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In this paper, we provide some general convergence results for adaptive designs for treatment comparison,
both in the absence and presence of covariates. In particular, we demonstrate the almost sure convergence of
the treatment allocation proportion for a vast class of adaptive procedures, also including designs that have
not been formally investigated but mainly explored through simulations, such as Atkinson’s optimum biased
coin design, Pocock and Simon’s minimization method and some of its generalizations. Even if the large
majority of the proposals in the literature rely on continuous allocation rules, our results allow to prove via a
unique mathematical framework the convergence of adaptive allocation methods based on both continuous
and discontinuous randomization functions. Although several examples of earlier works are included in or-
der to enhance the applicability, our approach provides substantial insight for future suggestions, especially
in the absence of a prefixed target and for designs characterized by sequences of allocation rules.
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1. Introduction

The past five decades have witnessed a sizeable amount of statistical research on adaptive ran-
domized designs in the context of clinical trials for treatment comparison. These are sequential
procedures where at each step the accrued information is used to make decisions about the way
of randomizing the allocation of the next subject.

Starting from the pioneering work of Efron’s Biased Coin Design (BCD) [12], several au-
thors have suggested adaptive procedures that, by taking into account at each step only previous
assignments, are aimed at achieving balance between two available treatments (see, e.g., [4,38–
40,43]). We shall refer to these as Assignment-Adaptive methods. Since clinical trials usually
involve additional information on the experimental units, expressed by a set of important covari-
ates/prognostic factors, Pocock and Simon [28] and other authors (see, for instance, [1,6,9,41])
proposed Covariate-Adaptive designs. These methods modify the allocation probabilities at each
step according to the assignments and the characteristics of previous statistical units, as well as
those of the present subject, in order to ensure balance between the treatment groups among
covariates for reducing possible sources of heterogeneity.

Motivated by ethical demands, another different viewpoint is the Response-Adaptive random-
ization methods. These are allocation rules introduced with the aim of skewing the assignments
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towards the treatment that appears to be superior at each step (see, e.g., [2]) or, more generally,
of converging to a desired target allocation of the treatments which combines inferential and
ethical concerns [5,42]. The above mentioned framework has been recently extended in order
to incorporate covariates, which has led to the introduction of the so-called Covariate-Adjusted
Response-Adaptive (CARA) procedures, that is, allocation methods that sequentially modify the
treatment assignments on the basis of earlier responses and allocations, past covariate profiles
and the characteristics of the subject under consideration. See [35,45] and the cornerstone book
by Hu and Rosenberger [20].

In general, given a desired target it is possible to adopt different procedures converging to it,
such as the Sequential Maximum Likelihood design [26], the Doubly-adaptive BCD [13,21] and
their extensions with covariates given by Zhang et al.’s CARA design [45] and the Covariate-
adjusted Doubly-adaptive BCD [46], having well established asymptotic properties. However, in
the absence of a given target one of the main problems lies in providing the asymptotic behaviour
of the suggested procedure. This is especially true in the presence of covariates, where theoret-
ical results seem to be few and the properties of the suggested procedures have been explored
extensively through simulations; indeed, as stated by Rosenberger and Sverdlov [34] “very little
theoretical work has been done in this area, despite the proliferation of papers”. For instance,
even if Pocock and Simon’s minimization method is widely used in the clinical practice, its the-
oretical properties are still largely unknown (indeed, Hu and Hu’s results [23] do not apply to
this procedure), as well as the properties of several extensions of the minimization method and
of Atkinson’s Biased Coin Design [1].

Moreover, although the large majority of the proposals are based on continuous and prefixed
allocation rules, updated step by step on the basis of the current allocation proportion and some
estimates of the unknown parameters (usually based on the sufficient statistics of the model),
the recent literature tends to concentrate on discontinuous randomization functions, such as the
Efficient Randomized-Adaptive Design (ERADE) [22], because of their low variability.

In this paper, we provide some general convergence results for adaptive allocation procedures
both in the absence and presence of covariates, continuous or categorical. By combining the con-
cept of downcrossing (originally introduced in [19]) and stopping times of stochastic processes,
we demonstrate the almost sure convergence of the treatment allocation proportion for a large
class of adaptive procedures, even in the absence of a given target, and thus our approach pro-
vides substantial insight for future suggestions as well as for several existing procedures that have
not been theoretically explored [18,36]. In particular, we prove that Pocock and Simon’s mini-
mization method [28] is asymptotically balanced, both marginally and jointly, showing also the
convergence to balance of Atkinson’s BCD [1]. The suggested approach allow to prove through
a unique mathematical framework the convergence of continuous and discontinuous random-
ization functions (like e.g., the Doubly-Adaptive Weighted Differences design [15], the Rein-
forced Doubly-adaptive BCD [7], ERADE [22] and Hu and Hu’s procedure [23]), taking also
into account designs based on Markov chain structures, such as the Adjustable BCD [4] and the
Covariate-adaptive BCD [6], that can be characterized by sequences of allocation rules. More-
over, by removing some unessential conditions usually assumed in the literature, our results allow
to provide suitable extensions of several existing procedures.

The paper is structured as follows. Even if Assignment-Adaptive and Response-Adaptive pro-
cedures can be regarded as special cases of CARA designs, we will treat them separately for
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the sake of clarity, in order to describe the general proof scheme in a simple setting, whereas
Covariate-Adaptive methods will be discussed as particular case of CARA rules. To treat CARA
rules in the presence of solely categorical covariates we need to extend the concept of down-
crossing in a vectorial framework; this generalization is not used for CARA procedures with
continuous prognostic factors and therefore these two cases will be analyzed separately. Starting
from the notation in Section 2, Section 3 deals with Assignment-Adaptive designs, while Sec-
tion 4 discusses Response-Adaptive procedures. Sections 5 and 6 illustrate the asymptotic be-
havior of CARA methods in the case of continuous and categorical covariates, respectively. Sec-
tion 7 discusses the relationship between the proposed methodology and the theory of Stochastic
Approximation. To avoid cumbersome notation, the paper mainly deals with the case of just two
treatments, but the suggested methodology is shown to extend to more than two (see Section 3.1).

2. Notation

Suppose that patients come to the trial sequentially and are assigned to one of two treatments,
A and B , that we want to compare. At each step i ≥ 1, a subject will be assigned to one of the
treatments and a response Yi will be observed. Typically, the outcome Yi will depend on the
treatment, but it may also depend on some characteristics of the subject expressed by a vector
Zi of covariates/concomitant variables. We assume that {Zi}i≥1 are i.i.d. covariates that are not
under the experimenters’ control, but they can be measured before assigning a treatment, and,
conditionally on the treatments and the covariates (if present), patients’ responses are assumed
to be independent. Let δi denote the ith allocation, with δi = 1 if the ith subject is assigned to A

and 0 otherwise; also, Ñn = ∑n
i=1 δi is the number of allocations to A after n assignments and

πn the corresponding proportion, that is, πn = n−1Ñn.
In general, adaptive allocation procedures can be divided in four different categories according

to the experimental information used for allocating the patients to the treatments. Suppose that the
(n + 1)st subject is ready to be randomized; if the probability of assigning treatment A depends
on:

(i) the past allocations, that is, Pr(δn+1 = 1|δ1, . . . , δn), we call such a procedure Assignment-
Adaptive (AA);

(ii) earlier allocations and responses, that is, Pr(δn+1 = 1|δ1, . . . , δn;Y1, . . . , Yn), then the
design is Response-Adaptive (RA);

(iii) the previous allocations and covariates, as well as the covariate of the present subject,
that is, Pr(δn+1 = 1|δ1, . . . , δn;Z1, . . . ,Zn,Zn+1), the procedure is Covariate-Adaptive
(CA);

(iv) the assignments, the outcomes and the covariates of the previous statistical units, as
well as the characteristics of the current subject that will be randomized, that is,
Pr(δn+1 = 1|δ1, . . . , δn;Y1, . . . , Yn;Z1, . . . ,Zn+1), then the rule is called Covariate-
Adjusted Response-Adaptive (CARA).

From now on, we will denote with �n the σ -algebra representing the natural history of the ex-
periment up to step n associated with a given procedure belonging to each category (with �0
the trivial σ -field). For instance, in the case of AA rules, �n = σ {δ1, . . . , δn}, whereas for RA
designs �n = σ {δ1, . . . , δn;Y1, . . . , Yn}.
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The sequence of allocations is a stochastic process and a general way of representing it is by
the sequence of the conditional probabilities of assigning treatment A given the past information
at every stage, that is, Pr(δn+1 = 1|�n) for n ∈N, which is called the allocation function. Even if
the large majority of suggested procedures assume continuous allocation rules, in this paper, we
take also into account designs with discontinuous randomization functions, provided that their
set of discontinuities is nowhere dense.

3. Assignment-Adaptive designs

Assignment adaptive rules, which depend on the past history of the experiment only through the
sequence of previous allocations, were proposed as a suitable trade-off between balance (i.e.,
inferential optimality) and unpredictability in the context of randomized clinical trials. Indeed,
if the main concern is maximum precision of the results (without ethical demands), as is well-
known under the classical linear model assumptions, balanced design is universally optimal [37],
since it minimizes the most common inferential criteria for estimation and maximizes the power
of the classical statistical tests. The requirement of balance is considered particularly cogent for
phase III trials, where patients are sequentially enrolled and the total sample size is often a-priori
unknown, so that keeping a reasonable degree of balance at each step, even for small/moderate
samples, is crucial for stopping the experiment at any time under an excellent inferential setting.

The simplest sequential randomized procedure that approaches balance is the completely ran-
domized (CR) design, where every allocation is to either treatment with probability 1/2 inde-
pendently on the previous steps; thus, δ1, δ2, . . . are i.i.d. Be(1/2) so that, as n tends to infinity,
πn → 1/2 almost surely from the SLLN for independent r.v.’s. Although CR could represent an
ideal trade-off between balance and unpredictability, this holds only asymptotically. In fact, CR
may generate large imbalances for small samples, since n−1/2πn is asymptotically normal, and
this may induce a consistent loss of precision. For this reason, starting from the pioneering work
of Efron [12], AA rules were introduced in the literature in order to force the allocations at each
step towards balance maintaining, at the same time, a suitable degree of randomness.

In this section, we shall deal with AA procedures such that

Pr(δn+1 = 1|�n) = ϕAA(πn), for n ≥ 1, (3.1)

where ϕAA : [0;1] → [0;1].

Definition 3.1. For any function ψ : [0;1] → [0;1], a point t ∈ [0;1] is called a downcrossing
of ψ(·) if

∀x < t, ψ(x) ≥ t and ∀x > t, ψ(x) ≤ t.

Note that if the function ψ(x) is decreasing, then there exists a single downcrossing t ∈ (0;1)

and if the equation ψ(x) = x admits a solution then the downcrossing coincides with it. Clearly,
if ψ(·) is a continuous and decreasing function, then t can be found directly by solving the
equation ψ(x) = x.
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Theorem 3.1. If the allocation function ϕAA(·) in (3.1) has a unique downcrossing t ∈ (0;1),
then limn→∞ πn = t a.s.

Proof. By using a martingale decomposition of the number of assignments to treatment A, we
will show that the asymptotic behavior of the allocation proportion πn coincides with that of
the sequence of downcrossing points of the corresponding allocation function (i.e., a constant
sequence in the case of AA procedures). The same arguments will be generalized in the Appendix
to the case of RA and CARA rules for random sequences of downcrossings.

At each step n ≥ 1,

Ñn =
n∑

i=1

δi =
n∑

i=1

{
δi − E(δi |�i−1)

} +
n∑

i=1

E(δi |�i−1) =
n∑

i=1

�Mi +
n∑

i=1

ϕAA(πi−1), (3.2)

where �Mi = δi −E(δi |�i−1), �n = σ {δ1, . . . , δn} and π0 = 0. Then {�Mi; i ≥ 1} is a sequence
of bounded martingale differences with |�Mi | ≤ 1 for any i ≥ 1; thus the sequence {Mn =∑n

i=1 �Mi;�n} is a martingale with
∑n

k=1 E[(�Mi)
2|�k−1] ≤ n, so that as n tends to infinity

n−1Mn → 0 a.s. Let ln = max{s: 1 ≤ s ≤ n,πs ≤ t}, with max∅ = 0, then at each step i > ln
we have ϕAA(πi) ≤ t . Note that

Ñn = Ñln+1 +
n∑

k=ln+2

�Mk +
n∑

k=ln+2

E(δk|�k−1)

≤ Ñln + 1 + Mn − Mln+1 +
n∑

k=ln+2

ϕAA(πk−1)

≤ Ñln + 1 + Mn − Mln+1 +
n∑

k=ln+2

t

and, since Ñln ≤ lnt , then

Ñn − nt ≤ Mn − Mln+1 + 1 − t,

namely

πn − t ≤ Mn − Mln+1 + 1 − t

n
. (3.3)

As n → ∞, then ln → ∞ or supn ln < ∞, and in either case the r.h.s. of (3.3) goes to 0 a.s. Thus
[πn − t]+ → 0 a.s. and, analogously, [(1 − πn) − (1 − t)]+ → 0 a.s. Therefore, limn→∞ πn = t

a.s. �

Example 3.1. The completely randomized design is defined by letting Pr(δn+1 = 1|�n) = 1/2
for every n. This corresponds to assume ϕCR(x) = 1/2 for all x ∈ [0;1], which is continuous and
does not depend on x; therefore, ϕCR(·) has a single downcrossing t = 1/2 and thus πn → 1/2
a.s. as n → ∞. Clearly, this procedure can be naturally extended to any given desirable target
allocation that is a-priori known.
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Example 3.2. Efron’s BCD [12] is defined by

Pr(δn+1 = 1|�n) =
{

p, if Dn < 0,
1/2, if Dn = 0, for n ≥ 1,
1 − p, if Dn > 0,

where Dn = 2Ñn − n is the difference between the allocations to A and B after n steps and
p ∈ [1/2;1] is the bias parameter. Since sgnDn = sgn(πn − 1/2), then Efron’s rule corresponds
to

ϕE(x) =
{

p, if x < 1/2,
1/2, if x = 1/2,
1 − p, if x > 1/2,

(3.4)

which has a single downcrossing t = 1/2 and therefore limn→∞ πn = 1/2 a.s. Clearly, Theo-
rem 3.1 allows to provide suitable extensions of Efron’s coin converging to any given desired
target t∗ ∈ (0;1), namely

ϕẼ(x) =
{

p2, if x < t∗,
t∗, if x = t∗,
p1, if x > t∗,

(3.5)

where 0 ≤ p1 ≤ t∗ ≤ p2 ≤ 1 and at least one of these inequalities must hold strictly.

Remark 3.1. Note that, from Theorem 3.1, for the convergence to a given desired target t∗:

(i) the allocation function should be decreasing; this condition is quite intuitive, since it
corresponds to assume that, at each step, if the current allocation proportion πn is greater
than t∗, then the next allocation is forced to treatment B with probability greater than t∗
and this probability increases as the difference πn − t∗ grows;

(ii) the continuity of the allocation rule is not required and therefore it is possible to consider
discontinuous randomization functions like, for example, (3.4) and (3.5);

(iii) condition ϕAA(t∗) = t∗ is not requested; moreover, structures of symmetry of the alloca-
tion function are not needed (e.g., in (3.5) condition p2 = 1 − p1 is not required), even
if they are typically assumed in order to treat A and B in the same way. For instance, the
following AA procedure

ϕAA∗
(x) =

{
1, if x ≤ 1/2,
1/2, if x > 1/2,

is asymptotically balanced, that is, πn → 1/2 a.s. as n tends to infinity.

Corollary 3.1. Suppose that ϕAA is a composite function such that ϕAA(x) = h1[h2(x)], where
h1 :D ⊆ R → [0;1] is decreasing and h2 : [0;1] → D is continuous and increasing. If d ∈ D is
such that h1(d) = h−1

2 (d), then limn→∞ πn = h−1
2 (d) a.s.

Proof. The proof follows easily from Theorem 3.1. Indeed, ϕAA(·) is a decreasing function with
ϕAA[h−1

2 (d)] = h1(d) = h−1
2 (d) and therefore ϕAA(·) has a single downcrossing in h−1

2 (d). �
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Example 3.3. Wei [43] defined his Adaptive BCD by letting

Pr(δn+1 = 1|�n) = f(2πn − 1), for n ≥ 1, (3.6)

where f : [−1;1] → [0;1] is a continuous and decreasing function s.t. f(−x) = 1 − f(x). Set
g(w) = 2w−1 : [0;1] → [−1;1], Wei’s allocation function is ϕW(x) = f[g(x)]. Since g−1(w) =
(w + 1)/2 for all w ∈ [0;1], then g−1(0) = 1/2 = f(0), that is, 1/2 is the only downcrossing of
ϕW(·). Therefore, from Corollary 3.1 it follows that πn → 1/2 a.s. as n → ∞.

Remark 3.2. Note that Theorem 3.1 still holds even if we assume different randomization func-
tions at each step by letting Pr(δn+1 = 1|�n) = ϕAA

n (πn), provided that t ∈ (0;1) is the unique
downcrossing of ϕAA

n (·) for every n ≥ 1.

Example 3.4. The Adjustable Biased Coin Design (ABCD) proposed by Baldi Antognini and
Giovagnoli [4] is defined as follows. Let F(·) :R → [0;1] be a decreasing function such that
F(−x) = 1 − F(x), the ABCD assigns the (n + 1)st subject to treatment A with probability
Pr(δn+1 = 1|�n) = F(Dn), for n ≥ 1. This corresponds to let

ϕABCD
n (x) = F

[
n(2x − 1)

]
, n ≥ 1,

and, from the properties of F(·), at each step n the function ϕABCD
n (·) is decreasing with

ϕABCD
n (1/2) = 1/2. Thus t = 1/2 is the only downcrossing of ϕABCD

n (·) for every n, so that
limn→∞ πn = 1/2 a.s.

3.1. The case of several treatments

Now we briefly discuss AA procedures in the case of several treatments in order to show how
the proposed downcrossing methodology can be extended to K > 2 treatments. Even if the same
mathematical structure could also be applied to the other types of adaptive rules that will be
presented in Sections 4–6, we restrict the presentation of multi-treatment adaptive procedures
only for AA designs, for the sake of simplicity regarding the notation.

At each step i ≥ 1, let δij = 1 if the ith patient is assigned to treatment j (with j = 1, . . . ,K)
and 0 otherwise, and set δt

i = (δi1, . . . , δiK) with δt
i1K = 1 (where 1K is the K-dim vec-

tor of ones). After n steps, let Ñnj = ∑n
i=1 δij be the number of allocations to treatment j

and πnj the corresponding proportion, i.e. πnj = n−1Ñnj ; also, set Ñt
n = (Ñn1, . . . , ÑnK) and

π t
n = (πn1, . . . , πnK), where Ñt

n1K = n and π t
n1K = 1.

In this setting, we consider a class of AA designs that assigns the (n+1)st patient to treatment
j with probability

Pr(δn+1,j = 1|�n) = ϕAA
j (πn), for n ≥ 1, (3.7)

where �n = σ(δ1, . . . , δn), ϕAA
j is the allocation function of the j th treatment and from now on

we set ϕAA(πn) = (ϕAA
1 (πn), . . . , ϕ

AA
K (πn)).
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Definition 3.2. Let x = (x1, . . . , xK), where xj ∈ [0;1] for any j = 1, . . . ,K , ψj(x) : [0;1]K →
[0;1] and set ψ(x) = (ψ1(x), . . . ,ψK(x)). Then t = (t1, . . . , tK) ∈ [0;1]K is called a vectorial
downcrossing of ψ if for any j = 1, . . . ,K

for all xj < tj , ψj (x) ≥ tj and for all xj > tj , ψj (x) ≤ tj .

Clearly, if ψj(x) is decreasing in x (i.e., componentwise) for any j , then the vectorial down-
crossing t is unique, with t ∈ (0;1)K ; furthermore ψ(t) = t, provided that the solution exists.

Theorem 3.2. At each step n, suppose that ϕAA
j (πn) is decreasing in πn (componentwise) for

any j = 1, . . . ,K , then limn→∞ πn = t a.s.

Proof. The proof follows easily from the one in Appendix A.3, where K treatments should be
considered instead of the strata induced by the categorical covariates. �

Example 3.5. In order to achieve balance, that is, π∗
j = K−1 for any j = 1, . . . ,K , Wei et al.

[44] considered the following allocation rules:

Pr(δn+1,j = 1|�n) = π−1
nj − 1∑K

k=1(π
−1
nk − 1)

, (3.8)

and

Pr(δn+1,j = 1|�n) = 1 − πnj

K − 1
. (3.9)

Both rules are decreasing in πnj (j = 1, . . . ,K) and it is straightforward to see that t = K−11K

is the only vectorial downcrossing of the functions ψW1 and ψW2 given by:

ψW1
j (x) = x−1

j − 1∑K
k=1(x

−1
k − 1)

and ψW2
j (x) = 1 − xj

K − 1

and therefore, by Theorem 3.2, limn→∞ πnj = K−1 a.s. for any j = 1, . . . ,K .

Note that, under rule (3.9), ψ
W2
j (x) = ψ

W2
j (xj ) (i.e., at each step the allocation probability of

each treatment depends only on the current allocation proportion of that treatment); in such a
case it is sufficient to solve the system of equations ψ

W2
j (xj ) = xj (j = 1, . . . ,K).

4. Response-Adaptive designs

RA rules, which change at each step the allocation probabilities on the basis of the previous
assignments and responses, were originally introduced as a possible solution to local optimal-
ity problems in a parametric setup, where there exists a desired target allocation depending on
the unknown model parameters [31]. Recently, they have been also suggested in the context of
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sequential clinical trials where ethical purposes are of primary importance, with the aim of max-
imizing the power of the test and, simultaneously, skewing the allocations towards the treatment
that appears to be superior (e.g., minimizing exposure to the inferior treatment) [13,15,32].

Suppose that the probability law of the responses under treatments A and B depends on a
vector of unknown parameters γ A and γ B , respectively, with γ t = (γ t

A,γ t
B) ∈ 	, where 	 is an

open convex subset of Rk . Starting with m observations on each treatment, usually assigned by
using restricted randomization, an initial non-trivial parameter estimation γ̂ 2m is derived. Then,
at each step n ≥ 2m let γ̂ n be the estimator of the parameter γ based on the first n observations,
which is assumed to be consistent in the i.i.d. case (i.e., limn→∞ γ̂ n = γ a.s.). Obviously, the
speed of convergence of the allocation proportion is strictly related to the convergence rate of the
chosen estimators; however, their consistency is sufficient in order to establish the almost sure
convergence of πn.

In this section, we shall deal with RA procedures such that

Pr(δn+1 = 1|�n) = ϕRA(πn; γ̂ n), for n ≥ 2m. (4.1)

The following definition will help illustrate the asymptotic behaviour of RA rules and also CARA
designs with continuous covariates treated in Section 5.

Definition 4.1. Let ψ̇(x;y) : [0;1] × R
d → [0;1]. The function t (y) :Rd → [0;1] is called a

generalized downcrossing of ψ̇ if for any given y ∈ R
d we have

∀x < t(y), ψ̇(x;y) ≥ t (y) and ∀x > t(y), ψ̇(x;y) ≤ t (y).

If the function ψ̇(x,y) is decreasing in x, then the generalized downcrossing t (y) is unique
and t (y) �= {0;1} for any y ∈ R

d . Moreover, if there exists a solution of the equation ψ̇(x,y) = x,
then t (y) coincides with this solution.

Theorem 4.1. Suppose that at each step n the allocation rule ϕRA(πn; γ̂ n) is decreasing in πn.
If the only generalized downcrossing t (γ̂ n) is a continuous function, then limn→∞ πn = t (γ ) a.s.

Proof. See Appendix A.1. �

Example 4.1. Geraldes et al. [15] introduced the Doubly Adaptive Weighted Differences De-
sign (DAWD) for binary response trials. Let γ = (pA,pB)t be the vector of the probabilities of
success of A and B and γ̂ n = (p̂An, p̂Bn)

t the corresponding estimate after n steps. When the
(n + 1)st patient is ready to be randomized, the DAWD allocates him/her to treatment A with
probability

Pr(δn+1 = 1|�n) = ρg1(p̂An − p̂Bn) + (1 − ρ)g2(2πn − 1), for n ≥ 2m, (4.2)

where ρ ∈ [0;1) represents an “ethical weight” and g1, g2 : [−1,1] → [0,1] are continuous func-
tions s.t.

(i) g1(0) = g2(0) = 1/2 and g1(1) = g2(−1) = 1;
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(ii) g1(−x) = 1 − g1(x) and g2(−x) = 1 − g2(x) ∀x ∈ [−1;1];
(iii) g1(·) is non decreasing and g2(·) is decreasing.

Regarded as a function of πn and γ̂ n, rule (4.2) corresponds to

ϕDAWD(πn; γ̂ n) = ρg1
(
(1;−1)γ̂ n

) + (1 − ρ)g2(2πn − 1),

which is decreasing in πn, so that the equation ϕDAWD(πn; γ̂ n) = πn has a unique solution t (γ̂ n),
i.e. the generalized downcrossing, which is continuous in γ̂ n (see [15]). Thus limn→∞ πn = t (γ )

a.s.

Often there is a desired target allocation π∗ to treatment A that depends on the unknown model
parameters, i.e. π∗ = π∗(γ ), where π∗ :	 → (0;1) is a mapping that transforms a k-dim vector
of parameters into a scalar one. Thus, Theorem 4.1 still holds even if, instead of (4.1), we assume

Pr(δn+1 = 1|�n) = ϕ̆RA(
πn;π∗(γ̂ n)

)
, for n ≥ 2m,

provided that π∗(·) is a continuous function. In this case the generalized downcrossing could be
more properly denoted by t (γ̂ n) = t (π∗(γ̂ n)).

Example 4.2. The Doubly-adaptive Biased Coin Design (DBCD) [13,21] is one of the most
effective families of RA procedures aimed at converging to a desired target π∗(γ ) ∈ (0,1) that is
a continuous function of the model parameters. The DBCD assigns treatment A to the (n + 1)st
subject with probability

Pr(δn+1 = 1|�n) = ϕ̆DBCD(
πn;π∗(γ̂ n)

)
, for n ≥ 2m, (4.3)

where the allocation function ϕ̆ needs to satisfy the following conditions:

(i) ϕ̆DBCD(x;y) is continuous on (0;1)2;
(ii) ϕ̆DBCD(x;x) = x;

(iii) ϕ̆DBCD(x;y) is decreasing in x and increasing in y;
(iv) ϕ̆DBCD(x;y) = 1 − ϕ̆DBCD(1 − x;1 − y) for all x, y ∈ (0;1)2.

The DBCD forces the allocation proportion to the target since from conditions (ii) and (iii), when
x > y then ϕ̆DBCD(x, y) < y, whereas if x < y, then ϕ̆DBCD(x, y) > y. However, condition (i) is
quite restrictive since it does not include several widely-known proposals based on discontinuous
allocation functions, such as Efron’s BCD and its extensions [22], while condition (iv) simply
guarantees that A and B are treated symmetrically.

Since ϕ̆DBCD(x;y) is decreasing in x with ϕ̆DBCD(x;x) = x, then the generalized downcross-
ing is unique, given by t (π∗(γ̂ n)) = π∗(γ̂ n). Thus, from the continuity of the target π∗(·) it
follows that limn→∞ πn = π∗(γ ) a.s.

Example 4.3. In the same spirit of Efron’s BCD, Hu, Zhang and He [22] have recently intro-
duced the ERADE, which is a class of RA procedures based on discontinuous randomization
functions. Let again π∗(γ ) ∈ (0,1) be the desired target, that is assumed to be a continuous
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function of the unknown model parameters, the ERADE assigns treatment A to the (n + 1)st
patient with probability

Pr(δn+1 = 1|�n) =
⎧⎨⎩

απ∗(γ̂ n), if πn > π∗(γ̂ n),
π∗(γ̂ n), if πn = π∗(γ̂ n),
1 − α

(
1 − π∗(γ̂ n)

)
, if πn < π∗(γ̂ n),

(4.4)

where α ∈ [0;1) governs the degree of randomness. Clearly, rule (4.4) corresponds to

ϕ̆ERADE(x;y) =
{

αy, if x > y,
y, if x = y,
1 − α(1 − y), if x < y,

which has a single generalized downcrossing t (y) = y; therefore limn→∞ πn = π∗(γ ) a.s.

Remark 4.1. Contrary to the DBCD in (4.3) and the ERADE in (4.4), from Theorem 4.1 condi-
tions ϕ̆RA(x;x) = x and ϕ̆RA(x;y) = 1 − ϕ̆RA(1 − x;1 − y) are not requested for guaranteeing
the convergence to the chosen target π∗(γ ). For instance, if we let

ϕ̆RA(
πn;π∗(γ̂ n)

) =
{

π∗(γ̂ n)
τ , if πn > π∗(γ̂ n),

π∗(γ̂ n)
1/τ , if πn ≤ π∗(γ̂ n),

where the parameter τ ≥ 1 controls the degree of randomness, then πn → π∗(γ ) a.s. as n → ∞.

5. CARA designs with continuous covariates

Since in the actual clinical practice information on patients’ covariates or prognostic factors is
usually collected, in some circumstances it may not be suitable to base the allocation probabilities
only on earlier responses and assignments. This is particularly true when ethical demands are
cogent and the patients have different profiles that induce heterogeneity in the outcomes.

Starting from the pioneering work of Rosenberger et al. [35], there has been a growing sta-
tistical interest in the topic of CARA randomization procedures. These designs change at each
step the probabilities of allocating treatments by taking into account all the available informa-
tion, namely previous responses, assignments and covariates, as well as the covariate profile of
the current subject, with the aim of skewing the allocations towards the superior treatment or, in
general, of converging to a desired target allocation depending on the covariates [45].

Within this class of procedures, if past outcomes are not taken into account in the allocation
process, then the corresponding class of rules are called Covariate-Adaptive. The direct applica-
tion of CA designs regards clinical trials without ethical demands, where the experimental aim
consists in balancing the assignments of the treatments across covariates in order to optimize
inference [6].

Due to the fact that the proof scheme for CARA rules with categorical covariates requires
the extension of the concept of downcrossing in a vectorial framework, which is not used under
CARA procedures with continuous prognostic factors, we will treat these cases separately and
the former will be analyzed in the next section.
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From now on, we deal with CARA designs such that

Pr(δn+1 = 1|�n,Zn+1 = zn+1) = ϕCARA(
πn; γ̂ n,Sn, f (zn+1)

)
, n ≥ 2m, (5.1)

where �n = σ(δ1, . . . , δn;Y1, . . . , Yn;Z1, . . . ,Zn), f (·) is a known vector function of the co-
variates of the (n + 1)st patient (usually f is the identity function, but it can also incorporate
cross-products to account for interactions among covariates), γ̂ n depends on earlier allocations,
covariates and responses, while Sn = S(z1, . . . , zn) is a function of the covariates of the previous
patients. In general, it is a vector of sufficient statistics of the covariate distribution that incorpo-
rates the information on Z after n steps, and from now on we always assume that, as n → ∞,

Sn = S(Z1, . . . ,Zn) → ς a.s. (5.2)

Often, Sn contains the moments up to a given order of the covariate distribution, and (5.2) is
satisfied provided that these moments exist.

Theorem 5.1. At each step n, suppose that the allocation function ϕCARA in (5.1) is decreasing
in πn and let

ϕ̃Z(πn; γ̂ n,Sn) = EZn+1

[
ϕCARA(

πn; γ̂ n,Sn, f (Zn+1)
)]

.

If the only generalized downcrossing t̃Z(γ̂ n,Sn) of ϕ̃Z is jointly continuous, then

lim
n→∞πn = t̃Z(γ ,ς) a.s. (5.3)

Proof. See Appendix A.2. �

Example 5.1. Consider the linear homoscedastic model with treatment/covariate interactions in
the following form

E(Yi) = δiμA + (1 − δi)μB + zi

[
δiβA + (1 − δi)βB

]
, i ≥ 1,

where μA and μB are the baseline treatment effects, βA �= βB are different regression parameters
and zi is a scalar covariate observed on the ith individual, which is assumed to be a standard
normal. Under this model, adopting “the-larger-the-better” scenario, treatment A is the best for
patient (n+ 1) if μA + zn+1βA > μB + zn+1βB ; thus, if only ethical aims are taken into account
it could be reasonable to consider the following allocation rule:

ϕETH(
πn; γ̂ n,Sn, f (zn+1)

) = 1{μ̂An−μ̂Bn+zn+1(β̂An−β̂Bn)>0}, (5.4)

where 1{·} is the indicator function and γ̂ n = (μ̂An, μ̂Bn, β̂An, β̂Bn)
t is the least square estimator

of γ = (μA,μB,βA,βB)t after n steps. Thus,

EZn+1

[
ϕETH(

πn; γ̂ n,Sn, f (Zn+1)
)]

(5.5)

= Pr
{
μ̂An − μ̂Bn + Zn+1(β̂An − β̂Bn) > 0

} = 1 − �

(
μ̂Bn − μ̂An

|β̂An − β̂Bn|
)

,
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where �(·) is the cdf of Z. Note that (5.5) is constant in πn, so it has a single generalized
downcrossing and from Theorem 5.1,

lim
n→∞πn = 1 − �

(
μB − μA

|βA − βB |
)

.

Clearly, (5.4) is a deterministic allocation function that at each step assigns the treatment that
appears to be superior for the current subject. Excluding degenerate cases, even if both treatments
are explored over the covariate domain (which is due to the random nature of the covariates),
this rule is improper for clinical applications, since a random component in the assignments
is fundamental and a suitable compromise between ethical demands and inferential efficiency
is usually needed. This dilemma, usually known in the clinical literature as “individual versus
collective ethics” [5], corresponds to the trade-off between “exploitation” and “exploration” of
the Bandits literature [3,16]. Although Adaptive randomization [33] and Bandits methodology
are very different approaches, since under the latter a deterministic policy (i.e., a sequence of
allocations) is usually selected in a finite time horizon in order to maximize a total expected
reward over all the possible sequences (often made in a Bayesian setting), similar conclusions as
those of the present example have been recently developed by Pavlidis et al. [27] in the case of
Multi-Armed Bandits with linear reward in the presence of covariates.

Example 5.2. As in the case of RA procedures, also for CARA rules there is often a desired
target allocation π∗ to treatment A that is a function of the unknown model parameters and the
covariates, that is, π∗ = π∗(γ , z), which is assumed to be continuous in γ for any fixed covariate
level z. In particular, Zhang et al. [45] assumed a generalized linear model setup and suggested
to allocate subject (n + 1) to A with probability

Pr(δn+1 = 1|�n,Zn+1 = zn+1) = π∗(γ̂ n, zn+1), for n ≥ 2m, (5.6)

which represents an analog of the Sequential Maximum Likelihood design [26] in the presence
of covariates. Assuming that the target function π∗ is differentiable in γ , under the expectation,
with bounded derivatives, the authors showed that limn→∞ πn = EZ[π∗(γ ,Z)] a.s.

Clearly, allocation rule (5.6) is constant in πn and therefore ϕ̃Z(πn; γ̂ n,Sn) = EZn+1[π∗(γ̂ n,

Zn+1)] is also constant in πn. Thus, the generalized downcrossing of ϕ̃Z is unique and obviously
limn→∞ πn = EZ[π∗(γ ,Z)] a.s.

Remark 5.1. Some authors (see for instance [8]) suggested CARA designs that incorporate co-
variate information in the randomization process, but ignoring the covariate of the current sub-
ject. Note that these methods can be regarded as special cases of ϕCARA in (5.1) and therefore
Theorem 5.1 can still be applied by taking into account the generalized downcrossing of ϕCARA

directly.

Even if Theorem 5.1 proves the convergence of CARA designs in the case of continuous
covariates, it could be difficult to obtain an analytical expression for ϕ̃Z and therefore to find the
corresponding generalized downcrossing. Nevertheless, the following lemma allows to obtain
the generalized downcrossing in a simple manner in some circumstances.
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Lemma 5.1. Let ϕCARA(πn; γ̂ n,Sn, f (zn+1)) be jointly continuous and, assuming that
ϕCARA(x;γ ,ς , f (Z)) is decreasing in x, let t∗Z(γ ,ς) be the unique solution of equation

ϕCARA(
x;γ ,ς ,EZ

[
f (Z)

]) = x.

If ϕCARA(t∗Z(γ ,ς);γ ,ς , f (Z)) is linear in f (Z) and t∗Z is jointly continuous, then (5.3) still
holds with t̃Z(γ ,ς) = t∗Z(γ ,ς).

Proof. Assume that t̃Z(γ ,ς) < t∗Z(γ ,ς). From the properties of ϕCARA, the function ϕ̃Z(x;γ ,ς)

is jointly continuous and decreasing in x, so that t̃Z(γ ,ς) = ϕ̃Z(t̃Z(γ ,ς);γ ,ς) > ϕ̃Z(t∗Z(γ ,ς);
γ ,ς). However,

ϕ̃Z
(
t∗Z(γ ,ς);γ ,ς

) = ϕCARA(
t∗Z(γ ,ς);γ ,ς ,EZ

[
f (Z)

]) = t∗Z(γ ,ς),

since ϕCARA(t∗Z(γ ,ς);γ ,ς , f (Z)) is linear in f (Z), contradicting the assumption. Analogously
if we assume t̃Z(γ ,ς) > t∗Z(γ ,ς). �

Example 5.3. The Covariate-adjusted Doubly-adaptive Biased Coin Design introduced by
Zhang and Hu [46] is a class of CARA procedures intended to converge to a desired target
π∗(γ , z). When the (n + 1)st subject with covariate Zn+1 = zn+1 is ready to be randomized,
he/she will be assigned to A with probability

Pr(δn+1 = 1|�n,Zn+1 = zn+1)
(5.7)

= π∗(γ̂ n, zn+1)(ρ̂n/πn)
ν

π∗(γ̂ n, zn+1)(ρ̂n/πn)ν + [1 − π∗(γ̂ n, zn+1)]((1 − ρ̂n)/(1 − πn))ν
,

where ρ̂n = n−1 ∑n
i=1 π∗(γ̂ n, zi ). Assuming that

Pr(δn+1 = 1|�n,Zn+1 = z) → π∗(γ , z) a.s. (5.8)

the authors proved that limn→∞ πn = EZ[π∗(γ ,Z)] a.s.
Note that rule (5.7) can be regarded as special case of ϕCARA after the transformation

(γ̂ n,Sn, f (zn+1)) �→ (ρ̂n,π
∗(γ̂ n, zn+1)) and thus, even if we remove condition (5.8), Lemma 5.1

can be applied to the allocation function

ϕ̆ZH(x;a, b) =
{

1 + 1 − b

b

[
(1 − a)x

a(1 − x)

]ν}−1

,

which is decreasing in x and continuous in all the arguments. Indeed, since both ρ̂n

and EZn+1[π∗(γ̂ n,Zn+1)] converge to EZ[π∗(γ ,Z)] a.s., the solution of the equation
ϕ̆ZH(x;EZ[π∗(γ ,Z)],EZ[π∗(γ ,Z)]) = x is t∗Z = EZ[π∗(γ ,Z)]. Furthermore, since
ϕ̆ZH(EZ[π∗(γ ,Z)];EZ[π∗(γ ,Z)],π∗(γ ,Z)) = π∗(γ ,Z), then limn→∞ πn = EZ[π∗(γ ,Z)]
a.s.
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Remark 5.2. Theorem 5.1 and Lemma 5.1 can be naturally applied to CA designs in the presence
of continuous covariates by considering, instead of (5.1), the following class of allocation rules:

Pr(δn+1 = 1|�n,Zn+1 = zn+1) = ϕCA(
πn;Sn, f (zn+1)

)
,

with �n = σ(δ1, . . . , δn;Z1, . . . ,Zn). Clearly, t̃Z(γ ,ς) and t∗Z(γ ,ς) should be replaced by t̃Z(ς)

and t∗Z(ς), respectively.

6. CARA designs with categorical covariates

We now provide a convergence result for CARA designs in the case of categorical covariates. In
order to avoid cumbersome notation, from now on we assume without loss of generality two
categorical covariates, i.e. Z = (T ,W), with levels tj (j = 0, . . . , J ) and wl (l = 0, . . . ,L),
respectively. Also, let p = [pjl : j = 0, . . . , J ; l = 0, . . . ,L] be the joint probability distribu-
tion of the categorical covariates, with pjl > 0 for any j = 0, . . . , J and l = 0, . . . ,L and∑J

j=0
∑L

l=0 pjl = 1.
After n steps, let Nn(j, l) = ∑n

i=1 1{Zi=(tj ,wl)} be the number of subjects within the stratum
(tj ,wl), Ñn(j, l) = ∑n

i=1 δi1{Zi=(tj ,wl)} the number of allocations to A within this stratum and
πn(j, l) the corresponding proportion, that is, πn(j, l) = Nn(j, l)

−1Ñn(j, l), for any j = 0, . . . , J

and l = 0, . . . ,L. Also, let πn = [πn(j, l): j = 0, . . . , J ; l = 0, . . . ,L].
After an initial stage with m observations on each treatment, performed to derive a non-trivial

parameter estimation, we consider a class of CARA designs that assigns the (n + 1)st patient
with covariate profile Zn+1 = (tj ,wl) to A with probability

Pr
(
δn+1 = 1|�n,Zn+1 = (tj ,wl)

) = ϕjl(πn; γ̂ n,Sn), for n ≥ 2m, (6.1)

where �n = σ(δ1, . . . , δn;Y1, . . . , Yn;Z1, . . . ,Zn) and ϕjl is the allocation function of the stra-
tum (tj ,wl).

Let ϕ(πn; γ̂ n,Sn) = [ϕjl(πn; γ̂ n,Sn): j = 0, . . . , J ; l = 0, . . . ,L], often the allocation rule at
each stratum does not depend on the entire vector of allocation proportions πn involving all the
strata, but depends only on the current allocation proportion of this stratum, that is,

ϕjl(πn; γ̂ n,Sn) = ϕjl

(
πn(j, l); γ̂ n,Sn

)
, ∀j = 0, . . . , J ; l = 0, . . . ,L. (6.2)

However, note that (6.2) does not correspond in general to a stratified randomization, due to the
fact that the estimate γ̂ n usually involves the information accrued from all the strata up to that
step, and thus the evolutions of the procedure at different strata are not independent.

Definition 6.1. Let x = [x1, . . . , xK], where xι ∈ [0;1] for any ι = 1, . . . ,K and K is a positive
integer. Also, let ψ̈ι(x;y) : [0;1]K × R

d → [0;1] and set ψ̈(x;y) = [ψ̈1(x;y), . . . , ψ̈K(x;y)].
Then t(y) = [t1(y), . . . , tK(y)], with tι(y) :Rd → [0;1] for ι = 1, . . . ,K, is called a vectorial
generalized downcrossing of ψ̈ if for all y ∈R

d and for any ι = 1, . . . ,K

for all xι < tι(y), ψ̈ι(x;y) ≥ tι(y) and for all xι > tι(y), ψ̈ι(x;y) ≤ tι(y).
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Clearly, if the function ψ̈ι(x;y) is decreasing in x (i.e., componentwise) for any ι, then the vec-
torial generalized downcrossing t(y) is unique, with t(y) ∈ (0;1)K for any y ∈ R

d ; furthermore
ψ̈(t(y);y) = t(y), provided that the solution exists. Moreover, note that if ψ̈ι(x;y) = ψ̈ι(xι;y)

for any ι = 1, . . . ,K, then each component tι(y) of t(y) is simply the single generalized down-
crossing of ψ̈ι(xι;y), which can be found by solving the equation ψ̈ι(x;y) = x (if the solution
exists).

Theorem 6.1. At each step n, suppose that for any given stratum (tj ,wl) the allocation func-
tion ϕjl(πn; γ̂ n,Sn) is decreasing in πn (componentwise). If the unique vectorial generalized
downcrossing t(γ̂ n,Sn) = [tj l(γ̂ n,Sn): j = 0, . . . , J ; l = 0, . . . ,L] is a continuous function and
ϕ(t(γ ,ς);γ ,ς) = t(γ ,ς), then

lim
n→∞πn = t(γ ,ς) and lim

n→∞πn = EZ
[
t(γ ,ς)

] =
J∑

j=0

L∑
l=0

tj l(γ ,ς)pjl a.s.

Proof. See Appendix A.3. �

Example 6.1. The Reinforced Doubly-adaptive Biased Coin Design (RDBCD) is a class of
CARA procedures recently introduced by Baldi Antognini and Zagoraiou [7] in the case of cat-
egorical covariates intended to target any desired allocation proportion

π∗(γ ) = [
π∗(j, l): j = 0, . . . , J ; l = 0, . . . ,L

]
:	 → (0,1)(J+1)×(L+1),

which is a continuous function of the unknown model parameters. Starting with a pilot stage
performed to derive an initial parameter estimation, at each step n ≥ 2m let π̂∗

n (j, l) be the
estimate of the target within stratum (tj ,wl) obtained using all the collected data up to that step
and p̂j ln = n−1Nn(j, l) the estimate of pjl ; when the next patient with covariate Zn+1 = (tj ,wl)

is ready to be randomized, the RDBCD assigns him/her to A with probability

Pr
(
δn+1 = 1|�n,Zn+1 = (tj ,wl)

) = ϕjl

(
πn(j, l); π̂∗

n (j, l), p̂j ln

)
,

where the function ϕjl(x;y, z) : (0,1)3 → [0,1] satisfies the following conditions:

(i) ϕjl is decreasing in x and increasing in y, for any z ∈ (0,1);
(ii) ϕjl(x;x, z) = x for any z ∈ (0,1);

(iii) ϕjl is decreasing in z if x < y, and increasing in z if x > y;
(iv) ϕjl(x;y, z) = 1 − ϕjl(1 − x;1 − y, z) for any z ∈ (0,1).

First, observe that for the RDBCD (6.2) holds and thus, from (i) and (ii), at each stratum (tj ,wl)

the only generalized downcrossing of ϕjl is simply given by π̂∗
n (j, l). Therefore, by Theorem 6.1,

limn→∞ πn(j, l) = π∗(j, l) a.s. for any j = 0, . . . , J and l = 0, . . . ,L, due to the continuity of
the target, that is, limn→∞ πn = π∗(γ ) a.s.
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6.1. Covariate-Adaptive designs with categorical covariates

Theorem 6.1 can be naturally applied to CA procedures in the case of categorical covariates by
assuming, instead of (6.1), the following class of allocation rules:

Pr(δn+1 = 1|�n,Zn+1 = zn+1) = ϕjl(πn;Sn), (6.3)

where now �n = σ(δ1, . . . , δn;Z1, . . . ,Zn). Moreover, from now on we let tB = [1/2: j =
0, . . . , J ; l = 0, . . . ,L].

Example 6.2. The Covariate-Adaptive Biased Coin Design (C-ABCD) [6] is a class of strati-
fied randomization procedures intended to achieve joint balance. For any stratum (tj ,wl), let
Fjl(·) :R → [0,1] be a non-increasing and symmetric function with Fjl(−x) = 1 − Fjl(x); the
C-ABCD assigns the (n + 1)st patient with profile Zn+1 = (tj ,wl) to A with probability

Pr
(
δn+1 = 1|�n,Zn+1 = (tj ,wl)

) = Fjl

[
Dn(j, l)

]
, (6.4)

where Dn(j, l) = Nn(j, l)[2πn(j, l) − 1] is the imbalance between the two groups after n steps
within stratum (tj ,wl). As showed in Remark 3.2 and Example 3.4 in the case of AA proce-
dures, Theorem 6.1 still holds even if we assume different randomization functions at each step,
provided that the unique vectorial generalized downcrossing is the same for any n. Indeed, it is
trivial to see that rule (6.4) corresponds to

ϕjln(πn;Sn) = ϕjln

(
πn(j, l);Sn

) = Fjl

{
n
[
2πn(j, l) − 1

]
p̂j ln

}
,

and, from the properties of Fjl , ϕjln’s have 1/2 as unique downcrossing for any n; thus
limn→∞ πn = tB , which clearly implies marginal balance.

Moreover, when the covariate distribution is known Baldi Antognini and Zagoraiou [6] sug-
gested the following class of randomization rules:

F
q
jl(x) = {

xq(pjl ) + 1
}−1

, x ≥ 1,

where q(·) is a decreasing function with limt→0+ q(t) = ∞. Clearly, the above mentioned argu-
ments and Theorem 6.1 guarantee the convergence to balance even if the covariate distribution
is unknown, by replacing at each step pjl with its current estimate.

Examples 6.1 and 6.2 deal with procedures such that, at every step n, the allocation rule ϕjl de-
pends only on the current allocation proportion πn(j, l), namely satisfying (6.2). We now present
additional examples where ϕjl is a function of the whole vectorial allocation proportion πn.

Example 6.3. Minimization methods [28,41] are stratified randomization procedures intended
to achieve the so-called marginal balance among covariates. In general, they depend on the def-
inition of a measure of overall imbalance among the assignments which summarizes the im-
balances between the treatment groups for each level of every factor. Assuming the well-known
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variance method proposed by Pocock and Simon [28], the (n+1)st subject with covariate profile
Zn+1 = (tj ,wl) is assigned to treatment A with probability

Pr
(
δn+1 = 1|�n,Zn+1 = (tj ,wl)

) =
⎧⎨⎩

p, Dn(tj ) + Dn(wl) < 0,
1
2 , Dn(tj ) + Dn(wl) = 0,
1 − p, Dn(tj ) + Dn(wl) > 0,

(6.5)

where p ∈ [1/2;1], Dn(tj ) is the imbalance between the two arms within the level tj of T and,
similarly, Dn(wl) represents the imbalance at the category wl of W . At each step n, note that
sgn{Dn(tj )} = sgn{n−1Dn(tj )} where

n−1Dn(tj ) =
L∑

l=0

[
2πn(j, l) − 1

]
p̂j ln, for any j = 0, . . . , J (6.6)

and analogously for Dn(wl). Thus, allocation rule (6.5) corresponds to

ϕPS
j l (πn;Sn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p,

L∑
l=0

[
πn(j, l) − 1

2

]
p̂j ln +

J∑
j=0

[
πn(j, l) − 1

2

]
p̂j ln < 0,

1

2
,

L∑
l=0

[
πn(j, l) − 1

2

]
p̂j ln +

J∑
j=0

[
πn(j, l) − 1

2

]
p̂j ln = 0,

1 − p,

L∑
l=0

[
πn(j, l) − 1

2

]
p̂j ln +

J∑
j=0

[
πn(j, l) − 1

2

]
p̂j ln > 0,

and therefore the problem consists in finding the vectorial generalized downcrossing of
ϕPS(πn;Sn) = [ϕPS

j l (πn;Sn): j = 0, . . . , J ; l = 0, . . . ,L]. Since at each step n, ϕPS
j l (πn;Sn)

is decreasing in πn(j, l) for any j = 0, . . . , J and l = 0, . . . ,L, then the vectorial generalized
downcrossing is unique. It is straightforward to see that ϕPS(tB;ς) = tB for every n and thus
limn→∞ πn = tB a.s.

Example 6.4. In order to include minimization methods and stratified randomization procedures
in a unique framework, Hu and Hu [23] have recently suggested to assign subject (n + 1) be-
longing to the stratum (tj ,wl) to A with probability

Pr
(
δn+1 = 1|�n,Zn+1 = (tj ,wl)

) =
⎧⎨⎩

p, D̄n(j, l) < 0,
1
2 , D̄n(j, l) = 0,

1 − p, D̄n(j, l) > 0,

(6.7)

where the overall measure of imbalance

D̄n(j, l) = ωgDn + ωT Dn(tj ) + ωWDn(wl) + ωsDn(j, l)

is a weighted average of the three types of imbalances actually observed (global, marginal and
within-stratum), with non-negative weights ωg (global), ωT and ωW (covariate marginal) and ωs

(stratum) chosen such that ωg + ωT + ωW + ωs = 1.
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By choosing the weights ωg , ωT , ωW such that

(JL + J + L)ωg + JωW + LωT < 1/2, (6.8)

the authors proved that the probabilistic structure of the within stratum imbalance is that of a
positive recurrent Markov chain and this implies that procedure (6.7) is asymptotically balanced,
both marginally and jointly. However, as stated by the authors, only strictly positive choices of
the stratum weight ωs satisfy (6.8), and thus their result cannot be applied to Pocock and Simon’s
minimization method.

The asymptotic behaviour of Hu and Hu’s design can be illustrated in a different way by
applying Theorem 6.1. Since sgn{D̄n(j, l)} = sgn{n−1D̄n(j, l)} and

n−1Dn = 2πn − 1 =
J∑

j=0

L∑
l=0

[
2πn(j, l) − 1

]
p̂j ln, (6.9)

from (6.6) it follows that

sgn
{
n−1D̄n(j, l)

} = sgn

{
ωg

J∑
j=0

L∑
l=0

[
πn(j, l) − 1

2

]
p̂j ln + ωT

L∑
l=0

[
πn(j, l) − 1

2

]
p̂j ln

+ ωW

J∑
j=0

[
πn(j, l) − 1

2

]
p̂j ln + ωs

[
πn(j, l) − 1

2

]
p̂j ln

}
.

Thus, at each step n procedure (6.7) corresponds to an allocation rule ϕHH
j l (πn;Sn) which is

decreasing in πn(j, l) for any j = 0, . . . , J and l = 0, . . . ,L. Since ϕHH(tB;ς) = tB , then the
unique vectorial generalized downcrossing is tB for any n and therefore limn→∞ πn = tB a.s.

Under the same arguments, it can be easily proved the convergence to balance of several
extensions of minimization methods (see, e.g., [18,36]), since at each step n every type of imbal-
ance (global, marginal and within-stratum) is a linear combination of the allocation proportions
πn(j, l)’s.

Example 6.5. Assuming the liner homoscedastic model without treatment/covariate interaction
in the form

E(Yi) = δiμA + (1 − δi)μB + f̃ (zi )
tβ, i ≥ 1, (6.10)

where f̃ (·) is a known vector function and β is a vector of common regression parameters.
Put Fn = [f̃ (zi )

t ] and Fn = [1n :Fn], Atkinson [1] introduced his biased coin design by as-
signing the (n + 1)st patient to A with probability

Pr(δn+1 = 1|�n,Zn+1)
(6.11)

= {1 − (1; f̃ (zn+1)
t )(Ft

nFn)
−1bn}2

{1 − (1; f̃ (zn+1)t )(Ft
nFn)−1bn}2 + {1 + (1; f̃ (zn+1)t )(Ft

nFn)−1bn}2
,

where bt
n = (2δ1 − 1, . . . ,2δn − 1)Fn is usually called the imbalance vector.
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As showed in [6], in the presence of all interactions among covariates we obtain

bt
n = (

Dn,Dn(t1), . . . ,Dn(tJ ),Dn(w1), . . . ,Dn(wL),Dn(1,1), . . . ,Dn(J,L)
)

and Atkinson’s procedure (6.11) becomes a stratified randomization rule with

Pr
(
δn+1 = 1|�n,Zn+1 = (tj ,wl)

)
(6.12)

= (1 − Dn(j, l)/Nn(j, l))
2

(1 − Dn(j, l)/Nn(j, l))2 + (1 + Dn(j, l)/Nn(j, l))2
.

Clearly, procedure (6.12) corresponds to

ϕjl(πn;Sn) = [1 − πn(j, l)]2

[1 − πn(j, l)]2 + πn(j, l)2
,

so (6.2) holds; thus, by Theorem 6.1, limn→∞ πn = tB .
When the model is not full, then bn contains all the imbalance terms corresponding to the

included interactions. Thus, from (6.6) and (6.9), (1; f̃ (zn+1)
t )(Ft

nFn)
−1bn is a linear function

of the allocation proportion πn, so that Theorem 6.1 can be applied by the previous arguments.

7. Downcrossing and stochastic approximation methods

By combining the concept of downcrossing and stopping times of stochastic processes, we
demonstrated the almost sure convergence of the treatment allocation proportion for a vast class
of adaptive procedures. In general, this is due to the fact that the asymptotic behavior of πn coin-
cides with that of the sequence of downcrossing points of the corresponding allocation function.
An alternative way to characterize the same large-sample behavior is provided by the Stochas-
tic Approximation (SA) methods (see, e.g., [10,11,24,25]) and the asymptotic theory of super-
martingales [17]. Indeed, considered now the AA procedures of Section 3, from (3.2) at each
step n ≥ 1,

πn+1 = πn

(
n

n + 1

)
+ 1

n + 1

{
�Mn+1 + ϕAA(πn)

}
(7.1)

= πn − 1

n + 1

{
πn − ϕAA(πn)

} + �Mn+1

n + 1
.

Therefore, the allocation proportion follows the classical Robbins–Monro [29] recursive relation:

πn+1 = πn − anH(πn) + an�Mn+1, (7.2)

where H(x) = x − ϕAA(x) and an = (n + 1)−1. Note that:

• {�Mn} is a sequence of bounded martingale differences, so that for any n

E[�Mn+1|�n] = 0 and E
[
�M2

n+1|�n

] = ϕAA(πn)
[
1 − ϕAA(πn)

] ≤ 1;
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• limn→∞ an = 0,
∑∞

i=1 ai = ∞ and
∑∞

i=1 a2
i < ∞;

• the function H(·) is increasing, since ϕAA(·) is assumed to be decreasing, and furthermore
(x − t)H(x) > 0 since t is the unique downcrossing of ϕAA(·).

Therefore, it follows that πn → t a.s.
The same asymptotic result can be obtained via a super-martingale approach since, from (7.1)

E
[
(πn+1 − t)2|�n

] = (πn − t)2 − 2an(πn − t)H(πn) + a2
n

{
H 2(πn) + E

[
�M2

n+1|�n

]}
,

where the last term of the r.h.s. is asymptotically negligible, due to the properties of an, H(·) and
�Mn+1, and (πn − t)H(πn) is always non-negative. Thus, the quantity

(πn − t)2 is a non-negative almost super-martingale, (7.3)

namely it is asymptotically equivalent to a non-negative super-martingale; therefore it converges
almost surely and, in our setting, it vanishes asymptotically. If we further assume ϕAA differen-
tiable, then

∂ϕAA(x)

∂x

∣∣∣∣
x=t

= ϕ′(t) < 0,

so that from Fabian’s theorem [14]

√
n(πn − t) ↪→ N

(
0; t (1 − t)

1 − 2ϕ′(t)

)
, (7.4)

since limn→∞ E[�M2
n+1|�n] = ϕAA(t)[1 − ϕAA(t)] = t (1 − t) (due to the continuity of ϕAA).

The asymptotic variance in (7.4) could help distinguish between different AA rules intended to
achieve the same target allocation proportion; clearly, this variance increases as ϕ′(t) grows (i.e.
as the random component in the assignments increases).

Example 7.1. Adopting Wei’s Adaptive BCD in (3.6) with f(·) differentiable, then

lim
n→∞πn = 1

2
a.s. and

√
n

(
πn − 1

2

)
↪→ N

(
0; 1

4[1 − 2f′(1/2)]
)

. (7.5)

While assuming CR design

lim
n→∞πn = 1

2
a.s. and

√
n

(
πn − 1

2

)
↪→ N

(
0; 1

4

)
,

namely under CR the asymptotic variance of the allocation proportion is always greater than
Wei’s one (since f is decreasing). This reduction in terms of asymptotic variance lies in the fact
that Wei’s rule favors at each step the assignments of the under-represented treatment, that is, it
is adapted to the sequence of previous allocations.
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Remark 7.1. Even if SA theory can be applied in the context of adaptive procedures, we would
like to stress some differences between them:

• in the classical Robbins–Monro scheme, there is a controllable design variable taking values
in R that follows itself the SA recursion, while in our setting the design space is discrete,
since δn ∈ {0;1}, and only the allocation proportions πns follow (7.2);

• within SA framework the function H(·) is analytically unknown and it cannot be observed
directly, but it could be observed only with a stochastic perturbation; whereas in our setting
the allocation function is the only ingredient chosen by the experimenter and thus it is
completely known (while the assignments δns are randomly generated by the allocation
rule).

As regards the other types of adaptive procedures, (7.3) is still a non-negative almost super-
martingale provided that the downcrossing t of ϕAA(·) is substituted by the generalized (vec-
torial) downcrossing of the corresponding allocation function. For instance, in the RA case
t �→ t (γ̂ n) and the asymptotic behavior of πn coincides with that of t (γ̂ n); therefore, assum-
ing t (·) continuous, as n grows πn → t (γ ) a.s. Furthermore, by adding suitable continuity and
differentiability conditions for t (·) and the allocation function, it is possible to derive the asymp-
totic normality of the allocation proportions as in (7.5) (see, e.g., [21] for RA procedures and
[45] for CARA designs). Note that the case of CARA designs with categorical covariates is a
multidimensional SA scheme where, at each step n, (i) the evolution at each stratum depends,
in general, on the information gathered up to that step from all the strata and (ii) the constant
an should be replaced by the random vector an = [Nn+1(j, l)

−11{Zi=(tj ,wl)}, j = 0, . . . , J ; l =
0, . . . ,L] and therefore the Robbins–Siegmund’s lemma (1971) should be applied (see [25,
30]).

Appendix

A.1. Proof of Theorem 4.1

At each step n, consider the squared integrable martingale process {Mn;�n}, where Mn =∑n
i=1 �Mi = ∑n

i=1{δi − E(δi |�i−1)} and �n = σ(δ1, . . . , δn;Y1, . . . , Yn).
Let λn = max{s: 2m + 1 ≤ s ≤ n,πs ≤ t (γ̂ s)}, with max∅ = 2m. Thus at each step i > λn,

ϕRA(πi; γ̂ i ) ≤ t (γ̂ i ) and therefore

Ñn = Ñλn+1 +
n∑

k=λn+2

�Mk +
n∑

k=λn+2

ϕRA(πk−1; γ̂ k−1)

≤ Ñλn + 1 + Mn − Mλn+1 +
n∑

k=λn+2

t (γ̂ k−1).
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Since Ñλn ≤ λnt (γ̂ λn
) we obtain

Ñn − nt(γ̂ n) ≤
(

λnt (γ̂ λn
) −

λn+1∑
k=2

t (γ̂ k−1)

)
+ Mn − Mλn+1 + 1 − t (γ̂ 0)

−
(

nt(γ̂ n) −
n∑

k=1

t (γ̂ k−1)

)
,

where t (γ̂ 0) = t0 ∈ [0;1] is a constant depending on the initial stage. Furthermore, as n → ∞, at
least one of the number of assignments to the treatments, Ñn and (n − Ñn), tends to infinity a.s.
As showed in [22], in either case γ̂ n has finite limit so that, from the properties of t (γ̂ n), almost
surely there exists a v such that

t (γ̂ n) → v a.s. (A.1)

and so limn→∞ t (γ̂ n) − n−1 ∑n
k=1 t (γ̂ k−1) = 0 a.s. As n → ∞, then λn → ∞ or supn λn < ∞;

in either case, limn→∞ n−1λn[t (γ̂ λn
) − λ−1

n

∑λn

k=1 t (γ̂ k)] = 0 a.s. and therefore[
πn − t (γ̂ n)

]+ → 0 a.s. (A.2)

Analogously, [
(1 − πn) − (

1 − t (γ̂ n)
)]+ → 0 a.s. (A.3)

From (A.2) and (A.3), as n tends to infinity πn − t (γ̂ n) → 0 a.s. and by (A.1) limn→∞ πn =
limn→∞ t (γ̂ n) = v a.s. Since 0 < v < 1, then 0 < 1 − v < 1 and thus limn→∞ Ñn → ∞ a.s.
and limn→∞(n − Ñn) → ∞ a.s. Therefore, limn→∞ γ̂ n → γ a.s. and from the continuity of the
downcrossing limn→∞ t (γ̂ n) = t (γ ) = v a.s., that is, limn→∞ πn = t (γ ) a.s.

A.2. Proof of Theorem 5.1

If ϕCARA is decreasing in πn, then ϕ̃Z is also decreasing in πn, so that the generalized downcross-
ing is unique and lies in (0;1). Letting now �n = σ(δ1, . . . , δn;Y1, . . . , Yn;Z1, . . . ,Zn), then
E(δi |�i−1) = EZi

[ϕ(πi−1; γ̂ i−1,Si−1, f (Zi ))] and �Mi = δi −E(δi |�i−1). Then {�Mi; i ≥ 1}
is a sequence of bounded martingale differences with |�Mi | ≤ 1 for any i ≥ 1; thus {Mn =∑n

i=1 �Mi;�n} is a martingale with
∑n

k=1 E[(�Mi)
2|�k−1] ≤ n. Let ζn = max{ϑ : 2m +

1 ≤ ϑ ≤ n,πϑ ≤ t̃Z(γ̂ ϑ ,Sϑ)}, with max∅ = 2m. So that ∀i > ζn we have ϕ̃Z(πi; γ̂ i ,Si ) ≤
t̃Z(γ̂ i ,Si ). Note that

Ñn = Ñζn+1 +
n∑

k=ζn+2

�Mk +
n∑

k=ζn+2

E(δk|�k−1)

≤ Ñζn + 1 + Mn − Mζn+1 +
n∑

k=ζn+2

ϕ̃Z(πk−1; γ̂ k−1,Sk−1)
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< Ñζn + 1 + Mn − Mζn+1 +
n∑

k=ζn+2

t̃Z(γ̂ k−1,Sk−1)

= Ñζn + 1 + Mn − Mζn+1 +
n∑

k=1

t̃Z(γ̂ k−1,Sk−1) −
ζn+1∑
k=1

t̃Z(γ̂ k−1,Sk−1).

Since Ñζn ≤ ζnt̃Z(γ̂ ζn
,Sζn), then

Ñn − nt̃Z(γ̂ n,Sn) ≤
(

ζnt̃Z(γ̂ ζn
,Sζn) −

ζn+1∑
k=2

t̃Z(γ̂ k−1,Sk−1)

)

+ Mn − Mζn+1 + 1 − t̃Z(γ̂ 0,S0) −
(

nt̃Z(γ̂ n,Sn) −
n∑

k=1

t̃Z(γ̂ k−1,Sk−1)

)
.

Moreover, as n → ∞, at least one of the number of assignments to the treatments, Ñn and
(n − Ñn), tends to infinity a.s. In either case from the properties of t̃Z(γ̂ n,Sn), almost surely
there exists a υ̃ such that

t̃Z(γ̂ n,Sn) → υ̃ a.s. (A.4)

and so

t̃Z(γ̂ n,Sn) − 1

n

n∑
k=1

t̃Z(γ̂ k−1,Sk−1) → 0 a.s.

As n → ∞, then ζn → ∞ or supn ζn < ∞; in either case,

ζn

n

{
t̃Z(γ̂ ζn

,Sζn) − 1

ζn

ζn∑
k=1

t̃Z(γ̂ k,Sk)

}
→ 0 a.s.

and therefore [
πn − t̃Z(γ̂ n,Sn)

]+ → 0 a.s. (A.5)

Analogously, [
(1 − πn) − (

1 − t̃Z(γ̂ n,Sn)
)]+ → 0 a.s. (A.6)

From (A.5) and (A.6), limn→∞ πn − t̃Z(γ̂ n,Sn) = 0 a.s. and therefore by (A.4) limn→∞ πn =
limn→∞ t̃Z(γ̂ n,Sn) = υ̃ a.s. Since 0 < υ̃ < 1, then 0 < 1 − υ̃ < 1 and limn→∞ Ñn → ∞ a.s.
and limn→∞(n − Ñn) → ∞ a.s. Therefore, limn→∞ γ̂ n → γ a.s. and also limn→∞ Sn → ς a.s.,
so that from the continuity of the downcrossing limn→∞ t̃Z(γ̂ n,Sn) = t̃Z(γ ,ς) = υ̃ a.s., namely
limn→∞ πn = t̃Z(γ ,ς) a.s.
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A.3. Proof of Theorem 6.1

At each step n, let Mn(j, l) = ∑n
i=1 �Mi(j, l) = ∑n

i=1{δi − E(δi |Gi−1)}1{Zi=(tj ,wl)}, where
Gi = σ(�i ,Zi+1). Therefore, at each stratum (tj ,wl), {�Mi(j, l); i ≥ 1} is a sequence of
bounded martingale differences with |�Mi(j, l)| ≤ 1 for any i ≥ 1 and thus, {Mn(j, l);Gn}
is a squared integrable martingale with

∑n
k=1 E[(�Mi(j, l))

2|Gk−1] ≤ n.
Let ξn(j, l) = max{s: 2m+1 ≤ i ≤ n,πi(j, l) ≤ tj l(γ̂ i ,Si )}, with max∅= 2m, then there ex-

ists a given stratum (tj ′ ,wl′) such that ξn(j
′, l′) = maxj l ξn(j, l). Therefore, for any i > ξn(j

′, l′),
at each stratum πi(j, l) > tjl and, by Definition 6.1, ϕjl(π i; γ̂ i ,Si ) ≤ tj l(γ̂ i ,Si ). Thus

Ñn

(
j ′, l′

) = Ñξn(j ′,l′)+1
(
j ′, l′

) +
n∑

i=ξn(j ′,l′)+2

�Mi

(
j ′, l′

) +
n∑

i=ξn(j ′,l′)+2

E(δi |Gi−1)1{Zi=(tj ′ ,wl′ )}

≤ Ñξn(j ′,l′)
(
j ′, l′

) + 1 + Mn

(
j ′, l′

) − Mξn(j ′,l′)+1
(
j ′, l′

)
+

n∑
i=ξn(j ′,l′)+2

ϕj ′l′(π i−1; γ̂ i−1,Si−1)1{Zi=(tj ′ ,wl′ )}

< Ñξn(j ′,l′)
(
j ′, l′

) + 1 + Mn

(
j ′, l′

) − Mξn(j ′,l′)+1
(
j ′, l′

)
+

n∑
i=ξn(j ′,l′)+2

tj ′l′(γ̂ i−1,Si−1)1{Zi=(tj ′ ,wl′ )}

= Ñξn(j ′,l′)
(
j ′, l′

) + 1 + Mn

(
j ′, l′

) − Mξn(j ′,l′)+1
(
j ′, l′

)
+

n∑
i=1

tj ′l′(γ̂ i−1,Si−1)1{Zi=(tj ′ ,wl′ )}

−
ξn(j ′,l′)+1∑

i=1

tj ′l′(γ̂ i−1,Si−1)1{Zi=(tj ′ ,wl′ )}.

Moreover, since Ñξn(j ′,l′)(j ′, l′) ≤ Nξn(j ′,l′)(j ′, l′)tj ′l′(γ̂ ξn(j ′,l′),Sξn(j ′,l′)), then

Ñn

(
j ′, l′

) − Nn

(
j ′, l′

)
tj ′l′(γ̂ n,Sn)

≤ Mn

(
j ′, l′

) − Mξn(j ′,l′)+1
(
j ′, l′

) + 1

+
(

Nξn(j ′,l′)
(
j ′, l′

)
tj ′l′(γ̂ ξn(j ′,l′),Sξn(j ′,l′)) −

ξn(j ′,l′)+1∑
i=1

tj ′l′(γ̂ i−1,Si−1)1{Zi=(tj ′ ,wl′ )}

)

−
(

Nn

(
j ′, l′

)
tj ′l′(γ̂ n,Sn) −

n∑
i=1

tj ′l′(γ̂ i−1,Si−1)1{Zi=(tj ′ ,wl′ )}

)
.
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Since pjl > 0, then as n → ∞

Nn(j, l) → ∞ and
Mn

Nn(j, l)
→ 0 a.s. ∀j = 0, . . . , J ; l = 0, . . . ,L.

Moreover, as n → ∞ at least one of Ñn(j
′, l′) and [Nn(j

′, l′) − Ñn(j
′, l′)] tends to infinity a.s.

Therefore γ̂ n → γ a.s. and, from (5.2), Sn → ς a.s. Thus, as n → ∞

tj ′l′(γ̂ n,Sn) −
∑n

i=1 tj ′l′(γ̂ i−1,Si−1)1{Zi=(tj ′ ,wl′ )}∑n
i=1 1{Zi=(tj ′ ,wl′ )}

→ 0 a.s.

Furthermore, as n → ∞

tj ′l′(γ̂ ξn(j ′,l′),Sξn(j ′,l′))
Nξn(j ′,l′)(j ′, l′)

Nn(j ′, l′)
−

∑ξn(j ′,l′)+1
i=1 tj ′l′(γ̂ i−1,Si−1)1{Zi=(tj ′ ,wl′ )}∑n

i=1 1{Zi=(tj ′ ,wl′ )}
→ 0 a.s.

and therefore limn→∞[πn(j
′, l′) − tj ′l′(γ̂ n,Sn)]+ = 0 a.s.

Analogously, limn→∞{[1 − πn(j
′, l′)] − [1 − tj ′l′(γ̂ n,Sn)]}+ = 0 a.s. and thus

lim
n→∞πn

(
j ′, l′

) = tj ′l′(γ ,ς) a.s. (A.7)

Since ∃! t(γ̂ n,Sn) = [tj l(γ̂ n,Sn): j = 0, . . . , J ; l = 0, . . . ,L] which is continuous and ϕ(t(γ ,ς);
γ ,ς) = t(γ ,ς), then from (A.7) follows that

lim
n→∞πn(j, l) = tj l(γ ,ς) a.s. for every (j, l) �= (

j ′, l′
)

and Theorem 6.1 follows directly.
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