified, and we conclude from [18, 23] that there is bn ∈ L∞(Rd) such that

b̂n|2ϒn
= fn|2ϒn

, ‖bn‖L∞ ≤ C‖�f ,Rd+‖.

By Alaoglu’s theorem it follows that there is a weak-star convergent subsequence

(bnk
)∞k=1 with limit b ∈ L∞ having norm less than C‖�f ,Rd+‖. It remains to prove that

f = b̂|
R

d+ , that is, (f , ϕ) = (b, ϕ̂) holds for all ϕ ∈ C∞
c (Rd+). However, this is clear from the

construction; since ϕ̂ ∈ L1 we have that

(b, ϕ̂) = lim
k→∞

(bnk
, ϕ̂) = lim

k→∞
(fnk

, ϕ) = (f , ϕ).

�

In Section 6 we will consider Toeplitz operators �f ,� for which � = � − � = Rd.

In this case f ∗ ψn is a smooth function defined in all of Rd, and there is no need to

multiply with ρn or to introduce the subdomains ϒn. In this case we simply let

fn = ωn(f ∗ ψn).

Clearly, fn → f in D′(Rd) and we have, with the exact same proof as for Proposition 3.2,

the following approximation result.

Proposition 3.3. Let �, ϒ be connected open domains for which � = ϒ + � = Rd, and

suppose f ∈ D′(Rd). For n ≥ 1, let fn be constructed as above. Then

‖
fn,ϒ ,�‖ ≤ ‖
f ,ϒ ,�‖.
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Nehari’s Theorem in Several Variables 15

4 On convex sets and polytopes

We recall some basic properties of convex sets. Given an unbounded convex set � ⊂ Rd

which is either open or closed, its characteristic cone, also known as its recession cone,

is the closed set

cc� = {x ∈ Rd : � + xR+ ⊂ �}.

The support function h� : Rd → (−∞, ∞] is defined by

h�(θ) = sup
x∈�

x · θ .

We refer to [21, Sec. 7.4] for the basic properties of h�. The barrier cone of � is the set

bc� = {θ ∈ Rd : h�(θ) < ∞}. (4.1)

The characteristic cone cc� coincides with the polar cone of the barrier cone bc�,

that is,

cc� = {x ∈ Rd : x · y ≤ 0, ∀y ∈ bc�}.

To give a complete reference for this claim, first note that for closed convex sets �,

cc� coincides with the asymptotic cone of �, giving (4.1) by [4, Theorem 2.2.1]. When

� instead is open and convex we have that � is equal to its relative interior ri(�), and

since ccri(�) = cc� [8, Proposition 1.4.2], it follows that cc� = cc� in this case.

We next recall some standard terminology and facts of polytopes, referring to

for example [12, Ch. 7–9]. By an open half-space in Rd we mean a set

Hr
ν = {x ∈ Rd : x · ν > r},

where ν ∈ Rd is a non-zero vector and r ∈ R. A closed half-space is the closure of such a

set. A finite intersection of half-spaces is called a polyhedral set.

A convex polytope is a bounded polyhedral set. A closed convex polytope is the

convex hull of a finite set of points. The minimal set of such points coincides with the

extreme points of the polytope, that is, its vertices. If the minimal number of defining

hyperspaces of a convex polytope is d+1 (equivalently, if it has precisely d+1 vertices),

the polytope is called a simplex. For a non-closed polytope we define its vertices (and

its edges and facets) as those of its closure.

The boundary of a polytope set is made up of a finite amount of facets (i.e.

d − 1 dimensional faces), see Corollary 7.4 and Theorem 8.1 of [12]. For a polytope �

with vertex xj, we denote by ∂far,xj
� the part of its boundary made up of all facets not

containing xj.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz193/5610521 by U

niversity of R
eading user on 21 January 2020



16 M. Carlsson and K.-M. Perfekt

A vertex of a polytope will be called simple if it is contained in precisely d of its

edges. We say that a polytope is simple if all of its vertices are simple, which coincides

with the standard terminology. Equivalently, this means that each vertex is contained

in precisely d of its facets (cf. [12, Theorem 12.11]).

By an affine linear transformation we mean a map of the form A(x) = x0 + L(x)

where L is a linear map, and we call x0 the origin of such a map. The following simple

lemma gives a 3rd characterization of simple vertices.

Lemma 4.1. Let {xj}J
j=1 be the vertices of a closed polytope �. Then the vertex xj is

simple if and only if it is the origin of an invertible affine transformation Aj such that

� locally coincides with Aj(R
d+) around xj, in the sense that A−1

j (�) ⊂ Rd+ and the facets

of A−1
j (�) containing 0 are precisely those of the form

A−1(�) ∩ {x ∈ Rd : x · ek = 0}, 1 ≤ k ≤ d,

where {ek}d
k=1 denotes the standard basis of Rd.

Proof. We may assume that x1 = 0 is simple and that x2, x3, . . . , xd+1 are the other

endpoints of the edges containing 0. Let A : Rd → Rd be the linear map such that A(ek) =
xk+1, 1 ≤ k ≤ d. A is invertible [12, Corollary 11.7], so that A−1(�) is a closed convex

polytope contained in Rd+. Since 0 is a vertex of A−1(�) with adjacent vertices e1, . . . , ed,

the d facets containing 0 must be precisely those of the form A−1(�)∩{x ∈ Rd : x·ek = 0}.
For the converse, simply note that the property of being a simple vertex is

preserved under affine isomorphisms. �

By compactness it is easy to construct a partition of unity adapted to the vertices

of �.

Lemma 4.2. Given a polytope � with vertices {xj}J
j=1 there exist functions {μj}J

j=1 such

that μj ∈ C∞
c (Rd),

∑J
j=1 μj(x) = 1 for x ∈ �, and suppμj ∩ ∂far,xj

� = ∅.

Proof. For ε > 0 and 1 ≤ j ≤ J, let

Vε
j = {x ∈ Rd | dist(x, ∂far,xj

�) > ε and dist(x, �) < 1}.

Since every x ∈ � is contained in some set Vε
j , there is by compactness a fixed ε0 > 0

such that � ⊂ ⋃J
j=1 Vε0

j . Let VJ+1 = Rd \� and choose a smooth partition of unity {μj}J+1
j=1

of Rd subordinate to Vε0
1 , . . . , Vε0

J , VJ+1. Then {μj}J
j=1 is the required partition of unity. �
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Nehari’s Theorem in Several Variables 17

5 General domain Hankel operators

We now consider general domain Hankel operators �f ,� for convex domains �. Observe

that in this case � = � + � = 2�. We begin with a proposition that links the bounded

Hankel operators with weak factorization.

Proposition 5.1. Let � be an open convex domain. Then

X =
{
�f ,� : ‖�f ,�‖ < ∞

}
is a closed subspace of the space of bounded linear operators on L2(�). As a Banach

space, it is isometrically isomorphic to the dual space (PW� � PW�)∗. More precisely,

bounded functionals μ on the projective tensor product correspond to distributions f

on � = 2�,

( f , g) = μ(F−1g), g ∈ C∞
c (�),

for which ‖�f ,�‖ = ‖μ‖.

Proof. The main fact to be proved is that

F−1(C∞
c (�)) ⊂ PW� � PW�.

Since C∞
c (�) is dense in L2(�), it then follows that F−1(C∞

c (�)) is dense in the product

PW� � PW�.

We will actually show a little more than the claim. Namely, every g ∈ C∞
c (�) can

be written

g =
∑

k

sk ∗ tk, sk, tk ∈ L2(�),

in such a way that the corresponding map g �→ ∑
k ‖sk‖L2(�)‖tk‖L2(�) is continuous from

C∞
c (�), equipped with the usual test function topology, to R. By employing a partition of

unity in which each member is compactly supported in a cube, it is sufficient to prove

the claim when � = (0, 1/2)d. For this we employ Fourier series. Let λ(t) = 1/2−|t−1/2|,
t ∈ [0, 1], and let

�(x) =
d∏

i=1

λ(xi), x ∈ (0, 1)d.

Note that λ is in the Wiener algebra A([0, 1]), the space of functions on [0, 1] with

absolutely convergent Fourier series, equipped with pointwise multiplication. Therefore
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18 M. Carlsson and K.-M. Perfekt

� is in the Wiener algebra A([0, 1]d), since � is a tensor power of λ. Since g ∈ C∞
c ((0, 1)d)

and � is non-zero on compact subsets of (0, 1)d it follows by Wiener’s lemma [19, Ch. 5]

that g/� ∈ A([0, 1]d). Expanding g/� in a Fourier series,

(g/�)(x) =
∑

k∈Zd

akei2πk·x,
∑

k∈Zd

|ak| < ∞, x ∈ [0, 1]d,

let tk(x) = ei2πk·xχ(0,1/2)d(x), sk = aktk. Then a computation shows that

(sk ∗ tk)(x) = akei2πk·x�(x), x ∈ (0, 1)d,

so that

g =
∑

k∈Zd

sk ∗ tk,
∑

k∈Zd

‖sk‖L2((0,1/2)d)‖tk‖L2((0,1/2)d) < ∞.

An inspection of the argument shows that the operation g �→ g/� is continuous from

C∞
c ((0, 1)d) to A([0, 1]d), and therefore g �→ ∑

k ‖sk‖L2((0,1/2)d)‖tk‖L2((0,1/2)d) is continuous

on C∞
c ((0, 1)d) as promised.

Suppose now that μ ∈ (PW� � PW�)∗. We have just demonstrated that (f , g) =
μ(F−1g), g ∈ C∞

c (�), defines a distribution on �. Hence we may consider the Hankel

operator �f ,�. For g, h ∈ C∞
c (�) we have that

〈�f g, h〉L2(�) = (f , g ∗ h̄) = μ(F−1g · F−1h̄). (5.1)

Since μ is a bounded functional on PW� � PW� we conclude that

|〈�f g, h〉L2(�)| ≤ ‖μ‖‖F−1g‖PW�
‖F−1h̄‖PW�

= ‖μ‖‖g‖L2(�)‖h‖L2(�),

that is, �f ,� is bounded, and in fact ‖�f ‖ = ‖μ‖. Conversely, if f is a distribution on �

such that �f ,� is bounded, it is clear that f induces a bounded functional μ on PW� �
PW� by (5.1). This proves that X is isometrically isomorphic to the Banach space (PW��
PW�)∗, which also entails that X is closed, completing the proof. �

In the remainder of this section we assume that � is a convex polytope. Next

we prove Theorem 1.1 under the additional assumption that f is supported around one

simple vertex of �.
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Nehari’s Theorem in Several Variables 19

Proposition 5.2. Let � ⊂ Rd be an open convex polytope, x a simple vertex of � = 2�,

and let f ∈ D′(�) be such that supp f ∩ ∂far,x� = ∅. If �f is bounded as an operator on

L2(�), then there exists a b ∈ L∞(Rd) such that b̂|� = f .

Proof. As in Lemma 4.1, let A be an affine transformation with origin x such that

A(Rd+) locally coincides with � around x. It is straightforward to verify that it suffices

to prove the proposition for �f ◦A,A−1(�). Since A−1(�) is also a convex polytope, we may

hence assume that x = 0 and that � locally coincides with Rd+ around 0. In particular,

� ⊂ Rd+. Since supp f ⊂ � and supp f ∩ ∂far,0� = ∅, we can extend f to a distribution on

all of Rd+ by letting it be zero outside �. Our strategy is to show that the operator �f ,Rd+
is bounded and to then apply Theorem 2.1.

For n ∈ Nd let Cn denote the cube (n1, n1 +1)× . . .× (nd, nd +1). For a set X ⊂ Rd+,

let PX : L2(Rd+) → L2(Rd+) denote the orthogonal projection of L2(Rd+) onto L2(X), and let

r > 0 be such that

2
√

dr < dist(supp f , ∂far,0�).

By considering test functions g ∈ C∞
c (Rd+) such that supp g ∩ rCm ⊂ rCm for every m, we

give meaning to the equality

�f ,Rd+ =
⎛⎝ ∑

n∈Nd

PrCn

⎞⎠ �f ,Rd+

⎛⎝ ∑
m∈Nd

PrCm

⎞⎠ =
∑

m,n∈Nd

PrCn
�f ,Rd+PrCm

,

a term PrCn
�f ,Rd+PrCm

being non-zero only if

(rCm + rCn) ∩ supp f �= ∅. (5.2)

Hence there are only finitely many non-zero terms in the decomposition. Since

‖PrCn
�f ,Rd+PrCm

‖ = ‖
f ,rCm,rCn
‖,

recalling the definition of 
f from Section 2, it therefore suffices to prove that

‖
f ,rCm,rCn
‖ is bounded whenever (5.2) holds. If rCm, rCn ⊂ � there is nothing to prove

since �f ,� is bounded by hypothesis. For the other terms, note that (5.2) and the choice

of r implies that

rCm + rCn ⊂ �, (5.3)
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20 M. Carlsson and K.-M. Perfekt

since 2
√

dr is the diameter of rCm + rCn. For any z ∈ Rd, x ∈ rCn, and g ∈ C∞
c (rCm) we

have that


f ,rCm,rCn
(g)(x) =

∫
rCm

f (x + y)g(y) dy =
∫

rCm+z
f (x + (y − z))g(y − z)dy,

and hence

‖
f ,rCm,rCn
‖ = ‖
f ,rCm+z,rCn−z‖.

In particular, for z = r(n − m)/2 we obtain that

‖
f ,rCm,rCn
‖ = ‖
f ,rC m+n

2
,rC m+n

2

‖.

However, 2rC m+n
2

= rCm + rCn so by (5.3) we conclude that rC m+n
2

⊂ �. The desired

boundedness now follows as it did in the first case considered.

We have just demonstrated that ‖�f ,Rd+‖ < ∞. By Theorem 2.1 there exists a

function b ∈ L∞(Rd) such that b̂|
R

d+ = f . This in particular implies that b̂|� = f when we

return to the initial interpretation of f as a distribution on �. �

We are now ready to provide the proof of Theorem 1.1.

Theorem 1.1. Let � be a simple convex polytope, and let f ∈ D′(�), � = 2�. Then

�f : L2(�) → L2(�) is bounded if and only if there is a function b ∈ L∞(Rd) such that

b̂|� = f . There exists a constant c > 0, depending on �, such that b can be chosen to

satisfy

c‖b‖L∞ ≤ ‖�f ‖ ≤ ‖b‖L∞ .

Proof. Assume that �f is bounded. Let {xj}J
j=1 be the vertices of �, and let {μj}J

j=1 be

partition of unity as in Lemma 4.2. For ϕ ∈ C∞
c (�) and x ∈ � we have that

�μjf (ϕ)(x) =
∫

�

∫
Rd

μ̂j(ξ)e2π i(x+y)·ξ dξ f (x + y)ϕ(y) dy =
∫
Rd

μ̂j(ξ)e2π iξ ·x�f (ϕξ )(x) dξ ,

where ϕξ (y) = e2π iy·ξ ϕ(y). Hence, �μjf : L2(�) → L2(�) is bounded,

‖�μjf ‖ ≤ ‖μ̂j‖L1‖�f ‖.
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Nehari’s Theorem in Several Variables 21

Therefore, by Proposition 5.2 there are functions bj ∈ L∞ such that μjf = b̂j|�. Thus

f = b̂|�, where b = ∑J
j=1 bj ∈ L∞. Conversely, if f = b̂|�, where b ∈ L∞, then �f is

bounded by Proposition 3.1.

The constant c now arises from abstract reasoning. Consider the Banach space

X =
{
�f ,� : ‖�f ,�‖ < ∞

}
of Proposition 5.1. We have just shown that b �→ �b̂|�,� is a map of L∞ onto X. The open

mapping theorem hence guarantees the existence of c. �

We immediately obtain the corresponding result for Toeplitz operators, when

� is a simple convex polytope, which, possibly after a translation, is symmetric under

x �→ −x.

Corollary 1.2. Let � be a simple convex polytope such that for some z ∈ Rd it holds

that � + z = −� − z. Let f ∈ D′(�), � = � − � = 2� + 2z. Then �f is bounded if and only

if there exists a function b ∈ L∞(Rd) such that b̂|� = f . There exists a constant c > 0,

depending on �, such that b can be chosen to satisfy

c‖b‖L∞ ≤ ‖�f ‖ ≤ ‖b‖L∞ .

Proof. In this case �f g = �f̃ g̃, where f̃ (x) = f (x + 2z), x ∈ 2�, and g̃(x) = g(−x − 2z),

x ∈ �. Hence the result follows from Theorem 1.1. �

We also deduce the weak factorization result for PW1
�, see Section 2.5.

Corollary 5.3. Let � be a simple convex polytope, and let � = 2�. Then

PW1
� = PW� � PW�.

The norms of these Banach spaces are equivalent.

Proof. By Cauchy–Schwarz, the inclusion I : PW� � PW� → PW1
� is bounded. Since I

has dense range by Proposition 5.1, the adjoint I∗ : (PW1
�)∗ → (PW� � PW�)∗ has empty

kernel. Suppose μ ∈ (PW� � PW�)∗. Note that CG(x) = G(−x) defines an anti-linear

isometric involution C : PW��PW� → PW��PW�. This induces an anti-linear isometric
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22 M. Carlsson and K.-M. Perfekt

involution D : (PW� � PW�)∗ → (PW� � PW�)∗,

Dμ(G) = μ(CG), G ∈ PW� � PW�.

According to Proposition 5.1, (f , g) = μ(F−1g), g ∈ C∞
c (�), defines a distribution

on � such that ‖�f ,�‖ = ‖μ‖. By Theorem 1.1, there is a function b ∈ L∞(Rd) such

that b̂|� = f . Since PW1
� ⊂ L1(Rd), we can interpret b as an element of (PW1

�)∗, b(G) =
〈G, b〉L2(Rd). Then, recalling that JG(x) = G(−x), we have that

DI∗b(G) = (b, JG) = (f ,F−1JG) = (f ,FG) = μ(G), G ∈ F−1(C∞
c (�)),

that is, DI∗b = μ, or I∗b = Dμ. Since D is an involution, it follows that I∗ is onto.

In other words, I∗ : (PW1
�)∗ → (PW� � PW�)∗ is a Banach space isomorphism,

and therefore the inclusion I : PW� � PW� → PW1
� is as well. Hence,

PW� � PW� = PW1
�,

and the norms of these two Banach spaces are equivalent, by the open mapping

theorem. �

The method used to prove Theorem 1.1 extends to many unbounded polyhedral

sets. Instead of pursuing a general statement, let us consider the example of a strip

in R2,

� = R+ × (0, 1). (5.4)

This is an interesting addition to Theorem 1.1, since � does not have a simple vertex at

infinity. In fact, ∂� may be considered to have a cusp point there.

Proposition 5.4. Let � be the strip defined in (5.4), and let f ∈ D′(�), � = 2�. Then

�f : L2(�) → L2(�) is bounded if and only if there is a function b ∈ L∞(Rd) such that

b̂|� = f .

Proof sketch. Let ν1, ν2 ∈ C∞
c (R) be functions such that ν1(t) + ν2(t) = 1 for t ∈ [0, 2], ν1

vanishes in a neighborhood of 2, and ν2 vanishes in a neighborhood of 0. Let

μj(x) = νj(x2), j = 1, 2, x = (x1, x2) ∈ �.
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Nehari’s Theorem in Several Variables 23

Then for ϕ ∈ C∞
c (�) and x = (x1, x2) ∈ � we have that

�μjf (ϕ)(x) =
∫

�

∫
R

ν̂j(ξ)e2π i(x2+y2)ξ dξ f (x + y)ϕ(y) dy =
∫
R

ν̂j(ξ)e2π ix2ξ�f (ϕξ )(x) dξ ,

where ϕξ (y) = e2π iy2ξ ϕ(y), y = (y1, y2) ∈ �. Hence, as before we see that

‖�μjf , �‖ ≤ ‖ν̂j‖L1‖�f , �‖, j = 1, 2. (5.5)

As in Proposition 5.2 and Theorem 1.1 it is sufficient to see that �μ1f : L2(R2+) → L2(R2+)

and �μ2f : L2(R+ × (−∞, 1)) → L2(R+ × (−∞, 1)) define bounded operators, and by

symmetry it is sufficient to consider the first of the two.

For n ∈ N, let Sn denote the strip R+ × (n, n + 1), and let r > 0 be such that

2r < dist([0, 2] ∩ supp ν1, 2).

We decompose �μ1f : L2(R2+) → L2(R2+) according to strips instead of cubes,

�μ1f ,R2+ =
∑

m,n∈N
PrSn

�μ1f ,R2+PrSm
.

There are only a finite number of non-zero terms in this decomposition, and for any

such term we have by our choice of r that

rSm + rSn ⊂ �. (5.6)

For n, m corresponding to a non-zero term, we have that

‖PrSn
�μ1f ,R2+PrSm

‖ = ‖
μ1f ,rSm,rSn
‖ = ‖
μ1f ,rSm+z,rSn−z‖ = ‖
μ1f ,rS m+n

2
,rS m+n

2

‖,

where z = (0, r(n − m)/2). Since rS m+n
2

⊂ � by (5.6) and �μ1f : L2(�) → L2(�) is

bounded by (5.5), we conclude that each non-zero term PrSn
�μ1f ,R2+PrSm

is bounded.

Hence �μ1f : L2(R2+) → L2(R2+) is bounded, finishing the proof. �

6 General domain Toeplitz operators

In this section we consider general domain Toeplitz operators on open convex domains

�̃ ⊂ Rd such that both cc�̃ and bc�̃ have non-empty interior (as in the classical case

�̃ = R+). This forces �̃ to be unbounded and, as we shall soon see, it also entails that

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz193/5610521 by U

niversity of R
eading user on 21 January 2020



24 M. Carlsson and K.-M. Perfekt

�̃ = �̃ − �̃ = Rd. We shall also consider more general open connected sets � such that

there are points x0 and x1 for which

x1 + �̃ ⊂ � ⊂ x0 + �̃, (6.1)

and prove that ‖�f ,�‖ = ‖f̂ ‖L∞ under this hypothesis. This allows for domains �

with very irregular boundaries, in sharp contrast to Theorem 1.1. The corresponding

class of operators �f ,� partially extends the class of generalized Toeplitz operators

considered in [22], see Section 2.6. The next theorem can also be recovered by verifying

the hypotheses of and keeping track of the constants in the proof of [22, Theorem 5.4].

However, for completeness we prefer to give our own concrete proof.

Theorem 6.1. Let � be a set as above. Then � − � = Rd and, for f ∈ D′(Rd), we have

that �f : L2(�) → L2(�) is bounded if and only if f ∈ F−1(L∞). Moreover, ‖�f ‖ = ‖f̂ ‖L∞ .

Proof. Fix z ∈ Rd and set |z| = R. Pick a vector e ∈ int(cc�̃) with distance greater

than R to the complement of cc�̃, which is possible since cc�̃ is a cone with non-empty

interior. Then e + z ∈ cc�̃, so for any x ∈ �̃ we have that x1 + x + e + z ∈ x1 + �̃ ⊂ �.

Similarly, x1 + x + e ∈ �. Since z is the difference of these two vectors, the 1st claim

follows.

Suppose that we have proven the theorem for all f ∈ C∞
c (Rd). If f is a general

symbol for which �f is bounded, consider the sequence of functions fn ∈ C∞
c (Rd) from

Proposition 3.3. Then f̂n has, by Alaoglu’s theorem, a subsequence f̂nk
that converges

weak star in L∞ to some element g. Since fn converges to f in distribution, it must be

that g = f̂ . Hence f ∈ F−1(L∞) and, by Propositions 3.1 and 3.3, we have that

‖ f̂ ‖L∞ ≤ lim
k→∞

‖f̂nk
‖L∞ = lim

k→∞
‖�fnk

‖ ≤ ‖�f ‖ ≤ ‖ f̂ ‖L∞ .

This proves the theorem for general symbols.

Hence we assume that f ∈ C∞
c (Rd). Fix ξ ∈ Rd, pick any vector ν in int(bc�̃), and

consider for ε > 0 the function

Eε(x) = eεx·ν+2π ix·ξχ�(x), x ∈ �.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz193/5610521 by U

niversity of R
eading user on 21 January 2020



Nehari’s Theorem in Several Variables 25

By [1, Lemma 9.5] this function is in L2(x0 + �̃) (The set bc�̃ was denoted � in [1].) and

hence Eε ∈ L2(�). We use Eε as a test function:

‖�f ‖ ≥
∣∣∣∣ 〈�f Eε, Eε〉

‖Eε‖2

∣∣∣∣ =
∣∣∣∣ 1

‖Eε‖2

∫ ∫
f (x − y)eε(x+y)·νe2π i(y−x)·ξχ�(y)χ�(x) dy dx

∣∣∣∣
=

∣∣∣∣ 1

‖Eε‖2

∫
f (z)e−2π iz·ξ

∫
eε(z+2y)·νχ�(z + y)χ�(y) dy dz

∣∣∣∣ .

Hence it follows that ‖�f ‖ ≥ |f̂ (ξ)| upon showing that

lim
ε→0+

eεz·ν

‖Eε‖2

∫
e2εy·νχ�(z + y)χ�(y) dy = 1 (6.2)

uniformly on compacts in z. Since ξ is arbitrary this establishes that ‖�f ‖ ≥ ‖f̂ ‖L∞ and

by Proposition 3.1 we then conclude that ‖�f ‖ = ‖f̂ ‖L∞ .

Fix R > 0 and suppose that z ∈ Rd with |z| < R. Again, pick a vector e ∈ int(cc�̃)

with distance greater than R to the complement of cc�̃. Then e + z ∈ cc�̃, and therefore

−z + � ⊃ −z + (x1 + �̃) ⊃ −z + x1 + (e + z) + �̃ ⊃ x1 + e − x0 + x0 + �̃ ⊃ x1 + e − x0 + �.

With x2 = x1+e−x0 we have just shown that x2+� ⊂ −z+�. It also holds that x2+� ⊂ �,

by the last inclusion in the above chain and the fact that x1 + e + �̃ ⊂ x1 + �̃ ⊂ �. This

gives us that

χ�(y − x2) = χ�(y)χ�(y − x2) ≤ χ�(y)χ�(y + z) ≤ χ�(y),

and hence that

eε2x2·ν‖Eε‖2 =
∫

e2εy·νχ�(y−x2) dy ≤
∫

e2εy·νχ�(y+z)χ�(y) dy ≤
∫

e2εy·νχ�(y) dy = ‖Eε‖2.

The desired equality (6.2) is now immediate, completing the proof. �

Corollary 6.2. Let � ⊂ Rd be any open connected domain such that

(1, ∞)d ⊂ � ⊂ (0, ∞)d,
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26 M. Carlsson and K.-M. Perfekt

and let f ∈ D′(Rd). Then �f : L2(�) → L2(�) is bounded if and only if f is a tempered

distribution and ‖f̂ ‖L∞(Rd) < ∞, and in this case

‖�f ‖ = ‖f̂ ‖L∞ .

7 Bounded extension of multilevel block Toeplitz/Hankel-matrices

In this section we interpret Corollary 1.2, when � is a d-dimensional cube, as a result

on the possibility of extending finite multilevel block Toeplitz matrices to infinite

multilevel block Toeplitz matrices which are bounded as operators on �2. In view of

the equivalence between Toeplitz and Hankel operators on the cube (cf. the proof of

Corollary 1.2), and a similar equivalence for finite Hankel and Toeplitz matrices, we

could equally well make the analogous statement for multilevel block Hankel matrices.

We present only the Toeplitz case. Such matrices appear in various applications, for

example in multi-dimensional frequency estimation. Note in particular that Pisarenko’s

famous method for one-dimensional frequency estimation [34], which relies on the

classical Carathéodory–Fejér theorem, was recently extended to the multi-variable case

[39] (see also [3]).

When d = 1 our statement reduces to a well-known theorem on extending

finite (ordinary) Toeplitz matrices, appearing previously for example in [5] and [26]. To

describe it, recall that a finite N × N Toeplitz matrix is characterized by its constant

diagonals, whose values we denote by a = (a−N+1, . . . aN−1). As an operator Ta on

�2({0, . . . , N − 1}), its action is given by

Ta(v)(m) =
N−1∑
n=0

am−nvn, v ∈ �2({0, . . . , N − 1}), m ∈ {0, . . . , N − 1}.

We can also consider the case when N = ∞, the definitions extending in the obvious

way. The completion result then states that it is always possible to extend a to a bi-

infinite sequence ã such that the corresponding Toeplitz operator Tã : �2(N) → �2(N)

satisfies

‖Tã‖ ≤ 3‖Ta‖.

It is an open problem whether the constant 3 is the best possible in this inequality. A

discussion offering different approaches to the optimal constant can be found in [9]. See

also [36].
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Nehari’s Theorem in Several Variables 27

When d > 1, each multi-sequence a = (an)n∈{−N+1,...,N−1}d , generates a multilevel

block Toeplitz matrix Ta. As an operator on �2({0, . . . , N − 1}d) it is given by the formula

Ta(v)(m) =
∑

n∈{0,...,N−1}d

am−nvn, v ∈ �2({0, . . . , N − 1}d), m ∈ {0, . . . , N − 1}d.

To understand this matrix, consider the d-level block Toeplitz matrix Ta as an ordinary

N × N-Toeplitz matrix with entries which are (d − 1)-level block Toeplitz matrices,

Ta = {Ai−j}i,j∈{0,...,N−1}, Ai = {a(i,m−n)}m,n∈{0,...,N−1}d−1 .

For instance, a multilevel block Toeplitz matrix for d = 2 is an N × N Toeplitz matrix

whose entries are N × N Toeplitz matrices. Again, we allow for the possibility that N =
∞. We now provide the multilevel block Toeplitz matrix analogue of the Toeplitz matrix

completion theorem.

Theorem 7.1. There exists a constant Cd > 0 such that any finite multi-sequence a

can be extended to an infinite multi-sequence ã on Zd for which Tã : �2(Nd) → �2(Nd) is

bounded with norm

‖Tã‖ ≤ Cd‖Ta‖.

Proof. Let

f =
∑

n∈{−N+1,...,N−1}d

anδn,

where δn is the Dirac delta function at n,

δn(ϕ) = ϕ(n), ϕ ∈ C∞
c (Rd).

Set � = (0, N)d and consider �f = �f ,�. Given g ∈ C∞
c (�), a short calculation shows that

�f (g)(x) =
∑

n∈Zd∩(x−�)

ang(x − n), x ∈ (0, N)d.

With x = m + r, where m ∈ {0, . . . , N − 1}d and r ∈ [0, 1)d, this can be rewritten

�f (g)(m + r) =
∑

k∈{0,...,N−1}d

am−kg(r + k).
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28 M. Carlsson and K.-M. Perfekt

In other words, with gr = {g(r + n)}n∈{0,...,N−1}d , we have that

�f (g)(m + r) = Ta(gr)(m).

Hence

∑
m∈{0,...,N−1}d

|�f (g)(m + r)|2 = ‖Ta(gr)‖2 ≤ ‖Ta‖2‖gr‖2 = ‖Ta‖2
∑

m∈{0,...,N−1}d

|g(m + r)|2.

Integrating both sides over r ∈ (0, 1)d gives us that ‖�f (g)‖2 ≤ ‖Ta‖2‖g‖2. In other words,

�f : L2(�) → L2(�) is bounded and

‖�f ‖ ≤ ‖Ta‖.

Noting that the constant c in Corollary 1.2 is invariant under homotheties, we find that

there exists a distribution f̃ = b̂ ∈ D′(Rd), coinciding with f on (−N, N)d, such that

‖�f̃ ,Rd‖ ≤ Cd‖Ta‖,

where Cd only depends on the dimension d. Of course, �f̃ ,Rd : L2(Rd) → L2(Rd) is nothing

but the operator of convolution with f̃ .

Now pick any function ϕ ∈ C∞
c ((−1/2, 1/2)d) with

∫ |ϕ|2dx = 1 and consider the

isometry I : �2(Nd) → L2(Rd) given by

Iv(x) =
∑

n∈Nd

vnϕ(x − n), v ∈ �2(Nd), x ∈ Rd.

Then

I∗g(n) =
∫
Rd

g(x)ϕ(x − n) dx, g ∈ L2(Rd), n ∈ Nd.

It follows that

I∗�f̃ Iv(m) =
∑

n∈Nd

ãm−nvn, v ∈ �2(Nd), m ∈ Nd,

where

ãn =
∫
Rd

∫
Rd

f (x − y + n)ϕ(y)ϕ(x) dy dx, n ∈ Zd.
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Nehari’s Theorem in Several Variables 29

That is, I∗�f̃ I = Tã. It is clear by construction that ã is an extension of a,

ãn = an

∫
Rd

|ϕ(y)|2 dy = an, n ∈ {−N + 1, . . . , N − 1}d.

This finishes the proof. �
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