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Key points 

• t(16;21) translocations in AML comprise t(16;21)(p11;q22) (FUS–ERG) as well as 

t(16;21)(q24;q22) (RUNX1–CBFA2T3).  

• Survival in pediatric AML with FUS–ERG is poor, whereas in RUNX1–CBFA2T3 survival 

is similar to other core-binding factor leukemias. 
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Abstract 

To study the prognostic relevance of rare genetic aberrations in AML, such as t(16;21), 

international collaboration is required. Two different types of t(16;21) translocations can be 

distinguished, t(16;21)(p11;q22) resulting in the FUS–ERG fusion gene and t(16;21)(q24;q22) 

resulting in RUNX1–CBFA2T3. We collected data on clinical and biological characteristics of 54 

pediatric AML cases with t(16;21) rearrangements from 14 international collaborative study 

groups, participating in the international Berlin-Frankfurt-Münster (I-BFM) AML study group. 

The AML-BFM cohort diagnosed between 1997 and 2013 was used as a reference cohort.  

RUNX1–CBFA2T3 (n=23) had significantly lower median WBC (12.5*10
9
/l, p=0.03) compared to 

the reference cohort. FUS–ERG rearranged AML (n=31) had no predominant FAB type, whereas 

76% of RUNX1–CBFA2T3 had an M1/M2 FAB type (M1, M2), significantly different from the 

reference cohort (p=0.004). 4-year event free survival (EFS) of patients with FUS–ERG was 7% 

(SE=5%), significantly lower compared to the reference cohort (51%, SE=1%, p<0.001). 4-year 

EFS of RUNX1–CBFA2T3 was 77% (SE=8%, p=0.06), significantly higher compared to the 

reference cohort. Cumulative incidence of relapse was 74% (SE=8%) in FUS–ERG, 0% (SE=0%) in 

RUNX1–CBFA2T3, compared to 32% (SE=1%) in the reference cohort (p<0.001). Multivariate 

analysis identified both FUS–ERG and RUNX1–CBFA2T3 as independent risk factors with hazard 

ratios of 1.9 (p<0.0001) and 0.3 (p=0.025), respectively. These results describe two clinically 

relevant distinct subtypes of pediatric AML. Similarly to other core-binding factor AMLs, 

patients with RUNX1–CBFA2T3 rearranged AML may benefit from stratification in the standard 

risk treatment, whereas patients with FUS–ERG rearranged AML should be considered high-risk.  
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Introduction 

Despite intensive chemotherapy, current outcome of pediatric acute myeloid leukemia 

(AML) has reached a plateau (1), with 5-year event free survival rates around 50-55% and 5-

year overall survival rates reaching 70% (2-5). Apart from early clinical response, cytogenetic 

and molecular aberrations are the most reliable prognostic factors for survival (2, 3, 6). For 

future treatment stratification, identification of prognostic subgroups is important. Pediatric 

AML is a very heterogeneous disease, therefore the prevalence of specific genetic subgroups 

can be too low to allow individual study groups to evaluate prognostic relevance and requires 

international collaboration. 

Over the past few years the I-BFM SG has described clinical and genetic characteristics of 

several rare pediatric AML subsets with the aim to provide clinicians with data for clinical 

decision making such as risk-group stratification (7-11). A pediatric AML group of interest is 

t(16;21), which, according to existing literature, is considered high-risk. This is mainly based on 

case reports or small series in adult patients (12-16). Two different t(16;21) translocations 

resulting in different fusion transcripts can be distinguished. These include t(16;21)(p11;q22), 

resulting in the FUS–ERG fusion(12); and t(16;21)(q24;q22), resulting in the RUNX1–CBFA2T3 

fusion(17).  

To date, 63 patients with FUS–ERG rearranged AML have been described in patients from 1 

to about 60 years of age(13), of which 19 were children(18). It has been reported that FUS–ERG 

AML presents with eosinophilia, micromegakaryocytes and hemophagocytosis, and outcome 

has been described to be poor.  (13, 14, 19). RUNX1–CBFA2T3 AML has been described in 24 
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patients, of which 5 were pediatric cases (18). This aberration is associated with the FAB M2 

phenotype and eosinophilia (16, 20). In adults, RUNX1–CBFA2T3 has been associated with 

treatment related AML, and is reported to have a poor outcome (20). However, this data is 

mainly based on adult cases, and the prognostic impact of these rearrangements in pediatric 

AML is unknown. 

To get more insight in the relevance of these somatic aberrations, we conducted a 

collaborative retrospective international study, gathering data from 14 study groups 

participating in the I-BFM Study Group. The aim of this study was to describe the biological and 

clinical characteristics and outcome of pediatric patients with t(16;21) rearranged AML 

registered in I-BFM study group related data registries. 
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Patients and methods 

Patients 

To obtain the largest possible cohort of pediatric AML cases with t(16;21), aged 0 to 18 

years of age, patient data was collected from 14 collaborative study groups and countries 

participating in the I-BFM Study Group (table S1). Patients diagnosed between 01/01/1995 and 

01/01/2016 were included in the study. Patients were identified in the data registries of the 

study groups by reviewing karyotypes, FISH and/or PCR analyses. Both t(16;21) translocations 

can be detected by conventional karyotyping. AIEOP, BFM Austria, JCCG and BSPHO confirmed 

the translocation with either FISH or PCR as standard of care. In one case from NOPHO, the 

FUS–ERG fusion was detected through RNA sequencing.  

For each case, a predefined set of data was collected and checked for consistency. This set 

of data included sex, age, date of diagnosis, white blood cell count (WBC), extramedullary 

disease, relation with prior treatment or cancer, FAB morphology, eosinophilia and other 

morphological characteristics, presence of erythrophagocytosis, karyotype, treatment protocol, 

including data on allogeneic hematopoietic stem cell transplant (HSCT), response to therapy, 

including data on minimal residual disease detection through flow cytometry (MRD) and events, 

including relapse, resistant disease, occurrence of secondary malignancy and death. Autologous 

HSCT was considered intensive chemotherapy. 

Data of 1326 patients (excluding the t(16;21) cases) diagnosed between 1997 and 2013 

were provided by the AML-BFM Study Group as a reference cohort. Patients with acute 

promyelocytic leukemia (APL) and Down syndrome were excluded. All patients in this cohort 
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were classified as either standard risk (SR) patients, comprising of inv(16) and t(8;21) or high 

risk (HR) patients comprising other cytogenetic subtypes.  

RNA sequencing data of 1035 patients with de novo AML with a median age of 9.9 (range 0-

29.6) from the COG AAML1031 trial  (NCT01371981) were provided by COG for gene expression 

analysis(21, 22) and to identify the frequency of these aberrations. In this study, 93.9% of the 

patients were below 18 years of age. 

Central cytogenetic review 

All karyotypes were centrally reviewed by two independent expert cytogeneticists, 

W. Cuccuini and M. Pigazzi, following the International System for Human Cytogenetic 

Nomenclature (ISCN 2016). Patients with inconclusive karyotypes were screened by RT-PCR 

(supplemental methods). RNA was provided by the study groups.  

Statistical analysis 

Complete remission (CR) was defined as less than 5% blasts in the bone marrow, with 

regeneration of trilineage hematopoiesis and no leukemic cells in cerebrospinal fluid or 

elsewhere. If a patient did not obtain CR, treatment was considered a failure at day 0. Minimal 

residual disease (MRD) was measured by different study groups through flow cytometry after 

the first and second course of treatment. If more than 0.1% of the mononuclear cells (MNC) 

were leukemic cells, MRD was considered positive. OS was calculated from the day of diagnosis 

until the date of last follow up or death from any cause. EFS was measured from the day of 
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diagnosis to the date of the first event or the date of last follow up. Events considered in this 

analysis were resistant disease, relapse, occurrence of secondary malignancy and death. 

Chi-square and Fisher exact tests were used to compare clinical characteristics. OS and 

event free survival (EFS) analysis were estimated according to Kaplan–Meier and compared 

with log-rank test. Cumulative incidence of relapse (CIR) was calculated according to Kalbfleisch 

and Prentice and compared with the Gray test(23). tMantel-Byar-test was used to compare 

groups with and without allogeneic hematopoietic stem cell transplantation (HSCT). The Cox 

proportional hazards model was used for multivariate analysis, considering age, WBC count at 

diagnosis, cytogenetic risk group (SR vs. HR) as covariables, and HSCT as time-dependent 

variable. Analyses were performed with SPSS Statistics version 21 and SAS 9.4. All tests were 

two-tailed, and a P-value of less than 0.05 was considered significant. 

Gene expression analysis 

Fusion transcripts from AML samples of patients included in the COG cohort were detected 

by RNA sequencing and validated by RT-PCR. Fractional counts were normalized to trimmed 

mean of m-values and counts per million mapped reads (CPM). The normalized counts were 

log2 transformed and filtered for genes with at least 1 CPM in 5% of samples. For hierarchical 

clustering the relative level of expression per gene in each sample was determined by mean 

centering the expression values, using the geometric mean. Pearson correlation coefficients 

were employed as a measure of dissimilarity with the ward.D2 linkage algorithm implemented 

in the R statistical programming environment (R v.3.4.0). Sample correlations were derived 

from the expression of the 2,412 differentially expressed genes, which are the union of those 
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identified in FUS–ERG or RUNX1–CBFA2T3 versus other AML. Differential expression analysis 

was completed using Limma v3.32.5 R package. Genes with absolute log2 fold-change > 1 and 

Benjamini-Hochberg adjusted p-values < 0.05 were retained. 
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Results 

Clinical features 

A total of 55 patients with t(16;21) were identified, 32 patients with FUS–ERG rearranged 

AML and 23 patients with RUNX1–CBFA2T3 rearranged AML. After central review of the 

karyotypes, there was one patient who did not meet our criteria, as only 1 out of 20 cells 

analyzed displayed a t(16;21)(p11;q22). It was not possible to confirm this fusion by RT-PCR and 

therefore we excluded this patient from further analysis. The total cohort thus consisted of 54 

patients with t(16;21), 31 with FUS–ERG rearranged AML and 23 with RUNX1–CBFA2T3 

rearranged AML. In the COG AAML1031 cohort,  5 FUS–ERG and 4 RUNX1–CBFA2T3 cases were 

indentified, hence the frequency of FUS-ERG was 0.5% and 0.3% for RUNX1-CBFA2T3, as 

compared to 0.3% and 0.1% in the BFM reference cohort (karyotype only), respectively. Clinical 

characteristics were compared to the AML-BFM SG reference cohort.  

The patient characteristics of the t(16;21) subgroups are described in table 1. No significant 

differences in sex and median age could be found when we compared patients in the FUS–ERG 

or RUNX1–CBFA2T3 groups to the reference cohort.  No patients with FUS–ERG rearranged 

AML were less than 2 years of age and neither FUS–ERG nor RUNX1–CBFA2T3 rearrangements 

were found in infants below 1 year of age (figure S1). The median WBC of FUS–ERG (14.0*10
9
/l) 

was not significantly different compared to the reference cohort (19.4*10
9
/l, p=0.66), whereas 

the WBC of RUNX1–CBFA2T3 (12.5*10
9
/l) was significantly lower (p=0.030). 

Patients with FUS–ERG had no predominant French–American–British (FAB) type, whereas 

76% of those with RUNX1–CBFA2T3 had a M1/M2 FAB type, compared with 42.1% in the 
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reference cohort (P=0.004). There was one patient with FUS–ERG with Auer rods. No other 

specific morphological features were reported.  

Cytogenetics 

At initial diagnosis, 9 out of 31 (29.0%) patients with FUS–ERG had t(16;21)(p11;q22) as a 

sole aberration. Ten out of 31 (32.3%) had a complex karyotype, defined as at least 3 

chromosomal aberrations. In 3 cases, the t(16;21)(p11;q22) translocation was not detected by 

conventional karyotyping but by PCR, FISH or RNAseq. Recurrent additional cytogenetic 

aberrations were trisomy 8 (n=6, 19.3%) and trisomy 10 (n=4, 12.9%).  

Complete karyotype data was available for 19 patients with RUNX1–CBFA2T3. In 3 (15.8%) 

of these patients, t(16;21)(q24;q22) was the sole abnormality. Five patients (26.3%) had a 

complex karyotype. Recurrent additional cytogenetic aberrations were trisomy 8 (n=8, 42.1%) 

and deletion of the Y chromosome (n=3, 15.7%). In 3 patients, cytogenetic analysis failed, but 

the RUNX1–CBFA2T3 translocation was detected by FISH or PCR. In one patient, the 

t(16;21)(q24;q22) translocation was not detected by conventional karyotyping, but was 

detected by PCR. A detailed list of the karyotypes is provided in table S1.  

Secondary AML 

A total of seven patients had secondary AML, two presenting with FUS–ERG 

rearrangements and five with RUNX1–CBFA2T3. Those with FUS–ERG rearranged AML, 

presented with AML with myelodysplastic features and received chemotherapy prior to HSCT. 
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One patient relapsed and died of disease, the second patient is still in remission after 7 years of 

follow up. 

Of the 5 patients diagnosed with RUNX1–CBFA2T3, two had Ewing sarcoma as primary 

malignancy. Four patients had been diagnosed with MDS prior to AML development, one of 

whom also had previous Ewing sarcoma. The median time to development of AML after MDS 

diagnosis was 6.7 months (range 4-28 months). None of the 4 patients with MDS was 

transplanted prior to AML diagnosis. In one patient, a 21q22 rearrangement was detected by 

FISH at time of MDS diagnosis. All patients received chemotherapy after being diagnosed with 

AML and 3 patients underwent HSCT in first CR.  

Treatment and outcome  

All patients in this cohort were treated with curative intent. Complete remission (CR) was 

achieved in 87.1% of the patients with FUS–ERG and 82.6% of those with RUNX1–CBFA2T3. Two 

patients with RUNX1–CBFA2T3 AML suffered from early death before reaching CR. 

In total, 23 patients had data available on MRD measured by flow cytometry, 12 with FUS–

ERG and 11 with RUNX1–CBFA2T3 patients (table S2). In the FUS–ERG group, 5 out of 12 were 

MRD negative after the first course of chemotherapy (MRD1), and an additional 2 were MRD 

negative after the second course of treatment (MRD2). No difference in the incidence of 

relapse could be observed between the MRD positive and negative patients, as 10 out of 12 

patients experienced a relapse. One of the patients that did not suffer from relapse was MRD2 

positive, but had a short follow up time of only 2 months, the other patient was MRD1 negative 
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and received an HSCT in CR1. In the RUNX1–CBFA2T3 group, 8/10 patients were MRD negative 

after the first course of chemotherapy. After the second course, all patients were MRD negative 

and none relapsed. 

Four-year EFS, OS and cumulative incidence of relapse (CIR) for the reference cohort were 

51% (SE=1%), 68% (SE=1%) and 32% (SE=1%), respectively. The SR group in the reference cohort 

had a 4-year EFS, OS and CIR of 74% (SE=3%), 88% (SE=2%) and 19% (SE=2%), respectively. For 

the HR group, EFS was 45% (SE=2%), OS 62% (SE=2%) and CIR 36% (SE=2%).  

Median follow up for survivors in the t(16;21) cohort was 1.6 years for those with FUS–ERG 

and 5.0 years for RUNX1–CBFA2T3. Patients with FUS–ERG had a 4-year EFS of 7% (SE=5%, 

p<0.0001), an OS of 21% (SE=8%, p<0.0001) and a CIR of 74% (SE=8%, p<0.0001). The median 

time to relapse was 10.2 months. Almost all relapses occurred early within the first year after 

start of treatment (18/21).  

For RUNX1–CBFA2T3, 4-year EFS was 77% (SE=9%, p=0.06), OS was 81% (SE=8%, p=0.34) 

and CIR was 0%. As EFS rates of the SR patients 74% (SE=3%), Thus, the patients with RUNX1–

CBFA2T3 had a similar outcome as BFM SR patients (figure 1).  

A total of 30 patients underwent an allogeneic HSCT: 22/31 (71.0%) patients with FUS–ERG, 

and 8/23 (34.8%) with RUNX1–CBFA2T3. Of the 22 FUS–ERG patients who received an HSCT, 14 

(42.2%) received the HSCT in CR1. The 4-year EFS for transplanted patients with FUS–ERG was 

15% (SE=15%) compared with 0% (SE=0%) for patients receiving chemotherapy only (p=0.50). 
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Multivariate analysis of EFS and OS revealed that FUS–ERG was an independent predictor of 

poor outcome for both EFS and OS (hazard ratio [HR] 2.9, p<0.0001 and 2.61, p<0.0001, 

respectively), whereas RUNX1–CBFA2T3 was a predictor of favorable outcome for EFS but not 

OS (HR 0.33, p=0.02 and 0.42, p=0.14, respectively). The hazard ratios for RUNX1–CBFA2T3 

were comparable to the SR group of the reference cohort, with HR for EFS of 0.36 (p<0.001) 

and OS of 0.25 (p<0.001). In addition, WBC>100*10
9
/l was an independent predictor of poor 

outcome for both EFS and OS (HR 1.4, p=0.0005 and 1.27, p=0.046, respectively) (table 2). All 

other covariates, including HSCT, were not significantly associated with outcome. 

Gene expression profiling 

Unsupervised hierarchical clustering revealed that RUNX1–CBFA2T3 and FUS–ERG cluster 

separately (figure 2). FUS–ERG also clusters separately from other cytogenetic subgroups, like 

KMT2A-rearrangements, t(8;21)(q22;q22) and inv(16)(p13;q22), whereas RUNX1–CBFA2T3 

cases cluster in close proximity to t(8;21)(q22;q22) cases. Comparing gene expression of FUS–

ERG to the remainder of the pediatric AML cohort revealed 1314 differentially expressed genes 

with an adjusted p-value of less than 0.05. Among these, 428 genes were up-regulated. In 

hematopoiesis, ERG is known to upregulate GATA2 and RUNX1, however, there was no 

differential expression of these genes in FUS–ERG rearranged AML(24). The top 100 most 

differentially expressed genes of FUS–ERG are provided in table S3.  

Comparing RUNX1–CBFA2T3 gene expression to the remainder of the pediatric AML cohort, 

revealed 119 differentially expressed genes in RUNX1–CBFA2T3, of which 76 genes were up-

regulated (table S4). Because RUNX1–CBFA2T3 clustered in close proximity to t(8;21)(q22;q22) 
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leading to the RUNX1–RUNX1T1 fusion, we analyzed whether these two groups share a gene 

expression profile. To this purpose we detected differentially expressed genes in RUNX1–

CBFA2T3 using the pediatric AML cohort, excluding the t(8;21) cases. Of the 2786 differentially 

expressed genes (2507 in t(8;21) and 279 in RUNX1–CBFA2T3), 187 differentially expressed 

genes were shared between the two groups. A total of 112 genes were up-regulated in both 

groups, 70 were down-regulated in both groups and 5 genes were upregulated in RUNX1–

CBFA2T3 and downregulated in t(8;21) (table S5). Well known targets of t(8;21) like POU4F1, 

TRH, PSD3, MEIS1 and LAT2 were differentially expressed in RUNX1-CBFA2T3 AML(24, 25).  
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Discussion 

Within the framework of this international collaboration, we studied the clinical and 

biological features of two translocations involving chromosome 16 and 21. We identified 2 

clinically relevant, distinct subtypes of pediatric AML patients with different t(16;21) 

rearrangements: FUS–ERG had poor outcome, whereas RUNX1–CBFA2T3 had favorable 

outcome. Our data suggests that patients with RUNX1–CBFA2T3-rearranged AML might benefit 

from treatment protocol for standard risk AML without stem-cell transplantation, whereas 

those with FUS–ERG-rearranged AML seem to require high risk therapy, including HSCT, or even 

experimental therapy.  

Although 87.1% of the patients with FUS–ERG-rearranged AML reached morphological 

complete remission, the 4-year CIR was 74% and most relapses occurred within the first year 

after diagnosis. Currently, early response to therapy is increasingly used for risk-group 

stratification of therapy in AML (3, 26, 27). The detection of minimal residual disease (MRD) 

through flow cytometry can provide a more accurate measure of therapy response, however 

the additional benefit of MRD measurement is inconsistent between AML subtypes and studies, 

and also depends on the sensitivity of the applied technique (3, 28-30). In our cohort, MRD data 

was reported in about half of the t(16;21) rearranged cases. Of those, almost 40% of the 

patients with FUS–ERG-rearranged AML, who had MRD data determined by flow cytometry, 

were MRD negative after the first course of treatment, and about half of the patients (7 out of 

12) after the second course of treatment. However, EFS was very low in both MRD negative and 

MRD positive patients and no significant difference in EFS between the two groups could be 

found. Despite the fact that numbers are small, this may suggest that MRD does not adequately 
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predict relapse in this cytogenetic group. A reason for this might be that FUS–ERG-rearranged 

AML could be a leukemic stem cell driven disease which is not successfully eradicated with 

current treatment protocols. 

Currently, in high-risk AML subgroups with an EFS below 30%, HSCT in CR1 is considered by 

some collaborative groups (31). As EFS of FUS–ERG rearranged AML is 7%, patients with this 

rearrangement should be considered for HSCT in CR1 despite the fact that benefit from HSCT 

seemed limited in our analysis. Therefore patients with FUS–ERG rearranged AML urgently 

require novel forms of therapy. 

In contrast to FUS–ERG, no relapses were observed in RUNX1–CBFA2T3 rearranged 

pediatric AML. The only events that occurred were toxic events as 5 patients died due to 

infections. Surprisingly, even patients with secondary AML did not suffer from relapse. To date 

24 RUNX1–CBFA2T3 cases have been reported, of whom only 5 concerned pediatric cases (15, 

16, 20, 32-45) . In the literature, these patients were considered to be high risk. However, when 

we single out the pediatric cases, 2 died due to an infection and 3 were in complete remission 

for at least 1 year. This seems to be consistent with our results further supporting that RUNX1–

CBFA2T3 rearranged AML should be stratified as SR. This suggests that outcome for RUNX1–

CBFA2T3 rearranged AML differs between pediatric and adult patients. This may be related to 

the fact that this leukemia occurred often as second malignancy in the adult cases, and perhaps 

was not treated with curative intent. Moreover, in general outcome in pediatric AML is better 

than in adults, which may reflect issues such as organ-toxicity and tolerability for 

chemotherapy.   
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Of note, most of the patients in our pediatric cohort had de novo AML, however 2 patients 

were diagnosed with Ewing sarcoma prior to AML development, and 3 additional patients had 

MDS prior to AML. The association between Ewing Sarcoma and MDS/AML in pediatrics has 

been described previously, but not in combination with RUNX1-CBFA2T3 (46). Surprisingly, even 

though secondary AML is known to be a poor prognostic risk factor, there was no difference in 

outcome between patients with de novo or secondary AML, with no relapses in either group. 

According to the World Health Organization classification of myeloid neoplasms and acute 

leukemia, patients with a t(8;21)(q22;q22) rearrangement and less than 20% blasts in the bone 

marrow should be classified as AML and not as MDS (47, 48). This classification strategy could 

also be applied to RUNX1–CBFA2T3, as the ‘MDS cases’ (less than 20% blasts in the diagnostic 

marrow) were cured without SCT.  

This study showed that the two fusions give rise to different gene expression signatures. 

The gene expression profile of FUS–ERG rearranged cases did not reveal any similarities with 

other cytogenetic subgroups. The t(16;21)(p11;q22) gives rise to a fusion of the N-terminal part 

of FUS, containing the transactivation domain of FUS and the C-terminal of ERG, containing the 

ETS DNA binding site of ERG (49). FUS–ERG is known to bind at genomic regions that are also 

bound by other transcription factors associated with stem cell programs like RUNX1, FLI1 and 

GATA2 (50). However, we found no differential expression of these associated genes when we 

compared gene expression of FUS–ERG rearranged AML to the other AML cases. Furthermore, 

Sotoca et al found that the nuclear receptor heterodimer RARA:RXR binds to FUS–ERG occupied 

genomic regions, suggesting possible modulation of the retinoic acid response in FUS–ERG 
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rearranged AML (50). This might make FUS–ERG rearranged AML a potential target for 

treatment with ATRA.  

On the other hand, RUNX1–CBFA2T3 can be classified as a core binding factor AML. The 

core binding factor (CBF) is a heterodimer, consisting of RUNX1, RUNX2 or RUNX3 and CBFB. 

The CBF attaches to DNA and activates genes involved in hematopoietic development (51). In 

leukemia, recurrent fusions of these genes have been described (52). When CBFB or RUNX1 is 

part of a fusion gene, the function of the protein changes and instead of activating the genes it 

will repress them. In AML, two recurrent aberrations are currently classified as CBF AML: 

inv(16)(p11;q32)/t(16;16)(p11;q42) and t(8;21)(q22;q22), resulting in CBFB-MYH11 and RUNX1-

RUNX1T1, respectively(11). There are striking similarities between RUNX1–CBFA2T3 and t(8;21) 

(also known as RUNX1-RUNX1T1) as both are mainly found in FAB M1/M2 AML and have a 

favorable outcome (6, 53). Cytogenetically, both show recurrent loss of a sex chromosome, 

which is rare in other types of pediatric AML (11). Both fusions also have similarities in biology. 

They do not only share the RUNX1 gene, but CBFA2T3 and RUNX1T1 are paralogs and share 

92% of their protein sequence (54). Furthermore, this study showed that RUNX1–CBFA2T3 and 

t(8;21) cluster in close proximity of each other and that RUNX1–CBFA2T3 and t(8;21) share 187 

differentially expressed genes, among which target genes like POU4F1, TRH and MEIS1.These 

results are in line with the results Lavallee et al obtained when comparing gene expression 

profiles of t(8;21) and inv(16) (55). These findings provide additional support that RUNX1–

CBFA2T3 belongs to the CBF AML subgroup, similar to t(8;21). 
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In this study we relied on cytogenetic analysis to detect t(16;21). Due to the fact that 

cytogenetic analysis fails in about 10% of cases (56), there is risk of selection bias. Furthermore, 

as cytogenetic analysis can only detect large rearrangements, more subtle, complex 

rearrangements could be missed. More sensitive analysis like FISH, RT-PCR and RNAseq are 

more reliable to detect these rearrangements. RUNX1–CBFA2T3, for instance, can be detected 

through RUNX1-split FISH, which is usually performed as standard of care to detect RUNX1-

RUNX1T1 rearrangements. The difference in incidence between the BFM and COG AAML1031 

cohort seems to confirm that RNAseq might be slightly more reliable. However, as RNAseq 

needs high quality RNA of samples with a high purity of blasts, not all patients can be analyzed 

by this method. We are also not informed on whether these cohorts were truly population-

based. 

In conclusion, this international collaborative study describes two clinically relevant distinct 

subtypes of pediatric AML. Although numbers are small, reflecting the rarity of the diseases, 

FUS–ERG represents an extremely poor prognostic subgroup, whereas RUNX1–CBFA2T3 has a 

favorable outcome. Patients with RUNX1–CBFA2T3 rearranged AML might benefit from risk-

stratification to standard intensive therapy, as for CBF AML, whereas FUS–ERG rearranged AML 

patients should be considered high risk and offered HSCT in CR1, even though the effect of 

HSCT in FUS–ERG rearranged AML may be limited in this retrospective series. Although 

unfortunately we have no data on surface marker expression in these specific cases, more 

experimental therapy like flotetuzumab or CAR T-cells may offer opportunities to circumvent 

chemotherapy drug resistance and need to be explored in these high risk FUS–ERG patients, 

certainly after relapse (57-60).  
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Figures and tables 

Table 1. Clinical characteristics of pediatric cases with t(16;21).  

 FUS–ERG RUNX1–CBFA2T3 I-BFM reference cohort 

N 31 23 1326 

Median age (range) 8.5 (2.0-17.5) 6.8 (1-17) 8.7 (0-20.3) 

Gender    

% male 61 46 51.6 

Median WBC x10^9/l (range) 14.0 (1-203) 12.5 (0.01-185) * 19.5 (0.01-190) 

<20 x 10^9/L, N (%) 17 (54.8) 13 (61.9) 670 (50.5) 

20-100 x 10^9/L, N (%) 10 (32.3) 7 (33.3) 414 (31.2) 

>100 x 10^9/L, N (%) 5 (12.9) 1 (4.8) 242 (18.3) 

FAB-type, N (%)    

M0 3 (9.6) 1 (4.3) 46 (3.7) 

M1 8 (25.8) 3 (13.0) 178 (14.5) 

M2 8 (25.8) 10 (43.5) * 339 (27.6) 

M4 6 (19.3) 2 (8.7) 293 (23.9) 

M5 4 (12.9) 1 (4.3) 258 (21.6) 

M6 - - 29 (2.4) 

M7 1 (3.2) 1 (4.3) 85 (6.9) 

NOS 1 (3.2) 5 (21.7) - 

CNS involvement, N (%) 6 (18.1) 5 (22.7)  

Cytogenetics, N (%)    

Sole abnormality 12 (36.4) 4 (21.1)  

Trisomy 8 6 (18.1) 7 (36.8)  

Trisomy 10 4 (12.1) -  

Complex karyotype 10 (30.3) 5 (26.3)  

Treatment, N (%)    

CR obtained 28 (87.5) 22 (95.6)  

Refractory disease 3 (9.4) -  

HSCT in CR1 13 (40.6) 8 (34.8)  

Survival, % (SE)    

4-year EFS  13 (5) ** 77 (9) ** 51 (1) 

4-year OS 26 (8) ** 81 (8) ** 68 (1) 

4-year CIR 69 (8) ** 0 (0) ** 32 (1) 

WBC, white blood cell count; FAB, French American British morphology classification; CNS, 

central nervous system; CR, complete remission; HSCT, hematopoietic stem cell transplant; EFS, 

event free survival; OS, overall survival; CIR, cumulative incidence of relapse. * P < 0.05, ** P < 

0.001 

For personal use only.on September 3, 2018. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


 

27 

 

 

Table 2. Multivariate analysis of survival parameters of t(16;21) rearranged AML. 

 pEFS  pOS 

 Hazard 

ratio 95% CI p-value  

Hazard 

ratio 95% CI p-value 

FUS–ERG 2.85 1.93-4.21 <0.001  2.61 1.71-4.00 <0.001 

WBC >10*10
9
 1.40 1.15-1.70 <0.001  1.27 1.00-1.60 0.046 

Age >10 years 1.14 0.98-1.34 0.087  1.38 1.14-1.67 0.001 

Time to HSCT 0.84 0.63-1.12 0.23  0.97 0.70-1.33 0.834 

Cytogenetic SR group 0.36 0.28-0.47 <0.001  0.25 0.17-0.36 <0.001 

RUNX1–CBFA2T3 0.32 0.12-0.87 0.025  0.42 0.14-1.33 0.140 

pEFS indicates the probability of event free survival; pOS, probability of overall survival; CI 

confidence interval; WBC white blood cell count; HSCT hematopoietic stem cell transplant; and 

SR standard risk. 
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Figure 1. Survival of FUS–ERG and CBFA2T3/RUNX1 AML as compared to a pediatric AML 

reference cohort. Survival curves of patients with FUS–ERG rearranged AML and 

CBFA2T3/RUNX1 rearranged AML, as compared to the BFM reference cohort. In D, E and F, the 

reference cohort is split up according to high risk and standard risk. 

 

Figure 2. Unsupervised clustering analysis. Pairwise sample correlations of 1037 samples of 

pediatric AML. The cells in the visualization are colored by Pearson’s correlation coefficient 

values. Cytogenetic subgroups are depicted in the first column. Presence of FUS–ERG or 

RUNX1–CBFA2T3 is depicted in the second column. 
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