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ABSTRACT

Climate risk financing programs in agriculture have caught the attention of researchers and policy makers

over the last decade. Weather index insurance has emerged as a promising market-based risk financing

mechanism. However, to develop a suitable weather index insurance mechanism it is essential to incorporate

the distribution of underlying weather and climate risks to a specific event model that can minimize intra-

seasonal basis risk. In this paper we investigate the erratic nature of rainfall patterns in Kenya using Climate

Hazards Group Infrared Precipitation with Station Data (CHIRPS) rainfall data from 1983 to 2017. We find

that the patterns of rainfall are fractional, both erratic and persistent, which is consistent with the Noah and

Joseph effects that are well known inmathematics. The erratic nature of rainfall emerges from the breakdown

of the convergence to a normal distribution. Instead we find that the distribution about the average is ap-

proximately lognormal, with an almost 50% higher chance of deficit rainfall below the mean than adequate

rainfall above the mean. We find that the rainfall patterns obey the Hurst law and that the measured Hurst

coefficients for seasonal rainfall pattern across all years range from a low of 0.137 to a high above 0.685. To

incorporate the erratic and persistent nature of seasonal rainfall, we develop a new approach to weather index

insurance based upon the accumulated rainfall in any 21-day period falling below 60% of the long-term

average for that same 21-day period. We argue that this approach is more satisfactory to matching drought

conditions within and between various phenological stages of growth.

1. Introduction

All too often, scholars and practitioners examining

weather data for the purpose of developing weather

index insurance (WII) make the assumption, or pre-

sumption, that the data are Gaussian and Markovian,

meaning that day-over-day or season-over-season mea-

sures are independent and uncorrelated. For example,

the index insurance designs presented in Mahul and

Skees (2007) for livestock insurance in Mongolia, in

Khalil et al. (2007) for El Niño insurance in Peru, in

Makaudze and Miranda (2010) for drought insur-

ance in Zimbabwe, and in Chantarat et al. (2013) and

Woodard et al. (2016) for livestock insurance in Kenya

used seasonal accumulation of weather indexes for pric-

ing insurance and assumed an independent relationship

between sequential time series weather data. This may

not be the wisest approach. When meteorologists speak

of weather ‘‘patterns’’ they are not making references to

sequences of independent events but rather to events of

some duration that in one way or another are correlated.

This in itself should be warning enough that weather

patterns do not follow the Gaussian variance law

Var(xt1S 2 xt) 5 Var(xt 2 xt21)S
1/2 but rather follow a

form of Hurst’s law, Var(xt1S2 xt)5Var(xt2 xt21)S
2H,

where H, referred to as Hurst’s coefficient, is a non-

arbitrary constant (Hurst 1951). As will be shown pres-

ently, H captures persistence in negative (H , 0.5) and

positive (H . 0.5) correlations across the time domain.

Only for H 5 0.5 does the Gauss–Markov assumption

hold. The implication of this fact for climate-based

WII is evident. Should the Gauss–Markov assumption

be used in the pricing of WII it will overestimate the

variance forH, 0.5 and underestimate the variance forCorresponding author: Apurba Shee, a.shee@gre.ac.uk
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H . 0.5. The direct corollary is that the actuarial

value ofWII will be too high forH, 0.5 and too low for

H . 0.5.

Fractional dimensionality of weather events should be

an important consideration for capturing weather ex-

tremities. In Hurst’s (1951) original work on hydrology

he was examining the water flow of the Nile River in the

context of engineering dams. These dams had to with-

hold the extremes of water flow. In Hurst’s rescaled-

range approach (which is similar to but different from

our Brownian approach) he discovered that the flow of

water varied proportionately to dHwith 0.5,H, 1, and

not d0.5 as had previously been thought (Mandelbrot

and Van Ness 1968). With coefficients of H ’ 0.7 the

upper-bound extremities of water flow were much

higher than expected, and consequently the dams had

to be engineered to withhold low-frequency, extreme

events that exceeded the flows observed to that date.

One can imagine now if the variable d were otherwise

interpreted as cumulative rainfall and followed a dH law,

then the actuarial measures of extreme rainfall would

need to account for the fractional extremities, even if

those extremes had not previously been observed. We

believe these considerations to be important in the de-

velopment of a sustainable WII product and explore

them in this paper in the context of an operational

insurance-linked credit in Kenya.

In Mandelbrot and Wallis’s classical exploration into

the fractional properties of water flow (Mandelbrot and

Wallis 1968), they engagingly introduce the problem

with biblical references to the ‘‘Noah’’ effect, which

refers to the fact that precipitation can have very sudden

disruptions, and the ‘‘Joseph’’ effect, in which precipi-

tation in a period can have correlation with precipita-

tion in the distant past. The extremities of rainfall are

bounded from below at zero and are theoretically lim-

itless from above, although not unlikely without bound.

To what extent either the Noah effect or the Joseph

effect has an impact on the human or natural condition is

determined by the mathematical mix of frequency, du-

ration, and intensity and with respect to the ecology

under consideration.

In the context of agricultural weather insurance—the

broader subject matter of this paper—these climate

considerations are important. The context of this paper

is the design of a WII product that can be imbedded

into a credit product to manage drought-related agri-

cultural risk as well as to provide access to credit to

smallholder farmers. In this way wemake two advances

to the literature and practice in the design of WII and

the application to climate risk financing. On this lat-

ter point, insurance-linked or bundled credit products

have been promoted by a number of scholars including

Skees and Barnett (2006), Giné and Yang (2009), Carter

et al. (2011), Karlan et al. (2011), Miranda and Gonzalez-

Vega (2011), Collier et al. (2011), Shee and Turvey

(2012), Shee et al. (2015), Marr et al. (2016), Pelka et al.

(2015), Carter et al. (2016), von Negenborn et al. (2018),

and Mishra et al. (2018). Clarke and Grenham (2013)

and Jensen et al. (2016) point out that basis risk limits

farmers’ investment in WII. In a recent article, Muller

et al. (2017) argue the need of careful consideration

of local socioecological context when developing an

agricultural risk transfer product. An insurance-linked

credit mechanism responds to several of the critiques

offered by Binswanger-Mkhize (2012), who argue that,

until the problems of basis risk and credit access can be

resolved, the advancements of various forms of weather

insurance as a promising mechanism to transfer risk

from poor farmers to the insurance markets on a large

scale might be overstated. Although the promise of

index insurance in alleviating poverty traps has been

widely discussed (e.g., Barrett et al. 2007), and some

successes have been reported (e.g., Chantarat et al.

2017), the Binswanger–Mkhize critique should not be

treated lightly.

In the autumn of 2017, our research group piloted an

insurance-linked credit product in Machakos County in

Kenya, with loan indemnities linked to long and short

rains (Shee et al. 2019). Our study area comprises five

subcounties in Machakos County and is spread over

13 locations as specified in Fig. 1. This is a semiarid and

hilly terrain area that receives very low annual rainfall of

around 700mm per year, with average rainfall in the

long and short rain seasons being 315 and 266mm, re-

spectively (Government of Kenya 2014). Because of this

semiarid climate, agriculture is practiced by smallholder

farmers, with maize being the main food crop.

In our efforts, it became abundantly clear that stan-

dard approaches to WII based on seasonal cumulative

rainfall were inadequate in measuring within-season

risk. To address the phenological problem we develop a

rainfall insurance based on what we refer to as a dynamic

trigger. This trigger establishes an indemnity if the ac-

cumulated rainfall in any 21-day period is below 60% of

the historical average rainfall in that same 21-day period

for a given year. This will be explored in more depth

later, but when we examined the ‘‘average’’ path of

overlapping 21-day measures and took the deviation of

each year’s equivalent measure we found the distribution

of the difference to be nonnormal. Indeed, we find it to be

close to a lognormal distribution with the probability that

below-normal rainfall in our study region was approxi-

mately 50% more likely than above normal rainfall. The

failure of normality suggests also a failure in the Gauss–

Markov assumption normally assumed in a first-guess
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approach to statistical assumption. This also comes with

a possible failure in the independence assumption and

Brownian presumption of the historical time path of our

data series—as limited as it is. As Mandelbrot and

Wallis (1968) point out, the failure to recognize the non-

Markov possibilities would greatly underestimate the

duration and intensity of the longest drought.

We explore fractional weather pattern by measuring

Hurst coefficients within the Mandelbrot–Wallis frame-

work to investigate non-Markov possibilities. Our anal-

ysis of fractional weather patterns will encourage

researchers who develop or evaluate the many varieties

of WII models to treat with greater seriousness the

combined Noah and Joseph effects (sudden reversal and

long persistence in weather pattern). Of course, weather

patterns are mixed in terms of frequency, duration, and

intensity, but one clear implication of our investigation

is that fractional patterns within an agricultural growing

season should not be ignored and that within-season

WII should be designed with multiple events that tra-

verse the various stages of phenological growth. Our

approach to dynamic triggering of multiple events in

designing agricultural WII is an important contribution

of this paper to incorporate fractionality of weather and

to reduce intertemporal basis risk in WII.

The next section discusses the literature on specific

events and phenological growth in weather index in-

surance. Next, we develop with greater granularity the

statistical genesis of the Hurst coefficient within the

Mandelbrot–Wallis framework. This is followed by a

description of the fractional patterning of rainfall in

Machakos where we provide Hurst measures. We then

provide a possible solution to fractional rainfall patterns

by providing a new structure for within-seasonWII based

on a dynamic trigger approach that traverses pheno-

logical growth stages to provide up to four indemnifiable

events across the growing season. Section 5 concludes

with broader policy implications.

2. Specific events and phenological growth in
weather index insurance

Turvey (2001) notes that specific weather events can

be linked to insurance coverage against crop production,

which is usually affected by phenological growth de-

pendent on weather conditions such as rainfall, temper-

ature, and soil moisture. Norton et al. (2012), for example,

suggest that weather insurance ought not to be viewed

as a perfect substitute for multiple peril crop insurance,

but as a risk-transfer instrument that should be specifi-

cally targeted toward covariate events that are weather-

sensitive such as Karnal Bunt and Stewart’s disease.

Particular weather conditions can also give rise to

insect infestations for which Richards et al. (2006)

suggest so-called bug options.

The weakness in the application of weather insurance

in both developing and developed agricultural econo-

mies is the existence of ‘‘basis’’ risk. In general terms,

basis risk refers to the observed variability in an insured

asset that is seemingly uncorrelated, or weakly corre-

lated, with a proxy measure of risk. Basis risk can arise

spatially by distance, altitude, and geomorphology

(Norton et al. 2012; Heimfarth et al. 2012; Heimfarth

and Musshoff 2011; Woodard and Garcia 2008).

FIG. 1. Map of study area—Machakos County in Kenya.
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However, it is increasingly being recognized that basis

risk also arises with the patterning of weather within a

season at a specific location. Intraseasonal basis risk

deals with the failure of a specified index to adequately

capture within-season variability, leading to exces-

sive type-I or type-II errors. Type-I error refers to

insurance payments when no crop damage is observed,

whereas type-II error refers to situations in which crop

damage is observed but no indemnity is paid. In a more

general way we can say that added specificity to the

weather index ought to reduce both type-I and type-II

error, at least in probabilistic terms. One approach to

doing this is to recognize that, rather than a single

index for an entire season (e.g., based on cumulative

rainfall), the growing season can be broken up into

multiple events.

An obvious starting point for multiple events is to

examine the phenology of crop production. In general,

there are three stages of crop growth: the vegetative

stage from germination to panicle initiation, the repro-

duction phase from panicle formation to flowering, and

the ripening phase from flowering to the final formation

of grain. Conradt et al. (2015),Dalhaus and Finger (2016),

Dalhaus et al. (2018), and Shi and Jiang (2016) have all

explored models for including phenology in an index for

weather insurance. Shi and Jiang (2016) created a com-

posite index based on subperiod weather data that covers

the three stages of growth. Using rice in China, the veg-

etative stage covered seedling, tillering, and stem elon-

gation (311 201 205 71 days), the reproductive phase

included panicle formation through flowering (33 1 8 5
41 days), and the ripening phase covered an addi-

tional 57 days. All told, the insurable season covered

169 days. Using a two-stage procedure, they mapped

discrete-time days in season for each phase and contin-

uous time observations on rainfall, relative humidity,

sunshine, and temperature to construct a parametric

composite index.

Dalhaus and Finger (2016) broke the growing season

into multiple parts and, using historical and observa-

tional data on crop phenology for German wheat, de-

signed multiple event index insurance for which the

farmer could choose among its ‘‘calendar’’ parts. They

find that use of phenological observations significantly

reduced basis risk. Likewise, Conradt et al. (2015)

investigated a flexible index insurance plan for growing

degree-days in Khazakstan. ‘‘Flexibility’’ in their con-

text was to determine the beginning and end periods of

the phenological growth stages (start and end dates),

which vary from year to year. The advantage to weather

risk management is the recognition that within-season

weather patterns are not constant from year to year and

will generally have different start and end dates from

one year to the next. Depending upon the start and end

dates signals the days over which insurance is to be

calculated. In terms of phenological growth, seeds will

germinatemuch sooner in warm years than in cold years,

but if the dates for index measurement were fixed the

indexmight weighmore heavily the effects of a cool year

versus a warm year. A similar approach was deployed by

Dalhaus et al. (2018) for German wheat, finding that

developing WII using published phenological observa-

tions increased farmers’ utility and reduced financial

exposure to drought risk. The approach was to establish

start and end dates of each growth stage using growing

degree-days and then to accumulate rainfall within each

stage to develop and structure indemnity.

These studies raise a certain number of issues forWII.

Most critical is the date of growing-season onset. Maize

is the dominant food crop grown in our study area,

where the reference date for the beginning of long rains

is 15 October. From the project baseline household

survey, we found that some farmers seed early in case

the rains come early whereas others withhold seeding

until the rain has observably arrived. Both are rationally

precautionary. However, if farmers spread seeding

across a 2-week period then defining risks according to

specific calendar dates is a wobbly venture. The target-

ing of specific events as prescribed in Turvey (2001)

would be effective only if planting andweather conditions

were relatively homogenous across farms in a particular

heat unit isocline. Variance in weather conditions—heat

and rainfall—can shift the stages across calendar date

boundaries, however, rendering the ideal of specificity

benign. A possible approach would be to widen the

date range so that in probability the shifting patterns of

weather affecting a particular stage of growth (e.g.,

silking in corn) would adequately be captured. From

this point of view, basing WII on broader phenological

stages may be a sensible approach to balancing type-I

and type-II error.

Even so, it is troubling that the patterning of weather

variables should be confined to proximal calendar dates

of the various growth stages as if each stage could be

treated as an individual and independent peril. While

clearly adequate for reducing within-season basis risk,

the approach does not consider overlapping perils. For

example, if a late-vegetative-stage drought overlaps or

spans the next stage (tillering) it is entirely possible that

neither event would trigger a payout yet crop damage

would be measurable. Turvey (2001) and Turvey and

Norton (2008) address this problem in their specific

event approach. In Turvey’s (2001) Ontario, Canada,

study, insurance would pay out if the rainfall in any

nonoverlapping 14-day period (an event) were equal

to zero, making up to four events between 1 June
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and 31 July. Turvey and Norton (2008, their Fig. 5A)

defined an event when the 21-day cumulative rainfall

fell below 1 in. (2.54 cm), making up to three events in

the season.

The advantage of a specific event approach to mea-

suring weather risk is that, by slicing the growing season

into fixed day events that are overlapping in measure-

ment but not overlapping on indemnity, there is added

flexibility to capture risks within each phenological stage

but also across the temporal boundaries of the pheno-

logical stages. This would further reduce the potential

for type-II error, as well as type-I error. However, the

specifications discussed in Turvey (2001) and Turvey

and Norton (2008) are also imperfect in the sense that

the nature of the event is assumed to be constant for all

events (i.e., rainfall less than 1 in. in 21 days). In reality,

the seasonal patterning of rainfall should not be as-

sumed constant, nor should the triggering event. Indeed,

cropping systems evolve according to the historical

weather patterns that define the local ecology and

growing conditions. It will be an exaggeration, for

example, to treat equally Ardmore, Oklahoma—the

center point of the 1930s dust bowl—and Ithaca, New

York, to its northeast. From Turvey and Norton (2008),

Ardmore averaged 9.08 in. of rainfall between 1 June

and 31 August, whereas Ithaca averaged 10.74 in. over

that period. A specific event metric that would pay out if

rainfall fell below 5 in. over this period would have paid

out nearly once in every 5 years (21.21%) in Ardmore

but would never pay out in Ithaca. Likewise a specific

event defined by 7 straight days with daily tempera-

tures exceeding 908F would pay out once in only 3 of

100 years in Ithaca, but would pay out on 4 or more

distinct nonoverlapping events in nearly 93 of every

100 years (92.71%) in Ardmore. While these exem-

plify the spatial differences that are present on a

large scale, Norton et al. (2012) illustrate how basis

risk correlates with differences in distance, altitude,

and direction in longitude and latitude from a given

weather station.

3. Methodological framework for fractional
dimensionality

a. Scaling properties and erratic weather processes

To better understand within-season weather patterns

in the context of designing weather index insurance,

this section and what follows examine fractional di-

mensionality of weather including fractional Brownian

processes and theHurstmeasure.We start withMandelbrot

andWallis (1968),who point to three characterizations of

stochastic processes that might give rise to a Brownian

Gauss–Markov process. The first is that some process

x(t) will satisfy the law of large numbers in the sense

that its expected value tends to a limit E[x(T)] as T

approaches infinity. The second is with respect to the

central limit theorem in that for large T the distri-

bution around the average becomes approximately

Gaussian for T to infinity. The third addresses the

scaling properties of the process and independent

increments.

When one or more of these conditions are violated,

Mandelbrot and Wallis (1968) refer to the processes as

being ‘‘erratic.’’ Thus ‘‘Joseph-erratic’’ might refer to a

phenomenon of an extraordinary term of wetness or

dryness within a time span such that localized path de-

pendence and measurable correlations are not obscured

or mitigated by the law of large numbers. ‘‘Noah-erratic’’

behavior occurs when the intensity of the weather event

(precipitation or lack thereof) is so great as to affect the

average of the measured event for many periods (e.g.,

years) after the event occur. Notably, both Joseph- and

Noah-erratic behavior can occur simultaneously, and

they feed off each other.

A first approach to considering Noah and Joseph ef-

fects is to assume that the weather patterns of interest

follow a fractional Brownian motion. Mandelbrot and

Van Ness (1968) detail the properties of fractional

Brownian motion with considerable depth. We take a

different approach to get the main points across. To get a

sense of the scaling properties that might give rise to

erratic behavior, consider the ordered set of measures

(e.g., precipitation) XT 5 {xt1S, xt1S21, xt1S22, . . . , xt}.

For convenience of illustration set t 5 0 and S 5 100.

Then, the difference x100 2 x0 can be expressed

equivalently as

x
100

2 x
0
5 x

100
1 (x

99
2 x

99
)1 (x

98
2 x

98
)1 � � �

1 (x
2
2 x

2
)1 (x

1
2 x

1
)2 x

0
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x
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2 x
0
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E(x
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2 x
0
)5E[(x
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99
)1 (x
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2 x
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More generally,

E(x
t1S

2 x
t
)5 SE(x

1
2 x

0
) . (4)

The variance of the differences can be expressed as

Var(x
t1S

2 x
t
)5�

S

t51

E[(x
t
2 x

t21
)2E(x

t
2 x

t21
)]2

1Cov(x
t1S

2 x
t
) , (5)

where

Cov(x
t1S

2 x
t
)5 2 �

S

(i2t)51

�
S

( j2t)51

E[(x
i
2 x

i21
)2E(x

i
2 x

i21
)]

3 [(x
j
2 x

j21
)2E(x

j
2 x

j21
)], i 6¼ j .

(6)

It is from this measure of variance that the scaling

properties related to erratic behavior arise. The scaling

can be defined by S2H, where H is the Hurst coefficient.

The Hurst coefficient plays a crucial role in the identi-

fication of fractional properties of time series. We can

restate variance in terms of the Hurst scaling rule as

Var(x
t1S

2 x
t
)5Var(x

t
2 x

t21
)S2H . (7)

b. Self-affine and self-similar processes

Equation (7) holds a particular meaning to the scal-

ing properties of Brownian motion. Self-affine refers to

an invariance with respect to time scale. If x(t, w) has

self-affine increments with parameter 0 # h # 1, then

for a particular Brownian function

B(t
0
1 s,w)b h2HB(t

0
1 hs,w),

where b means that the two sides have the same finite

joint distribution and one drawn from the same space.

Thus, rewriting Eq. (7) as s2
t01S 5s2

t0
S2H and scaling by

h, s2
t01hS 5s2

t0
h2HS2H or st01hS5st0h

HSH , and rescaling

by h2H returns Eq. (7).

Self-similarity is a related property. It states that

the rescaled function has the same distribution for ev-

ery T. Again, rewriting Eq. (7) as a variance ratio,

s2
t01S/s

2
t0
5 S2H or log(s2

t01S/s
2
t0
)/log(S)5 2H so that for

any particular change in the time step (e.g., S) the var-

iance will increase at the fractional dimension rate 2H.

Moreover, since there is no reason to believe a priori

that Var(xt 2 xt21) 6¼ Var(xt11 2 xt) we can restate the

scaled variance measure as

Var(x
t
2 x

t21
)S2H 5Var(x

t
2 x

t21
)S1Cov(x

t1S
2 x

t
) ,

(8)

and from this we restate covariance as

Cov(x
t1S

2 x
t
)5Var(x

t
2 x

t21
)(S2H 2 S) . (9)

Expressed in this way, the covariance term defines the

Brownian set and the nature of dependence in fractional

processes. The relationships are as follows:

S*

8>>>>>>>>>><
>>>>>>>>>>:

H5
1

2
/Cov(x

t1S
2 x

t
)5 0, S5

Var(x
t1S

2 x
t
)

Var(x
t
2 x

t21
)

H.
1

2
/Cov(x

t1S
2 x

t
). 0, S.

Var(x
t1S

2 x
t
)

Var(x
t
2 x

t21
)

H,
1

2
/Cov(x

t1S
2 x

t
), 0, S,

Var(x
t1S

2 x
t
)

Var(x
t
2 x

t21
)

9>>>>>>>>>>=
>>>>>>>>>>;
. (10)

First, for H 5 1/2, the covariance term collapses

to zero. In this state there is no intertemporal correla-

tion between changes in the measure. This defines a

pure Gauss–Markov, memoryless process of standard

Brownian motion and the linear-in-variance assump-

tion. Here, the variance of the measure over 100 days,

months, or years is 100 times the one-step measure in

days or months or years, and it appears to be predict-

able. This condition will satisfy all three of the char-

acteristics identified by Mandelbrot and Wallis (1968)

and is consistent with the usual interpretation of a

random walk. However, for H , 1/2 and H . 1/2 the

scaling properties are not memoryless, and thus they

violate the Markov property. For H . 1/2, systemic

positive correlation compounds the variance so that

the variance of the measure over 100 days, months, or

years will be greater than 100 times the one-step mea-

sure. It is persistent. Likewise, for H , 1/2, the co-

variance will be systemically negative so that an

increase in the measure of some time scale will, in

probability, reverse itself in a mean-reverting or er-

godic way. The variance of the measure over

100 days, months, or years will be less than 100 times

the variance of the one-step measure.
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WhenH 6¼ 1/2 the third condition is violated, and this

in return gives rise to Noah- and Joseph-erratic behav-

ior. Whether variance is expanding or contracting in

scale, the process becomes far less predictable. When

the process is erratic-persistent the precipitation pat-

terns are subject to longer excursions (an excursion is a

measure of the length of a stochastic process on the

space of paths) in wetness and dryness; when the pro-

cess is ergodic-erratic the patterns of rainfall are more

oscillatory with increasingly shorter excursion paths as

H gets smaller.

It becomes evident then that Hurst’s law has some-

thing important to add to the broader discussion of

WII. We will show presently for the case of Machakos

County, Kenya, in sub-Saharan Africa that indeed

Hurst’s law holds and in doing so violates Mandelbrot

and Wallis’s (1968) third condition; but equally im-

portant is our finding that the second condition—that

of Gaussian-normal error around the mean path of our

rainfall measure—also fails.

c. Excursion patterns

A final consideration that merits attention for WII is

excursion paths (Itô 1972, 2007; Rogers 1989; Pitman

and Yor 2007). In the most general way any Brownian

motion is a continuous-time process with a recurrent

state. By ‘‘recurrent state’’ it is meant that at some un-

known and random time in the future the stochastic path

will return to its original state or a fixed point. The

Joseph effect, for example is described by two long ex-

cursions, the first being an excursion of 7 years in which

conditions are good, which is followed by 7 years in

which conditions are bad. If we use the inflection point

between good and bad years as a fixed-point barrier, an

excursion begins and ends as it crosses this point from

above or below.

There are two measures of excursion. The first re-

ferred to as ‘‘local time’’ and counts the number of

times that the path crosses the barrier in a fixed amount

of time. The second measure is the length of the ex-

cursion, referred to as ‘‘stopping time’’ t, which is

measured by the interval between barrier crossings.

These intervals are not of fixed length as the biblical

reference to Joseph suggests, but are random. Itô

(1972, 2007) has shown that the excursion point process

follows a Poisson distribution, f(t) 5 lte2l/t!, with

expected value E(t) 5 l and skewness Skew 5 l21/2.

We assert that the relationship between mean stop-

ping time l and H is described by a power law of the

form l5 aHb, and by substitution Skew5H2(b/2)/a1/2.

Differentiating the expected stopping time and skewness

yields ›E(t)/›H 5 abHb21 . 0 and ›Skew/›H 5
2bH2[11(b/2)]/(2a1/2) , 0, respectively. Thus, as H

increases, the expected stopping time increases non-

linearly but, perhaps more important, skewness falls. In

other words, for low Hurst the distribution of stopping

times will be left modal and positively skewed, but as H

increases the stopping time increases and the distribution

trends toward right modal and negative skew.

We see the implications for the design of a WII as

follows: As weather patterns move toward a high Hurst

state the weather conditions will become more persis-

tent and longer in duration. If it is rainfall and the ex-

cursion is above the barrier, then rain will continue

accumulating. This may be ideal for some values of H,

but for higher values the longer the rainfall lasts the

closer one gets to the Noah effect, with significant

flooding. Likewise, if rainfall is decreasing below the

barrier, the higher Hurst values will increase the dura-

tion of drought conditions, and with higher frequency.

Conversely, low Hurst values have much smaller

excursions with frequent reversals. For low Hurst a

short period of rain will be followed by a short period

with no or little rain. These states may in fact be ade-

quate to avoid drought conditions if the stopping times

for rainfall, by chance, exceed the stopping times with

low or no rainfall, but drought conditions can arise if

the opposite were true and the stopping times of no or

low rainfall, by chance, exceeded the stopping times

with adequate rainfall.

4. Data and applications

a. Fractional patterning of rainfall in study area

Our study area, Machakos County, is a semiarid and

hilly terrain in the eastern province of Kenya where we

are implementing a randomized control trial (RCT) to

investigate bundled, or risk-contingent, credit based

on long and short rains [for details on risk-contingent

credit see Shee and Turvey (2012), Shee et al. (2015),

and Shee et al. (2019)]. It is generally agreed that the

long rains start on 15 October and end on 15 January

(Government of Kenya 2014; Shee et al. 2019). We an-

alyze Climate Hazards Group Infrared Precipitation

with Station Data (CHIRPS) (Funk et al. 2015), sup-

ported by the National Aeronautics and Space Ad-

ministration and National Oceanic and Atmospheric

Administration. Daily CHIRPS rainfall (satellite vali-

dated with station data) data from 1983 to January

2018 are obtained online (http://chg.geog.ucsb.edu/data/

chirps/). Typically, rainfall is not evenly distributed in a

season but starts low, rises to amidseason peak, and then

diminishes thereafter. In fact, the pattern appears to be

uniformly described by a sixth-order polynomial across

all of the subcounties that we examined. A typical pat-

tern is illustrated in Fig. 2, for central Machakos, for
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the average of the 21-day overlapping cumulative rain-

fall from 1983 to 2017. Our use of a 21-day cumulative

metric serves two purposes. First, by taking a cumulative

measure there is some smoothing of asynchronous

rainfall patterns when it does not rain for multiple days.

Second, our view is that WII is better focused on the

extremes. Following Turvey (2001) and Turvey and

Norton (2008) we define specific events to be 21 fixed

days that are overlapping in measurement but non-

overlapping in indemnity. A shorter time scale, say

14 days, is not uncommon and is perhaps too common

for a WII product that needs to sustainably balance

coverage, indemnity, and premium.

Figure 3 illustrates the day-to-day probability distri-

bution of the deviation of the recorded weather pattern

from the mean (sample size N 5 2478). A typical as-

sumption of randomness is that these deviations are

normally distributed; however, we find that the distri-

bution is more closely aligned with the lognormal dis-

tribution. The mean of the distribution is zero, as

expected, but the skewness is 1.0123, with kurtosis of

4.178. The modal value of 224.86 is negative, and the

probability that a deviation is negative is 59.8%

against 40.2% chance of a positive deviation. In other

words, if 21-day cumulative rainfall is to deviate from

the long-runmean, it is 50%more likely to be a negative

deviation than a positive deviation.

To investigate the properties of the distribution, we

compute the Hurst coefficient for each year using the

scaled variance method, keeping in mind that within

each year the long rain season comprises only 93 days.

Our Hurst measures are based on overlapping 21-day

measures, so N 5 72. Comparatively, this is a small

number for estimating H, and therefore we should not

be surprised by a wide variation in estimates. We use a

time step of 8 days, which is the closest integer to the

square root of 72.We compute two values, Var(xt182 xt)

and Var(xt11 2 xt), and from Eq. (7)

H
S58

5

log

�
Var(x

t18
2 x

t
)

Var(x
t11

2 x
t
)

�
2 log(8)

. (11)

The year-by-year Hurst measures are provided in Fig. 3.

The lowest value was H 5 0.137 (1991) and the highest

was H 5 0.685 (1988). A trend analysis regressing H

against year showed no statistical trend in the Hurst

values (significance level p 5 0.61). We also computed

a ‘‘Hurst on Hurst’’ measure, using the same proce-

dure as in Eq. (11) for the values in Fig. 4, finding that

FIG. 3. Distribution of 21-day deviations from the mean.

FIG. 2. The 21-day moving-average cumulative rainfall for

Machakos County based on CHIRPS data: average of daily rainfall

of long rain (15 Oct–15 Jan) from 15 Oct 1983 to 15 Jan 2018,

with fitted sixth-order polynomial smoothing.
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HoH 5 0.022, which is highly ergodic. From a practical

point of view this suggests, with high probability, that a

low H will be followed by a higher H, and vice versa.

This is a surprising result. In the absence of a theory, one

would think that year-over-year weather patterns would

be statistically independent of each other, yielding a

HoH value around 0.5. This does not appear to be the

case. Thus, not only do our data indicate strong patterns

of within-year fractionality, but they indicate that the

patterns themselves are fractal. Exploring this result

further is beyond the scope of this paper.

Figure 5 shows the scatterplot and power functions for

cumulative rainfall (coefficient of variationR25 0.1064)

and damage intensity (R2 5 0.1154) with the Hurst

coefficients. The damage intensity is taken from our

measure of indemnity using a dynamic trigger as dis-

cussed in section 5, but for now it shows that a 1% in-

crease in the Hurst coefficient corresponds on average

to an increase in ‘‘damage’’ of 0.717% (p 5 0.046).

Similarly, a 1% increase in the Hurst coefficient corre-

sponds on average to an increase cumulative rainfall by

0.3573% (p 5 0.056). Although the overall fit of these

regressions is low, the relationships are interesting. In

general, drought intensity increases with lower Hurst

coefficients. The characteristic of lowHurst coefficient is

that the seasonal rainfall patterns are mean reverting;

in other words, the intertemporal covariance relation-

ship is negative. Thus, in drought years an increase in

rainfall is more likely in probability to be followed by a

shortfall in rain. In contrast the high-rainfall years with

H . 0.5 have a positive covariance, suggesting that that

increases in rainfall are reinforcing.

Figure 6 provides the rainfall patterns within year, and

these seldom match the expectation. The solid line be-

low the dashed line captures rainfall deficits from

the mean, and for 1998 (H 5 0.354), 2008 (H 5 0.326),

and 2017 (H 5 0.607) early- and late-season droughts

of consequence can be observed. In comparison, 1992

(H 5 0.567) follows the average path with a late-season

rainfall in excess of the average, whereas the rainfall in

1997 (H 5 0.633) exceeded the average over most time

periods. Themain point, of course, is that rainfall deficits

can arise randomly throughout the season, causing crop

damage not only within a phenological stage, but also

across phenological stages. They also show short-term

path dependency in the various excursion patterns il-

lustrated. These excursion paths, and patterns, rise

above and fall below the cumulative mean rainfall. Our

interest is in managing the risks when cumulative 21-day

rainfall has an excursion below this ‘‘barrier.’’ Our ap-

proach is discussed in the next section.

b. Resolving Noah and Joseph effects with a dynamic
trigger index insurance

In the previous sections we described the fractionality

in within-season rainfall patterns. The range of Hurst

coefficients gives rise to observable and measurable

excursions below the long-run overlapping 21-day cu-

mulative rainfall measures from 1983 to 2017. How to

recognize and incorporate these excursions into a WII

model is discussed in this section. The background to this

assessment is the results from an RCT to implement an

insurance-linked credit product called risk-contingent

FIG. 4. Hurst coefficients for long rains in central Machakos.

FIG. 5. Seasonal rainfall and insurance indemnity with Hurst coefficients.
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credit (RCC) in 2017 to unbanked farmers in Machakos

County [for details of the study see Shee et al. (2015)].

The RCC product was in the form of a loan, which

paid an indemnity if the accumulated rainfall between

15 October and 15 January (the long rains) fell below a

rainfall trigger established in millimeters below the 15th

percentile, or for an event thatmight occur about once in

every 7 years. In our RCT design, 1150 sample house-

holds were randomly assigned to one of three research

groups: treatment 1 (farmers assigned to receive tradi-

tional credit; 350 households), treatment 2 (farmers as-

signed to receive RCC; 350 households) or control

(farmers assigned to receive no credit; 350 house-

holds).The simplicity of the design was intentional. The

subject farmers had largely no interaction with formal

banking services, let alone credit, and had no experience

with weather (or any type of crop-related) insurance.

However, in pre-experiment focus groups with farmers

across the Machakos district, it was clear that failures of

the rain (lack of rainfall or rainfall not occurring in a

timely manner) were the biggest risks faced, and lenders

also acknowledged that failure of the rain was the largest

impediment to providing agricultural credit. Although

we were aware of erratic weather patterns it was felt by

the research team, local bank, and local insurer that a

simple design for a first-time pilot of a new bundled

credit product would be the least-complicated approach,

with product modifications and scaling up to follow.

Weather conditions in 2017 are depicted in the

lower-right panel of Fig. 5, where a significant negative

FIG. 6. Cumulative 21-day rainfall measures in comparison with average 21-day measure, 1983–2017. The solid

line represents moving 21-day rainfall, and the dashed line represents the dynamic trigger. Years 1983 (H5 0.371)

and 1992 (H5 0.567) were years of adequate rainfall. The year 1997 (H5 0.633) had the highest recorded seasonal

rainfall (405mm), and 1998 (H 5 0.354) had the lowest seasonal rainfall (86.9mm). The years 1998 (H 5 0.354),

2008 (H 5 0.326), and 2017 (H 5 0.607), as illustrated, were among the worst drought years in 1983–2017 in

Machakos County.

910 WEATHER , CL IMATE , AND SOC IETY VOLUME 11

D
ow

nloaded from
 http://journals.am

etsoc.org/w
cas/article-pdf/11/4/901/4865750/w

cas-d-19-0014_1.pdf by guest on 23 July 2020



excursion developed and the rains dropped below

20mm between vegetative and flowering/maturity

stages, resulting in yield declines of more than 50% for

many borrower farmers. However, because of high

midseason rainfall the insurance did not trigger. Fortu-

nately, we had anticipated that possibility and used re-

serve funds to provide an indemnity equal to 50% of

loan balances for those receiving RCC but no indemnity

for those receiving traditional loans.

ForWII to be sustainable in the target area (and more

generally in sub-Saharan Africa), an approach was

needed that accounted for the fractional nature of

rainfall discussed above. Although we find strong evi-

dence of Noah- and Joseph-erratic phenomena in our

subject area, that fact does not imply that the weather

risks are uninsurable. It doesmean that in the traditional

sense that simplified measures—including our own

2017–18 cumulative rainfall model—will in many in-

stances fail in the most basic efficiency measure of

minimizing type-I error (which is costly to the insurer)

and type-II error (which is costly to the farmer). Thus,

there is a need to rethink insurance risks and indemnity

structures. To confront the problems of fractional

weather patterns as discussed above, we suggest here a

different structure based on a ‘‘dynamic trigger’’ that

tracks current rainfall relative to historical norms while

taking into account whether the insured year is a ‘‘high

Hurst’’ year or a ‘‘lowHurst’’ year. This is discussed next.

To address the erratic nature of rainfall patterns with

unpredictable excursions and to reduce temporal basis

risk, we develop a 21-day event model. By ‘‘event’’ we

refer to any 21-day period in the insured season in which

accumulated rainfall falls below 60% of the average

accumulated rainfall for that district over the same his-

torical 21-day period (on a calendar basis, ignoring leap

years). In general, and as depicted in Fig. 1, the pattern

of rainfall is low at the beginning of the season, rises,

and then decreases toward the end of the season on

15 January. The triggering event is dynamic, in the

sense that it maps onto the historical rainfall pattern,

rising and falling accordingly.

The effects of a dynamic trigger are illustrated in Fig. 7

for central Machakos in 2015, with one small event, and

2017, with one small event and two significant events.

The green line is cumulative rainfall, the blue line is the

rolling 21-day cumulative rainfall, and the red dashed

line is the dynamic trigger. Arrows indicate an event

in which the rolling 21-day cumulative rainfall falls be-

low the dynamic trigger. For example, the event hori-

zon starts first at day 1–day 21, then day 2–day 22, then

day 3–day 23, and so on until the end of the season at

day 73–day 93. In other words, there are 73 consecu-

tive 21-day periods in the long rain period between

15 October and 15 January. Each period is examined to

determine whether the actual rainfall was below the

trigger. If not, then the next sequential 21-day period is

examined, and so on. If the actual rainfall is below the

corresponding trigger, an event is triggered. Subsequent

events cannot be overlapping. For example, if no event

is recorded at day 21 or day 22 but is recorded for day 23,

FIG. 7. Dynamic trigger rainfall insurance for long rain in centralMachakos in 2015 and 2017.

The blue line represents moving 21-day rainfall for 2017, the orange line shows moving 21-day

rainfall for 2015, and arrows represent the days on which an event is triggered.
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another event cannot be recorded on day 24. The next

possible date for a second event would be day 44, cov-

ering the 21 days between day 24 and day 44. Since

events cannot be overlapping, at most four events could

be recorded in a single long rain season.

The rainfall deficit is measured by the difference be-

tween the rainfall trigger and actual rainfall in milli-

meters. Monetizing this requires multiplying the deficit

(in millimeter units) by a nominal unit [Kenyan shil-

lings (KSh) per millimeter]—the tick value—to obtain

an indemnity for that event in Kenyan shillings. In our

modeling we assumed that if an event was triggered, the

minimal indemnity for the event was to be 500 KSh. The

scheme for the dynamic trigger RCC design is provided

in the appendix.

Ultimately, the final premium is based on two var-

iables, which we can then vary. The first variable is the

trigger level, and the second variable is tick value.

Figure 8 illustrates the average premium rate and

2017/18 indemnity based on a 10,000 KSh loan holding

the dynamic trigger at 60% of average and varying the

tick value from 50 to 100 KShmm21. At 50 KShmm21

the insurance yield is 15.78%. This increases to 25.74%

for a tick of 100 KShmm21.

5. Concluding remarks

In assessing the hydrology of water flows in rivers,

Mandelbrot and Wallis (1968) established certain prop-

erties of stochastic processes that were erratic. Although

not often mentioned explicitly in the weather index in-

surance literature, there is a subjective reliance on the

central limit theorem and an assumption that within-

season weather patterns occur randomly, but with a

convergent pattern. This is a weak assumption, and we

urge for exploration into fractional properties of within-

season variance and patterns of weather conditions (in

our case precipitation) generally, and consideration of

Joseph and Noah effects specifically. The erratic nature

of weather patterns, and particularly participation, com-

plicates the design of WII products. In this paper we

investigated the erratic nature of rainfall patterns in

Machakos County in Kenya and incorporated them

in designing an operational insurance-linked credit

product. The motivation for the paper was to ensure an

optimal design of rainfall insurance that would mini-

mize type-I and type-II error by reducing temporal

basis risk.

Our findings point to an important warning sign for

WII design. We find that the patterns of rainfall are

indeed erratic and consistent with the Noah and Joseph

descriptors discussed byMandelbrot andWallis (1968).

The erratic nature of rainfall emerges from two statis-

tical failings. The first is a breakdown of the conver-

gence to a normal distribution around the mean of our

21-day rainfall measure. Instead we find that the dis-

tribution about the average is approximately lognor-

mal, with an almost 50% higher chance of deficit

rainfall below the mean than adequate rainfall above

the mean. Perhaps more important is our finding

that the rainfall patterns obey Hurst’s law. We find that

the Hurst coefficients for the average pathway is about

H 5 0.8, but the range of Hurst coefficients across all

years ranged from a low below H 5 0.2 and a high

above H 5 0.6. The average Hurst coefficient was not

significantly different from 0.5, but this is meaningless

in an insurance context.

Because of the erratic nature of rainfall, we develop

a new approach to WII based upon the accumulated

rainfall in any 21-day period falling below 60% of the

long- term average for that same 21-day period. We

argue that this approach is more satisfactory tomatching

drought conditions within and between various phe-

nological stages of crop growth. While this new ap-

proach reduces type-I and type-II error, it comes at

higher cost.

Characterizing weather patterns according to their

fractional properties is no easy task and should be done

with longer time series data. In our case, we only had

data from 1983 to 2017, which may be a limitation in this

study; however, rainfall data prior to 1983 are hardly

available. In addition, our within-year measures are also

limited in time, but this is unavoidable given the calen-

dar dates of the long-rain growing season investigated

and the time discontinuities between growing seasons.

Nonetheless, the central ideas in this paper can be ex-

panded to other crops and regions and can be considered

in future developments of WII for agriculture.

At the macrolevel, the ideas in this paper can be

extended to the understanding of poverty traps. Barrett

and Swallow (2006) provide an informal approach to

what they refer to as ‘‘fractal poverty traps’’ measured

FIG. 8. Average insurance yield and indemnity payment for dy-

namic trigger specific event insurance.
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by scaling across farm types and industry actors and

across space. Their bifurcated model explains the co-

existence of high and low (multiple) equilibrium levels

of productivity and income and high and low rates of

economic growth. The source of their fractal poverty

trap is exogenous shocks and market failure, including

the failure of insurance and credit markets to develop.

From our results we can observe how both short- and

long-run fractional excursion patterns (the Joseph ef-

fect) can break through the threshold barrier of the

dynamic trigger. With multiple equilibria derived from

degrees of resilience, our approach to balancing busi-

ness and financial risks for smallholder farmers us-

ing risk-contingent credit would, in theory at least,

provide a source of resilience that could ultimately

reduce the number of low-level equilibria in an agri-

cultural economy. How fractional weather patterns

can give rise to fractional poverty traps is worthy of

further study.

Last, we do not believe at this time that the Hurst

coefficient can be used directly in an indemnity formula

for WII. A high Hurst coefficient, as discussed in the

text, can lead to both negative and positive excursion

patterns, and these would have to be parsed out into

a conditional probability framework. Nonetheless, we

believe that viewing weather patterns and WII through

this fractional lens provides at least a first step in placing

within-season weather index insurance for agriculture

on a more solid scientific footing.
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APPENDIX

Model Scheme for the Design of Weather Index
Insurance for a Risk-Contingent Credit Product

Let Zs be the dynamic trigger for any 21-day period

(mm), s be a rolling 21-day counter, Rs be the actual

long-rain total for any 21-day period (mm), defined as
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and c be the tick value (Kshmm21). If Rs , Zs, then for

the event occurring at s the indemnitys 5 (Zs 2 Rs)c

and the payouts (Ksh)5max[500, (Zs2Rs)c]. The total

indemnity is

total indemnity5 �
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s/k

2R
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)c].

The insurance premium rate u will then be defined as
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)

10 000
.

If f is the loan principal (Ksh) and is equal to the loan

request1 the insurance premium, that is, is equal to the

loan request 3 (1 1 u), r is the effective annual interest

rate, and T is the time to loan repayment, then the

farmer repayment is defined as

farmer repayment
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