
Performance analysis of distributed control
configurations in LQR multi-agent system design

Ivana Tomić
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Abstract—The paper considers a distributed Linear Quadratic
Regulator (LQR) design framework for a network of identical
dynamically decoupled multi-agent systems. It is known that
in this case a stabilizing distributed controller for the network
can be obtained by solving a centralized LQR problem whose
size depends on the maximum vertex degree of the graph. A
systematic method is presented for computing the performance
loss of various distributed control configurations relative to the
performance of the centralized controller. A procedure is devel-
oped for analyzing the performance loss for general distributed
control configurations and state-space directions. It is also shown
that by removing a single link we can always define a control
configuration for which there is no performance loss, provided the
initial state of the aggregate system lies in a particular direction
of state-space which is identified. The results are illustrated by
an exhaustive analysis of the network consisting of six identical
agents.

I. INTRODUCTION

Recently control of multi-agent systems has received con-
siderable attention due to its broad spectrum of applications,
e.g. formation control [1]-[3], satellite clustering [4], flocking
[5]-[6], distributed sensor networks [7], air traffic control [8],
congestion control in communication networks [9], etc.

There are three possible control methods of multi-agent
systems, centralized, decentralized and distributed control.
Optimal performance is achieved by a centralized controller,
however this structure becomes infeasible as the number of
subsystems and the distance between them increases. Com-
parison of all these methods has been undertaken in [10].
Conclusions tend to favour distributed control which involves
local information exchange between subsystems. Often the
information exchange is captured as a graph, and many
researchers have obtained novel results by combining graph
theory and control approaches, see e.g. [11]-[13].

The analysis of a formation of interacting and cooperating
identical subsystems was first proposed in [2]; in this work the
communication topology of the network was modeled using
graph theory and necessary and sufficient stability conditions
were derived. This framework was used in [14] to establish
robust controller properties for an arbitrary communication
topology, whereas previous solutions were adequate only for
undirected communication networks.

Linear Quadratic Regulator (LQR) theory has been suc-
cessfully applied to the control of multi-agent systems due

to its guaranteed robustness properties. For example, in [15]
an LQR-based method was proposed for optimal control of
multi-vehicle systems with single-integrator dynamics in a
continuous-time setting. In [16], the authors analyzed the
influence of the topology of the interconnection graph on
the closed-loop performance achieved by subsystems in a
distributed LQR framework. In [17], the authors proposed a
Linear Matrix Inequality (LMI) based distributed LQR design
with guaranteed LQR cost for identical dynamically coupled
systems where the solution depends on the total number of
agents. An estimate of the bound on the maximum time delay
that can be accommodated was also obtained. In [18], it was
shown that the distributed LQR control law guarantees not
only optimization performance at the network level but also a
convergence rate for the group of subsystems. An alternative
approach to structured distributed controllers that has appeared
in literature is given in [19]-[20]. By employing the augmented
Lagrangian method the structured optimal feedback gains can
be designed without the knowledge of a stabilizing structured
gain to initiate the algorithm.

The present work is based on the framework defined in
[21] where a distributed LQR design strategy for dynamically
decoupled multi-agent systems has been introduced. The sub-
systems can be actuated independently, but share a common
objective which forces them to interact with each other. Cou-
pling between subsystems is described by a communication
graph, at each node of which the models of the neighbouring
nodes are used to predict its behaviour. Such an approach leads
to an elegant and powerful result: a stabilizing distributed
controller can be found by solving a single LQR problem
whose size depends on the maximum vertex degree of the
graph.

The aim of the present paper is to compare the optimal
centralized LQR controller with the family of distributed
suboptimal controllers presented in [21] by computing the
loss of performance introduced by the distributed law. Using
perturbation analysis it is shown that we can always choose
a distributed-control configuration by removing a single link,
along with a direction in state-space of the aggregate system
for which there is no performance loss. A procedure is also
developed to analyze the performance loss for general control
configurations and state-space directions.
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The remainder of this paper is organized as follows. Section
II contains preliminary notation, including a brief summary
of relevant results from graph theory. Section III presents
the centralized controller design procedure. The proposed
design is extended to the distributed case using local LQR
solution properties. Section IV presents the main results of
the paper. Distributed control configurations and initial state-
space directions are identified for which no performance loss
occurs relative to the LQR optimal centralized controller. A
procedure is also presented for analyzing the performance cost
of an arbitrary distributed configuration. Presented results are
illustrated by an exhaustive analysis of of the network con-
sisting of six identical agents. Finally, the paper’s conclusions
appear in Section V.

II. PRELIMINARIES

A. Notation and Definitions

The following notation will be used throughout the paper: In
denotes the identity matrix of dimension n, In ∈ Rn×n; MT

and aT denote the transpose of matrix M and the transpose
of column vector a = [a1, . . . , an]T , respectively; A ⊗ B
denotes the Kronecker product of A and B. Let A ∈ Rm×n

and B ∈ Rp×q , then:

A⊗B =

 a11B a12B . . . a1nB
...

...
. . .

...
am1B am2B . . . amnB

 ∈ Rmp×nq;

The spectrum of n × n matrix M is denoted as S(M) =
{λ1(M), λ2(M), . . . , λn(M)}. If the spectrum is real λi(M)
denotes the ith eigenvalue of M indexed in decreasing order.

Definition 1. A matrix M ∈ Rn×n is called stable or Hurwitz
if all its eigenvalues have negative real part, i.e. S(M) ⊆ C .

B. Graph Theory Preliminaries

The underlying network is represented as a graph, described
by G = (V, E), where V is the set of nodes (or vertices),
V = {1, 2, . . . , N}, and E ⊆ V × V is the set of edges, E ⊆{

(i, j) : i, j ∈ V, j 6= i
}

. If i, j ∈ V and (i, j) ∈ E , then i and
j are said to be adjacent (or neighbors) which is denoted as
i ∼ j. We assume that there is no edge from a node to itself
(i.e. no self loops) and that the edge between nodes i and
j is undirected. For an undirected graph the communication
between two nodes (or agents) is bidirectional. An undirected
graph is said to be complete if every pair of distinct nodes is
connected by a unique edge. The number of neighbors of each
node, di for i = 1, 2, . . . , N , is called its degree or valency.
Let dmax(G) and dmin(G) denote the maximum and minimum
node degree of the graph G, respectively. Any undirected graph
can be represented by its adjacency matrix, A(G). Let Ai,j ∈
R be the (i, j) element of A(G), then the following is true:
Ai,i = 0, ∀i = 1, 2, . . . , N and

Ai,j =

{
0 if (i, j) /∈ E ∀i, j = 1, 2, . . . , N, i 6= j,

1 if (i, j) ∈ E ∀i, j = 1, 2, . . . , N, i 6= j.

III. PROBLEM FORMULATION

A. Centralized LQR Controller for Dynamically Decoupled
Systems

Consider ith dynamical system whose dynamics can be
described by the continuous-time state equation:

ẋi(t) = Axi +Bui, xi(0) = xi0 (1)

where A ∈ Rn×n, B ∈ Rn×m and xi(t) ∈ Rn, ui(t) ∈ Rm

are the state and input vectors of the ith system at time
t, respectively. Then, the dynamics of these N subsystems,
indexed as 1, 2, . . . , N , considered in total, are described by

ẋ(t) = Aax +Bau, x(0) = x0 (2)

where the column vectors x(t) = [xT
1 (t), . . . ,xT

N (t)]T and
u(t) = [uT

1 (t), . . . ,uT
N (t)]T collect the states and inputs of

the N systems, while Aa = IN ⊗ A and Ba = IN ⊗B, with
A and B defined as in (1).

The LQR problem for the system (2) is described through
the cost function which contains terms for weighting the
difference between ith and jth system states, as well as the
ith system state and input:

J
(
u(t),x0

)
=

∫ ∞
0

( N∑
i=1

(
xi(t)

TQiixi(t) + ui(t)
TRiiui(t)

)
+

N∑
i=1

N∑
j=1
j>i

((
xi(t)− xj(t)

)T
Qij

(
xi(t)− xj(t)

)))
dt.

which can be rewritten using the more compact notation:

J
(
u(t),x0

)
=

∫ ∞
0

(
x(t)TQax(t) + u(t)TRau(t)

)
dt (3)

where the matrices Qa and Ra have the following structure:

Qa =


Qa11 Qa12 . . . Qa1N

Qa21 Qa22 . . . Qa2N

...
...

. . .
...

QaN1 QaN2 . . . QaNN

 , Ra = IN ⊗R, (4)

with Qaii =
∑N

k=1Qik for i = 1, . . . , N , Qaij = −Qij for
i, j = 1, . . . , N, i 6= j, and Rii = RT

ii > 0, ∀i. Further,
Qii = QT

ii ≥ 0, ∀i and Qij = QT
ij = Qji ≥ 0 ∀i 6= j.

The following assumptions apply throughout this section for
Q = QT ≥ 0 and Qa as in (4).

Assumption 1. The pair (A,B) is stabilizable and the pair
(A,C) is observable, where C is any matrix such that CTC =
Q.

Assumption 2. The pair (Aa, Ba) is stabilizable and the pair
(Aa, Ca) is observable, where Ca is any matrix such that
CT

a Ca = Qa.

Correspondingly, given the initial conditions, x0, the control
input u = −R−1a BT

a Pax minimizes the cost function in
(3) subject to ẋ(t) = Aax + Bau, x(0) = x0, where Pa

is the symmetric positive definite stabilizing solution of the
following (large-scale) Algebraic Riccati Equation (ARE):

AT
a Pa + PaAa − PaBaR

−1
a BT

a Pa +Qa = 0. (5)



If the weighting matrices of the (large-scale) LQR problem
(2)-(3) are chosen as Qaii

= Q1 ∀i = 1, . . . , N , and Qaij
=

Q2 ∀i = 1, . . . , N , i 6= j and Pa ∈ RnN×nN is the stabilizing
solution of (5) whose individual blocks are denoted as Paij =
Pa[(i− 1)n+ 1 : in, (j − 1)n+ 1 : jn] with i, j = 1, . . . , N .
Then, the following are true:
The unique symmetric positive definite solution to (5) has the
structure:

Pa =


Pa11 Pa12 . . . Pa12

Pa12 Pa11 . . . Pa12

...
...

. . .
...

Pa12 . . . . . . Pa11

 (6)

in which the diagonal blocks can be expressed as: Pa11
=

P−(N−1)Pa12
. P ∈ Rn×n is the symmetric positive definite

solution of the ARE:

ATP + PA− PBR−1BTP +Q1 = 0. (7)

All off-diagonal blocks of Pa, namely Paij for i 6= j, are
equal symmetric negative semi-definite matrices, denoted as
Pa12

≤ 0. Further, the (large-scale) LQR gain matrix Ka is of
the form:

Ka =


Ka11 Ka12 . . . Ka12

Ka12 Ka11 . . . Ka12

...
...

. . .
...

Ka12 . . . . . . Ka11

 . (8)

For more details refer to [21]. In the next session the solution
of the centralized LQR problem is modified to a distributed
control scheme.

B. Distributed LQR Controller for Dynamically Decoupled
Systems

The collective dynamics of Nd identical and decoupled
dynamical subsystems can be described as:

˙̃x(t) = Ãx̃ + B̃ũ, x̃(0) = x̃0 (9)

where x̃(t) and ũ(t) are the vectors which collect the states
and inputs of the Nd systems, while Ã = INd

⊗ A and B̃ =
INd
⊗ B, where A and B are defined as in (1). Systems (2)

and (9) differ only in the number of subsystems.
The distributed optimal control problem is defined in [21],

but in general its computation is considered as NP-hard
problem. Therefore, the procedure for designing a suboptimal
distributed controller is proposed in the following theorem.

Theorem 1. [21] Consider the (large-scale) LQR problem in
(9), with cost function:

J
(
ũ(t), x̃0

)
=

∫ ∞
0

(
x̃(t)T Q̃x̃(t) + ũ(t)T R̃ũ(t)

)
dt (10)

where Q̃ is structured as in (4) with Q̃ii = Q̃1 for all i =
1, . . . , N and Q̃ij = Q̃2 for all j = 1, . . . , N , i 6= j.

Let Pmin be the symmetric positive definite solution of the
ARE associated with the centralized LQR problem, but of

different size, i.e. the number of subsystems now is Nmin =
dmax(G) + 1. Then, Pmin is of the following structure:

Pmin =


P11 P12 . . . P12

P12 P11 . . . P12

...
...

. . .
...

P12 . . . . . . P11

 . (11)

Furthermore, P11 = P − (Nmin − 1)P12, where P is the
symmetric positive definite solution to the single agent LQR
problem in (7). Then, the distributed controller can be con-
structed as:

K̃ = INd
⊗R−1BTP −M ⊗R−1BTP12 (12)

corresponding to the closed loop system:

Ãcl = Ã− B̃K̃ = INd
⊗A+ (INd

⊗B)K̃ (13)

which is asymptotically stable. Matrix M reflects the structure
of the graph G and is given by M = aINd

− bA(G), b ≥ 0,
where A(G) is the adjacency matrix. Also, a and b have to
satisfy a − bdmax ≥ 0 which follows from the gain margin
properties of the proposed design.

Proof. See [21].

Remark 1.1. Theorem 1 implies that only one local controller
can be used to control a collection of identical dynamically de-
coupled systems. Also, it is enough to solve a low-dimensional
LQR problem from where the full-size distributed controller
can be constructed.

In order to calculate the performance cost of the proposed
distributed controller, the solution to Lyapunov equation asso-
ciated with the problem has to be found; this is summarized
in the next proposition.

Proposition 1. Consider the distributed controller designed
as in Theorem 1 with the asymptotically stable closed loop
system (13). The minimum cost is given by

J(ũ, x̃0) = x̃T
0 P̃ x̃0 (14)

where P̃ is the unique solution of the following Lyapunov
equation:

ÃT
clP̃ + P̃ Ãcl + Q̃+ K̃T R̃K̃ = 0. (15)

Next, the solutions of the problems described in Sec-
tion III-A and Section III-B are related using perturbation
analysis.

C. Perturbation Analysis

Consider the distributed optimal control problem described
in Section III-B with gain matrix

K̃ = INd
⊗R−1BTP −M ⊗R−1BTPa12

. (16)

In the case when the communication network is described by
a complete graph dmax = N − 1. Therefore, there will exist
an equivalence between (16) and the centralized large-scale
gain matrix in (8). Edge(s) elimination from a fully connected
network can be considered as a structured perturbation on the



centralized large-scale problem. This is equivalent to a dis-
tributed communication network, where at least one subsystem
is not connected to the remaining subsystems. Elimination of
the (i, j)th edge results in A(i, j) = A(j, i) = 0 and also
cancels the corresponding blocks in Ka. The resulting Ka

matrix will be called the perturbed gain matrix, K̃. Define
∆K = Ka − K̃, e.g. in the case of (1, 2) /∈ E ,

∆K =


0 −R−1BTPa12 . . . 0

−R−1BTPa12 0 . . . 0
...

...
. . .

...
0 . . . . . . 0

 . (17)

The following result can now be established:

Theorem 2. Suppose that the assumptions of Theorem 1 hold
and let E = P̃ − Pa where Pa is defined in (5) and P̃ is the
solution of the Lyapunov equation:

(Aa−BaK̃)T P̃ + P̃ (Aa−BaK̃)+K̃TRaK̃+Qa = 0. (18)

Then, E = ET is the unique positive semi-definite solution of
the following Lyapunov equation:

ÃT
clE + EÃcl + (∆K)TRa∆K = 0 (19)

in which Ãcl = Aa − BaR
−1
a BT

a Pa + Ba∆K is Hurwitz.
In particular, E = ET > 0 if and only if the pair
(Aa − BaR

−1
a BT

a Pa,∆K) is observable.

Proof. First note that since Aa − BaKa and Aa − BaK̃ are
Hurwitz Pa ≥ 0 and P̃ ≥ 0. Subtracting equation (5) from
equation (18) shows (after some algebra) that E is the solution
of (19). Theorem 1 implies that Ãcl is Hurwitz which in turn
implies that E = ET ≥ 0. Standard theory of Lyapunov
equations now implies that E is positive definite if and only
if the pair (Ãcl,∆K) is observable, which is equivalent to the
observability of the pair (Aa −BaR

−1
a BT

a Pa,∆K).

IV. MAIN RESULTS

Using Theorem 2 we can draw some conclusions on the cost
increase that is imposed by distributed design. Not surprisingly
we have the following result:

Proposition 2. The cost imposed by the distributed LQR
problem will be always equal or higher than the cost imposed
by the centralized design.

Proof. Although the result is obvious (the cost of the cen-
tralized optimal controller cannot exceed the cost of the
distributed controller) we give a direct proof. The result is
immediate if the distributed controller is not stabilizing, so
assume that the distributed cost is finite. From Theorem 2 it
is known that P̃ = Pa +E with all matrices being symmetric
positive semi-definite. Applying Weyl’s inequality (see [22])
to P̃ = Pa + E gives:

λk(Pa) + λn(E) ≤ λk(P̃ ) for any 1 ≤ k ≤ n

where the eigenvalues are indexed in decreasing order. The
required result follows since λn(E) ≥ 0.

A natural question arising from Proposition 2 is under what
conditions, if any, the two costs are equal. The following result
gives necessary and sufficient conditions for equality of the
two costs:

Theorem 3. The cost of a stabilizing distributed controller
defined in Theorem 1 is equal to the cost of the central-
ized optimal LQR controller if and only if the pair (Aa −
BaR

−1
a BT

a Pa,∆K) is unobservable and x̃0 ∈ Ker(E) where
E = P̃ − Pa.

Proof. The cost of a stabilizing distributed controller is:

J(ũ, x̃0) = x̃T
0 P̃ x̃0 = x̃T

0 Pax̃0 + x̃T
0 Ex̃0 (20)

in which the first term on the right-hand-side of the last
equality represents the optimal LQR cost of the centralized
controller. Since E = ET ≥ 0, the term x̃T

0 Ex̃0 is zero
if and only if E is singular and x̃0 ∈ Ker(E), the first
condition being equivalent to the unobservability of the pair
(Aa − BaR

−1
a BT

a Pa,∆K).

It follows that if we can identify cases for which E is
singular, then optimality is preserved. Results are presented
in Theorem 5, but before stating and proving this theorem
we need the following preliminary result which characterises
the spectrum of the (large-scale) closed-loop centralized LQR
system:

Theorem 4. Let Acl = A − BR−1BTP be the closed-loop
matrix of the (single system) LQR problem for the system
in (1) with state and control weighting matrices Q1 and R,
respectively, and where P is the symmetric positive definite
solution of (7). Also, let Acla = Aa − BaR

−1
a BT

a Pa be
the closed-loop matrix of the (large-scale) centralized LQR
problem in (2) with state and control weighting matrices
Qa and Ra respectively, where Pa is the symmetric positive
definite solution of (5). Assume that Pa is decomposed into
N2 blocks of dimension n × n as in (6). Then, the spectrum
of Acla , i.e. S(Acla) is given by:

S(Acla) = S(Acl) ∪ S(Acl1−2) ∪ . . . ∪ S(Acl1−2)︸ ︷︷ ︸
(N-1) times

(21)

where Acl1−2
= A − BR−1BT (Pa11

− Pa12
), in which Pa11

and Pa12 are n× n blocks of Pa defined in (6).

Proof. By substituting Pa in (6) into Acla we get:

Acla =


A−XPa11 −XPa12 . . . −XPa12

−XPa12 A−XPa11 . . . −XPa12

...
...

. . .
...

−XPa12 . . . . . . A−XPa11

 .

Acla can be transformed into a block lower-triangular matrix
through the similarity transformation Aclt = TAclaT

−1,
where the transformation matrix T is given by

T =



I −I 0 . . . 0
0 I −I . . . 0
...

...
. . .

. . .
...

0 0 . . .
. . . −I

0 0 . . . . . . I

 . (22)



Therefore, Aclt, becomes:

Aclt =


A−XPa1−2 . . . 0 0

...
. . .

...
...

0 . . . A−XPa1−2 0
−XPa12 . . . −(N − 1)XPa12 A−XP


(23)

where Pa1−2
= Pa11

−Pa12
and P = Pa11

+(N−1)Pa12
is the

symmetric positive definite solution to a single system LQR
problem. Since eigenvalues of a matrix are preserved under
similarity transformations equation (21) follows.

We can now prove the following:

Theorem 5. Suppose that a single link is removed from a
complete network with at least four subsystems (N ≥ 4). Then
E is singular.

Proof. The assumption N ≥ 4 ensures that the assumptions of
Theorem 1 are satisfied. Thus Ãcl is Hurwitz and E = ET ≥
0. To show that E is singular it suffices to show that the pair
(Aa−BaR

−1
a BT

a Pa,∆K) is unobservable which is equivalent

to the existence of λ ∈ C such that the matrix
(
Acla − λI

∆K

)
is rank deficient. For the network of N agents and link removal
between agents 1 and 2 this matrix can be written as:

A11 − λI −XPa12 . . . −XPa12

−XPa12 A11 − λI . . . −XPa12

...
...

. . .
...

−XPa12 −XPa12 . . . A11 − λI
0 −R−1BTPa12 . . . 0

−R−1BTPa12 0 . . . 0
...

...
. . .

...
0 0 . . . 0


(24)

where A11 = A −XPa11
. Next we introduce the state-space

transformation
(
T (Acla − λI)T−1

∆KT−1

)
in which T is chosen

as:

T =

(
T11 T12
O I

)
(25)

where O ∈ R(N−4)n×4n and I ∈ R(N−4)n×(N−4)n denote the
zero and the unit matrix, respectively, and

T11 =

 I I I I
0 I 0 0
0 −I I 0
0 I I I

 ∈ R4n×4n,

T12 =


I
0
...
0
I

( I . . . I
)
∈ R4n×(N−4)n.

It can be seen, after some algebra, that under T the
transformed matrix in (24) loses rank along the third
column if λ is chosen as an eigenvalue of the matrix
A − X(Pa11 − Pa12) (using Theorem 4). Since the rank of
a matrix remains invariant under similarity transformations
the system (Ãcl,∆K) is unobservable in this case and hence

E is singular. The result can also be generalized if an ar-
bitrary (rather than link (1, 2)) is removed (see subsequent
remark).

Remark 5.1. The fact that ∆K can have a different structure,
depending on the choice of an edge that is eliminated, will
not change the eigenvalue distribution in P̃ , nor in Ãcl.
Therefore, same conclusions can be drawn for any of N(N−1)

2
configurations corresponding to a single-link removal from the
complete network of N agents.

Remark 5.2. The performance loss analysis can be extended
along various directions. A natural question arising from
Proposition 2 and Theorem 3 is to identify near-optimal
distributed configurations for which the cost increase from
the optimal level will be minimal. This corresponds to the
term x̃T

0 Ex̃0 ≥ ε‖x̃0‖2 with λmin(E) = ε > 0. Similarly,
λmax(E) is a measure of the maximal deviation from opti-
mality if x̃0 is aligned in the direction of the corresponding
eigenvector. A final measure of performance loss is the average
cost increase over all initial state directions which can be
described as trace(E)

nNd
. It is assumed that the initial state vector

is uniformly distributed on the surface of an n-dimensional
hyper-sphere, ‖x̃0‖ = 1.

The complexity of analysis increases with the number of
subsystems, and the number of eliminated edges, but same
conclusions would apply. Proofs are omitted due to space
restrictions, but an numerical example is given next.

Example: Consider a network of N = 6 identical, dynami-
cally decoupled agents represented by a complete graph. Their
collective dynamics is given by

˙̃x(t) = Ãx̃ + B̃ũ, x̃(0) = x̃0 (26)

where Ã = I6⊗A and B̃ = I6⊗B with A and B defined as

A =

 −1 0 −2
−2 −3 −4

1 0 −1

 , B =

 1 1
0 2
−1 3

 . (27)

The cost function defined in (3) uses the following weights
for the state information: Qaii

= Q1 = I3 and Qaij
= Q2 =

I3, while the weight on the control effort is Ra = I6 ⊗ R
with R = I2. For a given initial state vector x̃0, such that
‖x̃0‖ = 1, we get the stabilizing centralized LQR solution,
Pa and therefore the optimal (minimal) cost. For this case the
cost measures are given in Table I.

TABLE I
COST MEASURES FOR OPTIMAL (CENTRALIZED) LQR DESIGN

Minimum Cost Average Cost Maximum Cost
0.1027 1.3426 2.6006

Next, we consider a number of different distributed config-
urations obtained by removing links from a complete network.
The performance loss is measured by using alternative meth-
ods presented in Remark 5.2 and results are given in Table II.



TABLE II
COST MEASURES FOR DISTRIBUTED CONFIGURATIONS

Single cut Double cut Triple cut
(dmax, dmin) (dmax, dmin) (dmax, dmin)

Minimum
0.1031 (5,4) 0.1035 (5,4) 0.1027 (4,4)

0.1039 (5,3) 0.1043 (5,3)
Cost 0.1050 (5,2)

Average
1.3449 (5,4) 1.3471 (5,4) 1.3538 (4,4)

1.3474 (5,3) 1.3496 (5,3)
Cost 1.3503 (5,2)

Maximum
2.6088 (5,4) 2.6088 (5,4) 2.6300 (4,4)

2.6178 (5,3) 2.6178 (5,3)
Cost 2.6270 (5,2)

As an additional information, the maximum and minimum
degree are given for each configuration.

It can be seen that all costs are highly dependent on
how well network is connected (i.e. they all increase as the
minimum degree, dmin, drops for a fixed dmax). Additionally,
for each configuration there is at least one direction for which
optimality is preserved compared to the centralized design.
For example in the case of triple cut with dmin = 2 E is
singular (rank(E) = 9) which implies the equality in costs for
specific directions as claimed in Theorem 3 and Theorem 5.
Note that this does not necessarily imply that this direction
coincides with the direction of the eigenvector corresponding
to λmin(Pa). Detailed results are omitted due to the space
restrictions. Note that when three links are removed in the case
under consideration, equality with λmin(Pa) occurs only for
a configuration corresponding to a minimum and maximum
degree equal 4. Therefore, the minimum value among all
minimal costs occurs when all agents share the same degree
and we have so called regular network. The relation between
LQR cost and the connectivity properties of the network will
be fully investigated in future work.

V. CONCLUSIONS

The paper has considered a distributed LQR design frame-
work for a network of dynamically decoupled multi-agent
systems with identical dynamics. Necessary and sufficient
conditions have been derived for which a distributed control
configuration pattern arising from the optimal centralizing
solution does not entail loss of performance. It was shown
that these conditions are always satisfied for systems with
communication/control networks corresponding to complete
graphs with a single link removed. The results are useful for
quantifying performance loss due to decentralization and for
designing optimal or near-optimal distributed control schemes.
Future work will attempt to establish precise correlations
between performance cost and the connectivity properties of
the network.
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