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Abstract

Hydroxytyrosol (HT), a phenolic compound mainly derived from olives, has been proposed as a nutraceutical useful in
prevention or treatment of degenerative diseases. In the present study we have evaluated the ability of HT to counteract
the appearance of osteoarthritis (OA) features in human chondrocytes. Pre-treatment of monolayer cultures of
chondrocytes with HT was effective in preventing accumulation of reactive oxidant species (ROS), DNA damage and cell
death induced by H2O2 exposure, as well as the increase in the mRNA level of pro-inflammatory, matrix-degrading and
hypertrophy marker genes, such as iNOS, COX-2, MMP-13, RUNX-2 and VEGF. HT alone slightly enhanced ROS production,
but did not enhance cell damage and death or the expression of OA-related genes. Moreover HT was tested in an in vitro
model of OA, i.e. three-dimensional micromass cultures of chondrocytes stimulated with growth-related oncogene a
(GROa), a chemokine involved in OA pathogenesis and known to promote hypertrophy and terminal differentiation of
chondrocytes. In micromass constructs, HT pre-treatment inhibited the increases in caspase activity and the level of the
messengers for iNOS, COX-2, MMP-13, RUNX-2 and VEGF elicited by GROa. In addition, HT significantly increased the level of
SIRT-1 mRNA in the presence of GROa. In conclusion, the present study shows that HT reduces oxidative stress and damage,
exerts pro-survival and anti-apoptotic actions and favourably influences the expression of critical OA-related genes in
human chondrocytes treated with stressors promoting OA-like features.
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Introduction

Chondrocytes, the only cell type in adult cartilage, are usually

kept in a quiescent, maturation-arrested state, and maintain tissue

integrity by a low turnover of extra-cellular matrix (ECM)

components. However in osteoarthritis (OA), a common chronic

degenerative- and ageing-associated disease, a disorganized

recapitulation of endochondral ossification is promoted, leading

to hypertrophic differentiation and apoptosis of chondrocytes,

associated to ECM degradation and mineralization [1]. Among

key molecular effectors driving these processes are runt-related

transcription factor 2 (RUNX-2), matrix metalloproteinase-13

(MMP-13) and the angiogenic vascular endothelial growth factor

(VEGF). In the context of OA, chondrocytes produce pro-

inflammatory agents, such as cytokines, chemokines, eicosanoids

(e.g., PGE2) and nitric oxide (NO), as well as an array of hydrolytic

enzymes, which in an autocrine/paracrine manner contribute to

terminal differentiation of chondrocytes and ECM degradation

[2–4]. Moreover in response to mechanical, inflammatory and

metabolic stressors, chondrocytes become both source and target

of elevated amounts of reactive chemical species, particularly

oxygen- and nitrogen-species, which cause oxidative stress, thus

establishing positive feed-back loops and resulting in further

damage of cartilage cells and matrix [5].

An effective and safe strategy for OA prevention and therapy is

still lacking. Pharmacological treatments nowadays available,

mainly non-steroidal anti-inflammatory drugs (NSAID), do not

affect OA progression substantially and present disadvantages,

such as side effects and high cost. Therefore the search for

molecules able to interfere with molecular mechanisms of OA

pathogenesis represents an important challenge [6]. In particular

several dietary factors and nutraceuticals are promising [7,8], but

extensive investigation in preclinical and clinical settings is

required to prove their usefulness. On this purpose, we and others

have showed the ability of sulforaphane, a natural isothiocyanate

derived from edible cruciferous vegetables, to protect chondro-

cytes in vitro [9–11], and, quite recently, a sulforaphane-rich diet

was found effective in a murine OA model [12]. Another

interesting candidate molecule is hydroxytyrosol (HT), a phenolic

compound endowed of a powerful anti-oxidant action, mainly
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found in the fruits of olive tree (Olea europaea L.) and their

derivatives, such as olive oil [13]. Several studies, mostly

performed in cell and animal models, have revealed a range of

biological properties of HT, suggesting beneficial effects in the

prevention or treatment of chronic and degenerative diseases,

especially cardiovascular disease and cancer. In particular HT has

been shown to display cytoprotective and anti-inflammatory

actions in a variety of cell types [14–23]. However, to our

knowledge, information is lacking about the effects of HT on

chondrocytes and cartilage. In the present study, we report data

about the action of HT in monolayer and tridimensional cultures

of human chondrocytes, showing that HT afforded protection

against chondrocyte damage, apoptosis and expression of OA-

related markers.

Methods

Ethics Statement
Preclinical research involving human OA patient cartilage tissue

samples at the Rizzoli Orthopaedic Institute was subjected to the

approval of the ethics committee/institutional review board of the

Institute (‘‘Comitato Etico dell’Istituto Ortopedico Rizzoli’’),

which included documentation of written patient consent forms.

Prior to the retrieval of tissues from surgeons, all patient identifiers

were removed from tissue samples which were coded by arbitrary

designations to distinguish them solely for experimental purposes.

Cell culture and treatment
With local Ethics Committee approval, primary cultures of

chondrocytes were used and prepared from fragments of articular

cartilage obtained from 23 adult OA patients (age 63–83)

undergoing knee arthroplasty as described [24]. Chondrocytes

were cultured in D-MEM and 10% FCS as previously detailed

[24]. For experiments in monolayer, chondrocytes were incubated

in the absence or presence of 100 mM H2O2 for 1 to 48 h as

indicated in the various figures; 100 mM HT (from Sigma

Chemical Company, St. Louis, MO, or Cayman chemical, MI,

USA, dissolved in DMSO or ethanol) was added 30 min before

H2O2. Cells not pre-treated with HT received equal amount of the

vehicle. The concentration of HT was chosen on the basis of a

published study [25] and preliminary experiments in a human

chondrocyte cell line. Viable cells were directly counted following

the trypan blue exclusion test. Dead cells were also counted and

reported as a percentage of the total number of cells. Care was

taken to recover even possible detached cells. OA chondrocytes

were also seeded into micromass cultures as previously described

[26]. The medium was changed every second day and the

micromasses were used after 1, 2 or 3 weeks of culture. Before

stimulation, the micromasses were kept in 500 ml 3% FCS DMEM

for 24 hours and volumes were reduced to 100 ml when 100 nM

growth-related oncogene a (GROa) (R&D systems, Minneapolis,

MN) was added for 90 min; 100 mM HT was added 30 min

before GROa.

Detection of reactive oxidant species
Reactive oxidant species (ROS) were detected in monolayer

cultures of chondrocytes (5,000 cells per well in a 96 wells cluster)

by using the oxidant-sensitive probe 29, 79-dichlorofluorescein

diacetate (DCF-DA) (Sigma) that emits green fluorescence when

oxidized [27]. The cells were incubated with 30 mM DCF-DA for

30 min at 37uC in complete medium. After change of medium to

remove DCF-DA, the cells were incubated with HT, H2O2 or

GROa for the established time. Then the cells were detached from

the wells with trypsin, centrifuged and finally resuspended in PBS.

Thereafter, the production of ROS was measured in the cells by

using a WallacVictor2 1420 Multilabel Counter fluorimeter, at the

wavelength of excitation of 485 nm and emission of 538 nm.

Measures of samples were corrected by subtracting a proper blank,

given by basal fluorescence intensity of cells incubated without

DCF-DA. Measures of fluorescence were also performed in the

conditioned cell medium that was collected at the end of

incubation, and corrected by subtracting the fluorescence of

non-conditioned medium incubated with DCF-DA.

Detection of cH2AX
Flow cytometry was employed to evaluate the extent of

oxidative DNA damage and in particular the amount of double

strand breaks tagged by the phosphorylation of the histone H2AX

in the areas surrounding the lesions. Immunostaining for flow

cytometry was performed using cells that had been previously

fixed with 2% PFA and then post-fixed with 90% methanol on ice.

The first step of ‘‘antigen unmasking’’ was carried out with

0.02 U/ml chondroitinase ABC in Tris HCL pH 8 (209, 37uC) to
increase the permeability of the cells to the antibodies. A blocking

step was performed before immunostaining, using TBS supple-

mented with 5% bovine serum albumin (BSA) and 0.1% Triton,

left for 309 at RT. Primary and secondary antibody dilutions were

done in TBS supplemented by 3% BSA and 0.1% Triton. To

Figure 1. Hydroxytyrosol reduces the levels of ROS in
chondrocytes treated with H2O2 or the chemokine GROa.
Monolayer cultures of OA chondrocytes, loaded with the fluorogenic
probe DCF-DA as detailed in Methods, were pre-incubated in the
absence or in the presence of HT for 30 min before addition of H2O2 (A)
or GROa (B). After 60 min, cells and conditioned medium were
separated and assayed for reactive chemical species. Data are means
6 S.E.M. of 6 (A) or 4 (B) separate determinations; ** p,0.01 and *** p,
0.001 vs. cells treated only with H2O2 or GROa. Interestingly,
comparison of all control cells and cells treated only with HT (A+B)
showed a significant difference between means (p,0.05).
doi:10.1371/journal.pone.0109724.g001
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detect double strand breaks marked by phosphorylation of histone

H2AX, we used a mouse anti-cH2AX monoclonal antibody

(Millipore 05–636, IgG1, at 5 mg/ml) incubated overnight at 4uC.
The secondary antibody, used at 15 mg/ml, was Alexa Fluor 647

Donkey anti mouse IgG (Jackson Labs) and was incubated for

30 min at RT. Specificity was checked by running an isotypic

control for each sample under analysis: cells were probed with

normal mouse immunoglobulins of the same isotype (IgG1) and at

the same concentration of the primary antibody anti-cH2AX.

Analyses were performed using an FACS Canto II flow cytometer

(BD). At least 5000 cells were analyzed for each tube and

distribution of fluorescence intensity was recorded. For each

sample under analysis the level of ‘‘median channel of fluorescence

intensity (MCFI) increment’’ of c-H2AX staining was calculated as

the difference between the median channel of fluorescence

intensity of the samples stained for cH2AX and that of the same

sample probed with the isotypic control.

Determination of caspase activity
Caspase activity was measured by the cleavage of the

fluorogenic peptide substrate Ac-Asp-Glu-Val-Asp-7-amido-4-

methylcoumarin (Ac-DEVD-AMC) as previously detailed [24].

Since the sequence DEVD represents a substrate for caspase-3 and

other effector caspases, this activity has been referred to as caspase

3-like activity. Caspase activity was expressed per mg protein, and

normalized to untreated controls.

Quantitative Real Time PCR (qRT-PCR) analysis
The micromasses were kept frozen at 220uC after treatment

and then, like chondrocytes grown in monolayer, extracted with

300 ml TRIZOL (Invitrogen), following manufacturer’s instruc-

tions. The RNA pellets were treated with DNAse (DNA-free,

Ambion, Austin, TX) and after buffer exchange and concentration

to a 5 ml volume the RNA was reverse transcribed with oligo-dT

and Superscript First-Strand Synthesis System for RT-PCR

(Invitrogen), according to manufacturer’s instructions. cDNA

was quantified by means of the PicoGreen double-stranded

DNA quantitation reagent (Molecular Probes, Eugene OR) and

then diluted to the same concentration (5 ng/ml), in order to

exploit the same range of amplification efficiency. Real time PCR

analysis was run in a LightCycler Instrument (Roche Molecular

Biochemicals) by means of the QuantiTect SYBR Green PCR kit

(TaKaRa, Japan) with the following protocol: initial activation of

HotStart Taq DNA polymerase at 95uC for 100, followed by

amplification (40 cycles: 95uC for 50 followed by appropriate

annealing temperature for each target as detailed below kept for

200). The protocol was concluded by melting curve analysis to

check amplicon specificity. Two microliters of each sample was

processed for each gene under study. The following primers (from

Invitrogen) were used: COX-2 (NM_000963.3) 702-722F and

812-830R; GAPDH (NM_002046) 579–598F and 701-683R;

iNOS (NM_000625.4) 2183-2205F and 2398-2418R; MMP-13

(NM_002427) 496–511F and 772-756R; RUNX-2 variant tran-

script 3 (NM_004348) 864–883F and 968-949R, RUNX-2 variant

transcripts 2 (NM_001015051) and 1 (NM_001024630) 716–735F

and 820-801R; SIRT-1 (NM_0012238.4) 733-755F and 891-

912R; VEGF variant transcripts7 (NM_001033756.1), 6

(NM_001025370.1), 5 (NM_001025369.1), 4

(NM_001025368.1), 3 (NM_001025367.1), 2 (NM_003376.4),

and 1 (NM_001025366.1), 1144-1126 (forward) and 1063–1079

(reverse). Primers were annealed at 56uC, except COX-2 at 60uC,
SIRT-1 and iNOS at 58uC. The amount of mRNA was

normalized for GAPDH expression in each sample and referred

to untreated, control sample.

Statistical Analysis
All data shown in graphs are expressed as means 6 S.E.M of n

separate determinations. Means of groups were compared with

GraphPad Prism 5 statistical software (GraphPad Software, Inc.)

and analysed for statistical significance (* = p , 0.05, ** = p ,

Figure 2. Hydroxytyrosol prevents DNA damage in chondrocytes treated with H2O2. Monolayer cultures of OA chondrocytes, pre-treated
with or without HT for 30 min, were incubated with H2O2 for 1 h or 4 h. Chondrocytes were then evaluated for the extent of DNA damage by
detection of cH2AX. In (A) a flow cytometric analysis of cH2AX of representative samples from cells incubated for 1 h is shown. Light grey histograms
represent isotype control and dark grey histograms represent cH2AX-specific antibodies. In (B) the increment of the mean channel fluorescence
intensity (MCFI) over basal fluorescence was calculated for all samples analyzed by flow cytometry and cumulative results from 1 h and 4 h
incubation experiments are shown. Data are means 6 S.E.M. of 5 (1 h) or 6 (4 h) separate determinations; * p,0.05 and *** p,0.001 vs. cells treated
only with H2O2.
doi:10.1371/journal.pone.0109724.g002

Figure 3. Cytoprotective action of hydroxytyrosol on chondro-
cytes treated with H2O2. Monolayer cultures of OA chondrocytes
were pre-incubated in the absence or in the presence of HT for 30 min
before addition of H2O2. At the time indicated after H2O2 cells were
counted to assess cell viability by trypan blue exclusion test (A) or
analysed for caspase activity (B). Data are means 6 S.E.M. of 6 separate
determinations; * p,0.05, ** p,0.01 and *** p,0.001 vs. cells treated
only with H2O2. Other comparisons between means showed not
significant differences.
doi:10.1371/journal.pone.0109724.g003
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0.01, *** = p , 0.001) by two-way ANOVA followed by

Bonferroni post-hoc tests.

Results

Effects of hydroxytyrosol on human chondrocytes
treated with hydrogen peroxide
Articular chondrocytes from OA patients were cultured in

monolayer and treated with H2O2 to induce oxidative stress. The

level of reactive chemical species in cells was determined by the

assay with the oxidant-sensitive probe DCF-DA. Exposure to

H2O2 for 1 h resulted in a 2.5 fold increase of fluorescence

intensity with respect to control, untreated cells. HT enhanced the

intensity of fluorescence only slightly, but markedly reduced the

increase induced by H2O2 (Figure 1A). In conditioned medium

reactive chemicals were detected at lower levels, but likewise

modulated by H2O2 and HT, suggesting that HT may quench

even the accumulation of extra-cellular ROS. Figure 2A shows

how the oxidative stress elicited a notable DNA damage in cells

after 1 h as indicated by increased detection of a phosphorylated

Figure 4. Hydroxytyrosol prevents the expression of OA-related genes in chondrocytes treated with H2O2. Monolayer cultures of OA
chondrocytes were pre-incubated in the absence or in the presence of HT for 30 min before addition of H2O2. At the time indicated after H2O2, cells
were harvested and analysed by qRT-PCR for the amount of COX-2 mRNA (A), iNOS mRNA (B), MMP-13 mRNA (C), RUNX-2 mRNA (D), VEGF mRNA (E)
and SIRT-1 mRNA (F). Data are means 6 S.E.M. of (n) separate determinations; * p,0.05, ** p,0.01 and *** p,0.001 vs. cells treated only with H2O2.
Other comparisons between means showed not significant differences.
doi:10.1371/journal.pone.0109724.g004
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form of histone H2AX referred to as cH2AX, a widely used

marker of DNA double strand breaks. HT alone did not affect

significantly the extent of DNA damage, but completely prevented

the increase by H2O2. It should be noted that the DNA damage

was attenuated after 4 h treatment with H2O2 indicating the

occurrence of DNA repair (Figure 2B) [28].

However, H2O2 provoked a significant increase in the

percentage of dead cells estimated by trypan blue exclusion test

after 24 h and 48 h of treatment (Figure 3A). Exposure of cell

cultures to HT did not affect cell viability significantly by itself, but

prevented the enhancement of cell death caused by H2O2. The

H2O2-elicited enhancement in cell death was preceded and

accompanied by a significant, albeit limited, increase of caspase 3-

like activity, which was likewise prevented by HT pre-treatment

(Figure 3B). Therefore caspase-dependent apoptosis can partially

contribute to cell death induced by H2O2 treatment, but HT

afforded cytoprotection regardless of the types of cell death that

were involved.

The effect of H2O2 treatment on the expression of a selected

subset of genes known to be involved in OA pathogenesis was

investigated by qRT-PCR. Figure 4 shows that H2O2 significantly

increased mRNA levels of COX-2, iNOS, MMP-13, RUNX-2

and VEGF after 4 h and/or 24 h of treatment. Addition of HT

alone to cell cultures did not affect the expression of these genes

with respect to control cells significantly, however HT was able to

prevent or reduce the increases induced by H2O2. We have also

considered SIRT-1, which may exert a pivotal role in protecting

from OA according to recent evidence (reviewed in [29]), but the

levels of SIRT-1 mRNA did not vary significantly following

treatments with H2O2 and/or HT (Figure 4F).

Effects of hydroxytyrosol on human chondrocytes
treated with growth-related oncogene a
Growth-related oncogene a (GROa) is a CXC chemokine

particularly abundant in the OA chondrocyte inflammatory

environment and can play an important role in cartilage

derangement [3]. The chemokine was able to enhance the

production of ROS by 50% in monolayer cultures of primary

chondrocytes, an effect reduced by HT pretreatment (Figure 1B).

However, we have previously shown that chondrocyte hypertro-

phy and apoptosis induced by GROa require three-dimensional

interaction with ECM as revealed in 3-D micromass cultures of

chondrocytes, but not in usual monolayer cultures [26]. Therefore

experiments were also performed with micromass cultures, which

more faithfully reflect the in vivo situation.

GROa was able to provoke an increase of effector caspase 3-like

activity, as previously shown [9]. However the sensitivity to this

effect of the chemokine appeared to increase with the maturation

stage of the 3-D cultures reaching statistical significance only with

3 weeks-old micromasses (Figure 5). Noteworthy, 1 week-old

micromasses proved to be more resistant to apoptotic stimuli

compared to 3 week micromasses, consistently with the higher

amount of collagen 2, which represents a ligand for receptor-

mediated cell-matrix interactions, thus mediating FAK-dependent

cell survival signalling as demonstrated in mice lacking collagen II

[30].

Next, the expression of OA-related genes following GROa
treatment of 1-, 2- and 3-weeks old micromasses was examined

together with the HT effect (Figure 6). Panels A–E show that

GROa was able to enhance the levels of the messengers for COX-

2, iNOS, MMP-13, RUNX-2 and VEGF, but to a different degree

and with variable responses as a function of the maturation stage

of micromasses. In particular, the chemokine proved to be a better

inducer of COX-2 and VEGF in fresh micromasses, and of iNOS,

MMP-13 and RUNX-2 in older constructs. Notably, HT pre-

treatment prevented these increases for all markers and at different

ages of micromasses. We have also considered the expression of

SIRT-1 mRNA and found a different pattern with respects to the

previous genes, with a low content of the mRNA after GROa and

an increase following co-treatment with HT and GROa, which
resulted significant in 1- and 2-week old micromasses compared to

GROa alone or control cells (Figure 6F). Therefore HT was able

to modulate gene expression in micromasses in a favourable way

to counteract the appearance of a OA chondrocyte phenotype.

Discussion

The’’Mediterranean diet’’, characterized among other features

by a high consumption of olives and olive oil, has been associated

with a healthy lifestyle and a lowered incidence of chronic diseases.

Most of studies have focused on cardiovascular diseases, cancer

and diabetes, however recently dietary supplementation of extra-

virgin olive oil together with mild physical activity has been

reported to prevent cartilage degeneration in a OA rat model [31].

Although initial reports attributed the beneficial properties of olive

oil to its composition of fatty acids with the high content of oleic

acid, accumulating evidence now indicates that its minor

components, particularly polyphenols, critically contribute to these

health benefits. In particular, HT has attracted much attention

because of its relative abundance in olive products, its safety profile

and its orthodiphenolic structure, which is related to its notable

amphipatic behaviour, bioavailability and anti-oxidant efficacy

[13]. It has also been found that olive vegetation water (OVW), a

by-product of olive extraction rich in phenolics, acted synergisti-

cally with glucosamine to reduce serum TNF-a levels in

lipopolysacharide (LPS)-treated mice, suggesting, according to

Authors’ words, that a combination of OVW and glucosamine

may be an effective therapy for a variety of inflammatory processes

[32]. A further report by the same group actually showed that

OVW treatment decreases pain and improves daily activities of

patients with OA and rheumatoid arthritis (RA) [33]. Interestingly,

administration of oleuropein aglycone, an olive polyphenol

secoiridoid, which can be partially hydrolyzed to HT, proved to

Figure 5. Hydroxytyrosol inhibits the increase of caspase
activity in 3-D cultures of chondrocytes treated with GROa.
OA chondrocyte micromasses at 1, 2 and 3 weeks (w) of maturation
were pre-incubated in the absence or in the presence of HT for 30 min
before addition of GROa as described in Methods. Then micromasses
were harvested and analysed for caspase activity. Data are means 6
S.E.M. of 5 separate determinations; ** p,0.01 vs. cells treated only with
GROa. Other comparisons between means showed not significant
differences.
doi:10.1371/journal.pone.0109724.g005
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exert an anti-inflammatory effect and ameliorate the tissue

damage in mice with type II collagen-induced arthritis [34], an

experimental model of RA. In addition, oleocanthal, a further

phenolic compound identified in extra-virgin olive oil, is purported

to have ibuprofene-like effects and has been shown to inhibit the

production of pro-inflammatory factors, such as NO, iNOS, MIP-

Figure 6. Hydroxytyrosol regulates the expression of OA-related genes in 3-D cultures of chondrocytes treated with GROa. OA
chondrocyte micromasses at 1, 2 and 3 weeks maturation were pre-incubated in the absence or in the presence of HT for 30 min before addition of
GROa as described in Methods. Then micromasses were harvested and analysed by qRT-PCR for the amount of COX-2 mRNA (A), iNOS mRNA (B),
MMP-13 mRNA (C), RUNX-2 mRNA (D), VEGF mRNA (E) and SIRT-1 mRNA (F). Data are means6 S.E.M. of (n) separate determinations; * p,0.05, ** p,
0.01 and *** p,0.001 vs. cells treated only with GROa. Other comparisons between means showed not significant differences, except for Control vs.
HT+GROa at 1 w (* p,0.05) and at 2 w (*** p,0.001) in panel F (SIRT-1 mRNA).
doi:10.1371/journal.pone.0109724.g006
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1a and IL-6, in a murine chondrocyte cell line [35,36]. Thus it is

possible that various phenolics and other components of olives and

manufacturing derivatives may act together, even synergistically,

to provide protective outcomes on various forms of arthritis. It

should also be noted that HT and related phenolics may be

present in significant amounts even in white wine and contribute

to its beneficial effects [37,38].

In the present study we have found that HT protects human

chondrocytes exposed to significative pathogenic stimuli, i.e. H2O2

and GROa. In particular HT reduced or prevented increases in

cell death and activation of executive caspases, DNA damage,

expression of pro-inflammatory genes (COX-2, iNOS) and of

genes driving chondrocyte terminal differentiation (RUNX-2,

MMP-13 and VEGF), all of which characterizing OA pathogen-

esis. Particularly significant is the protective effect afforded versus

GROa in 3-D micromass cultures, a useful in vitro model of OA.

In fact we have previously showed that chondrocytes re-

differentiate in micromasses and after 1 week recover an ‘‘healthy

articular chondrocyte phenotype’’ being able to produce an

abundant ECM rich in collagen 2 and aggrecan, the main ECM

components of healthy articular cartilage. Afterwards this 3-D

cartilaginous construct recapitulates the chondrogenesis process

driven by ECM remodelling, so that at 3 weeks features of

‘‘hypertrophy, terminal differentiation, calcification and cell

death’’ are observed [39,40]. This model has been successfully

employed to define the critical role of MMP-13 in concert with

other regulatory factors [39,40].

H2O2 and less markedly GROa were proved to increase the

level of ROS in chondrocytes, which was reduced by pre-

treatment with HT. The cytoprotective and anti-oxidant actions of

HT, shown in a variety of cell types, have been related not only to

its free radical scavenging activity, but also to the ability to

enhance the endogenous defence system by inducing antioxidant/

detoxifying enzymes through activation of transcription factors

such as Nrf2 [14,23] or FOXO3a [15]. Interestingly HT,

differently from other olive oil phenolics tested, significantly

increased transactivation in a Nrf2 gene reporter experiment with

NIH 3T3 cells [41]. In addition HT has been shown to inhibit NF-

kB activation in phorbol ester-treated vascular endothelial cells

[22] and in LPS-treated THP-1 cells [17]. In its turn NF-kB
inhibition can keep down-regulated pro-inflammatory and cata-

bolic genes, such as those coding for iNOS, COX-2 and MMPs

[18,20]. It should be noted that these genes are regulated mainly at

transcriptional level by pro-inflammatory pathways, therefore our

finding of a reduced expression of their mRNAs supports a HT

effect in antagonizing the activation of pro-inflammatory pathways

like NF-kB even in chondrocytes.

Another potential mediator of the protective effect exerted by

dietary polyphenols is SIRT-1, a NAD+-dependent protein

deacetylase, which can be beneficial by modulating oxidative

stress, inflammation, cellular senescence, apoptosis, autophagy,

metabolism and mitochondrial biogenesis [42]. HT has been

reported to induce the expression of SIRT-1 in rat hearts

subjected to ischemia/reperfusion [38]. An enhanced SIRT-1

expression has been observed in breast cancer cells treated with

secoiridoid polyphenols extracted from extra-virgin olive oil [43]

and in the heart of SAMP8 mice fed with a diet enriched with olive

oil phenolics [41]. In the present paper we show that HT

enhanced SIRT-1 mRNA expression in GROa-stimulated micro-

masses, suggesting a role for this ‘‘longevity factor’’ in the HT

protective action. Although HT did not increase significantly the

level of SIRT-1 mRNA in H2O2-stimulated chondrocytes in

monolayer, an involvement of SIRT-1 in protection from H2O2

cannot be excluded, since SIRT-1 expression and activity can be

regulated at different levels, including by post-translational

modifications [29,42,44].

In conclusion this study is the first to show a wide range of HT

effects protecting human chondrocytes under in vitro conditions

simulating OA. The precise mode of action of HT and the

signaling pathways involved remain to define, nevertheless the use

of HT to treat or prevent OA is supported by our results, and

deserves further studies in animal models and clinical settings.
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