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The measurement and emulation of audio systems (devices, environments, and sound boxes)
have been studied in recent years. The most-used methods to obtain information about an audio
system are those based on measuring its impulse response (IR). Once the IR has been caught it
is possible to recreate, by the use of linear convolution, the output signal that the audio system
will generate when it is physically driven by any input signal. This method gives great results if
the system is linear and time-invariant (environmentals behavior is very linear and, therefore,
its reverberant effect can be faithfully recreated using IRs) but not satisfactory in other cases,
such as the emulation of tube preamps (mainly nonlinear) and musical instruments. Since
musical instruments cannot be considered completely linear, their musical performance might
be analyzed properly considering also their nonlinear behavior. By using Volterra series it is
possible to represent the input-output relationship of nonlinear systems. This mathematical
theory uses a set of impulse responses to describe the system and not only one as before. By an
enhanced impulse response measurement method it is possible to obtain this set of impulses
and, then, with Volterra series it would be possible to have the output of the audio system
driven by any input. A numerical tool has been developed to recreate the system behavior by
using this method. Satisfactory results have been obtained in comparison with the traditional
linear convolution based approach.

0 INTRODUCTION

For almost 100 years, it has been theoretically possible
to model linear time-invariant (LTI) systems with memory
[1]. The model is based on the convolution between the
input signal and the impulse response (IR) of a system [2,
3]. This approach fails when we try to predict the behavior
of a non-linear time-invariant system with memory.

The objective of this paper is to show how the emulation
of a non-linear time-invariant system with memory based
on a Volterra series is possible. There currently exists a
measurement technique that is able to provide, under certain
conditions, the data required to calculate kernels [4]. These
conditions require a special phase equalization of the signal
and the correct value of its amplitude.

1 NON-LINEAR SYSTEMS

A non-linear system is a system in which superposition
and homogeneity properties are generally not valid. The su-
perposition of a system indicates that F [x1 (τ) + x2 (τ)] =
F [x1 (τ)] + F [x2 (τ)], where F [] is a generic function.
Moreover, the homogeneity of a system indicates that
F [αx (τ)] = αF [x (τ)]. These features, which distinguish
a linear system, indicate that the output will be a linear com-
bination of the input: no new frequencies will be created by

the system itself. This is not true for non-linear systems that
are able to create components at frequencies not present in
the input signal [5], [6]; these new frequencies are defined
as harmonic and intermodulation distortions, where the har-
monic ones represent new frequencies at multiple values of
those present in the input, and the latter ones are new fre-
quencies that are linear combinations of those present in the
input. The non-linear systems could be modeled in differ-
ent way, from a more generic description to a more specific
case. A non-linear time variant system with memory could
be described using the following Volterra series [7, 8]

y (t) =
+∞∫

−∞
h1 (t, τ1) x (τ1) dτ1

+
∫ +∞∫

−∞
h2 (t, τ1, τ2) x (τ1) x (τ2) dτ1dτ2

+
∫ ∫ +∞∫

−∞
h3 (t, τ1, τ2, τ3) x (τ1) x (τ2)

× x (τ3) dτ1dτ2dτ3 + . . . . . (1)

where the hn (t, τ1, τ2, . . . τn) terms are the kernels. The
term for n = 1 characterizes the linear part of the system;
it is simply the familiar impulse response. The non-linear
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Fig. 1. Nonlinear system models.

part is characterized as starting from h2 (t, τ1, τ2). These
kernels can be viewed as higher-order impulse responses.

The time-invariant version of Eq. (1) is represented by
the following:

y (t) = h0 +
+∞∑
n=1

1

n!

+∞∫
−∞

dτ1 . . .

+∞∫
−∞

dτnhn
(
τ1, . . . , τn,

)

×
n∏

r=1

x (t − τr ) = h0+ 1

1!

+∞∫
−∞

h1 (τ1) x (t − τ1) dτ1

+ 1

2!

∫ +∞∫
−∞

h2 (τ1, τ2) x (t − τ1) x (t − τ2) dτ1dτ2

+ 1

3!

∫ ∫ +∞∫
−∞

h3 (τ1, τ2, τ3) x (t − τ1) x (t − τ2)

× x (t − τ3) dτ1dτ2dτ3+. . . . . (2)

where h0 represents a DC offset value, which is often omit-
ted, assuming the system is passive (i.e., no input and no out-
put). Moreover, hn

(
τ1, . . . , τn,

)
are the n-order kernels. It is

possible to further simplify the model in Eq. (2) by introduc-
ing other constraints. Fig. 1 shows three simplified models
based on the assumption that memory effects reside in the
linear part of the system and that the non-linearity is purely
algebraic (i.e., represented by a Taylor series expansion).

The Wiener model [8] represents the non-linear system
as a series of linear time-invariant systems with memory
and a purely algebraic non-linear time-invariant system, as
shown in Eq. (3).

y (t) = a0 +
+∞∑
n=1

an [w (t)]n

= a0 +
+∞∑
n=1

an

⎡
⎣ +∞∫

−∞
h (t − τ) x (τ) dτ

⎤
⎦

n

= a0 + a1h (t) ∗ x (t) + a2 [h (t) ∗ x (t)]2

+ a3 [h (t) ∗ x (t)]3 + . . . (3)

where w(t) is the output of the linear part and is therefore
substituted with

∫ +∞
−∞ h(t − τ)x(τ)dτ = h(t) ∗ x(t), where

h (t) is the impulse response.
The Hammerstein model [9] represents the non-linear

system as a series of a non-linear time-invariant systems
without memory and an LTI system with memory; its output
is as follows:

y (t) =
+∞∫

−∞
h (t − τ) ω (τ) dτ

=
+∞∫

−∞
h (t − τ)

{
a0 +

+∞∑
n=1

an [x (t)]ndτ

}

=
+∞∫

−∞
h (t − τ) a0dτ +

+∞∑
n=1

+∞∫
−∞

anh (t − τ) [x (t)]n dτ

= h0 + h1 (t) ∗ x (t) + h2 (t) ∗ [x (t)]2

+h3 (t) ∗ [x (t)]3 + . . . (4)

where w(t) is the output of the non-linear purely algebraic
part and is therefore substituted with a0 + ∑+∞

n=1 an [x (t)]n ,
where x(t) is the input of the whole system, and the
h (t − τ) an terms have been substituted with hn (t − τ).

The Wiener-Hammerstein model [9, 10] represents the
system as the series of a linear time-invariant system with
memory, a non-linear time-invariant system without mem-
ory and another linear time-invariant system with memory.
Its output is represented by the following equation:

y (t) =
+∞∫

−∞
β (t − τ) k (τ) dτ

=
+∞∫

−∞

{
β (t − τ)

{
a0 +

+∞∑
n=1

an [ω (t)]n

}}
dτ

=
+∞∫

−∞

{
β (t − τ)

{
a0 +

+∞∑
n=1

an

×
⎡
⎣ +∞∫

−∞
αh (t − γ) x (t) dγ

⎤
⎦

n⎫⎬
⎭

⎫⎬
⎭ dτ (5)

where x(t) is the input of the whole system, α (t) is the IR of
the first LTI system of the chain, α1, α2, . . . αi , . .αn are the
terms of the Taylor series that describe the non-linear time-
invariant without memory system and β (t) is the impulse
response of the downstream LTI system.

The Hammerstein model is a particular case of the gen-
eral Volterra model. Considering its equation, we can see
that it equals a Volterra series in which, for each kernel,
only the values for τ1 = τ2 = . . . = τn differ from zero,
and therefore, even the kernels of order higher than two can
be considered two-dimensional; this particular case of the
Volterra series model is called the Diagonal Volterra model.

The Diagonal Volterra model is described by the follow-
ing equation, where the hn(t) terms are the kernels of the
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system and x(t) the input:

y (t) = h0 (t) + h1 (t) ∗ x (t) + h2 (t) ∗ [x (t)]2

+h3 (t) ∗ [x (t)]3 + . . . (6)

The discrete version of (6), assuming that all of the hn(t)
are functions defined for t ∈ (0,+∞) and the input signal
x(t) is zero prior to t = 0 becomes:

y [n] = h0 +
M−1∑
i=0

h1 [i] x [n − i] +
M−1∑
i=0

h2 [i] x2 [n − i]

+
M−1∑
i=0

h3 [i] x3 [n − i] + . . . (7)

Because a real non-linear system could have different
characteristics of non-linearity, the method herein described
could accurately emulate these systems, which physically
behave very similarly to the Hammerstein model. This is
possible by means of an existing measuring technique that
is able to precisely produce the kernels [4], [11].

2 MEASUREMENT OF THE SYSTEM AND
KERNELS CALCULUS

Many measurement methods have been developed to test
systems and determine their features. They are based on
the hypothesis that the system being tested is linear and
time-invariant (LTI) and linear shift invariant (LSI) if the
technique requires digital signal processing and the time
domain then becomes discrete. The more the system differs
from this assumption, for example, if it is non-linear, the
more the impulse response obtained from the measurements
will differ from the real one. Some methods are widely used
to capture IRs. Among them are the pistol shot, TDS and
MLS techniques, and sine sweeps.

A sine sweep (SS) is simply a sine with a frequency that
varies from f0 to f1 in T seconds. Its equation is

SS (t) = A sin [2πg (t)] ; A ∈ � (11)

where g (t) is the function that controls the sweep. There
are no constraints on the g (t) function, and theoretically it
could be chosen ad libitum. However, two kinds of functions
are typically used: linear and exponential.

As the time derivative of g (t) provides the equation for
instantaneous values of frequency, it is easy to obtain the
sine sweeps of interest.

2.1 Linear Sine Sweep (LSS)
We want to linearly sweep frequencies from f0 to f1 in

T seconds; therefore, if we call f(t) the instantaneous fre-
quency function, its equation will be

f (t) = f0 + f1 − f0

T
t (12)

The instantaneous frequency function is the time derivative
of g (t). To obtain this, we must integrate.

g (t) =
∫

f (t) dt =
∫ (

f0 + f1 − f0

T
t

)
dt

= f1 − f0

2T
t2 + f0t + ϑ (13)

The linear sine sweep will be:

LSS (t) = A sin

[
2π

(
f1 − f0

2T
t2

)
+ 2π f0t

]
(14)

LSS (t) = A sin

[(
ω1 − ω0

2T
t2

)
+ ω0t

]
(15)

where, without loss of generality, we have set ϑ = 0.

2.2 Exponential Sine Sweep (ESS)
In an exponential sine sweep, f(t) will be of the form:

f (t) = eγ0+ γ1−γ0
T t = eγ0 e(γ1−γ0) t

T (16)

If we set

f (0) = eγ0 = f0;

f (T ) = eγ0 e(γ1−γ0) = f0e(γ1−γ0) = f1 (17)

and therefore:

e(γ1−γ0) = f1

f0
= e

ln
(

f1
f0

)
⇒ γ1 − γ0 = ln

(
f1

f0

)
(18)

we find f(t) as the following equation:

f (t) = f0e
t
T ln

(
f1
f0

)
(19)

Eq. (19), once integrated, will produce g(t) in the exponen-
tial case:

g (t) = f0T

ln
(

f1

f0

)e
t
T ln

(
f1
f0

)
+ ϑ (20)

As before, if we set

ϑ = − f0T

ln
(

f1

f0

) (21)

we finally obtain the following:

ESS (t) = A sin
ω0T

ln
(

ω1
ω0

) [
e

t
T ln

(
ω1
ω0

)
− 1

]
(22)

with ω0 = 2π f0 and ω1 = 2π f1. One more evolution of
the ESS technique is represented by the silence sweep [12],
which is still based on the ESS but could excite all frequen-
cies simultaneously.

Other measurement techniques that are able to calcu-
late distortion in signals have been recently developed but
cannot be used to predict output signals [13].

2.3 Sine Sweep Test
The two aforementioned sine sweeps could be used to

calculate the impulse response of a system. Figs. 2a and 2b
represent the input and the output of the system excited by
a linear sine sweep. The non-linear behavior of the system
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Fig. 2. Linear sine sweep test signal.

is underlined by all of the lines, which are non-parallel to
the sine sweep in the output spectrograph; this spectrograph
represents its distortion harmonics. In Fig. 2c, the amplitude
spectrum of a linear sine sweep from 40 Hz to 20 kHz at
1/2 full scale is represented. On the other hand, Figs. 3b
and 3c represent the output of the same non-linear system
if the input were an exponential sine sweep (Fig. 3a) in a
linear and logarithmic scale. It is of interest to notice that,
visually, the logarithmic scale transforms the exponential
curves in the linear scale output spectrograph to parallel
lines.

2.4 Deconvolution of Sine Sweeps
Given a signal x (t), we could define x (t) as the inverse

of x (t) if it is true that

x (t) ∗ x (t) = δ (t − t0) , t0 ≥ 0 (23)

A similar signal could allow for the derivation of the IR
of an LTI system simply by convolving between it and the
system’s output. A powerful feature of the sine sweep, SS,
is that its inverse approximately equals the time reversed
signal:

SS (t) ∗ SS (T − t) ∼= δ (t − t0) , 0 ≤ t ≤ T (24)

where the approximation is only due to the fact that in prac-
tice the sine sweep covers only a limited range of frequen-

Fig. 3. Linear sine sweep test signal.

cies, typically [40 Hz, 20 kHz]. The more the frequency
range tends to [0 Hz, +μ Hz], the more the convolution
tends to δ (t − t0). It will not be considered erroneous to
assume SS (t) ∗ SS (T − t) = δ (t − t0), if f0 = 40 Hz and
f1 = 20 kHz, because this is the average range of perceptible
frequencies for human beings.

By comparing the spectrographs in Fig. 4, a geometrical
rule can be found to explain the deconvolution process.
Every point of the first spectrograph is shifted to the right
by convolution with its inverse. The amount of translation
of every point equals the time at which the frequency of the
“to be translated” point is reached in the inverse signal.

In this manner, all of the swept frequencies are compacted
into a short interval, approximately a perfect impulse.
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Fig. 4. Deconvolution effects.

2.4.1 Linear Sine Sweep Deconvolution
Figs. 5a and 5b show the spectrogram of the linear sine

sweep LSS and of a non-linear system’s output after pass-
ing the LSS. Figs. 5c and 5d show the results of the con-
volution between the output of a non-linear system stim-
ulated with a linear sine sweep and its inverse. The new
lines in Fig. 5b are due to harmonic distortions and repre-
sent the non-linearity of the system. These new lines after
the deconvolution become non-vertical lines, as shown in
Fig. 5c.

Because they all mix together after the deconvolution,
they cannot be used to investigate non-linear properties, as
depicted in Fig. 5d. Only an approximation of the linear
part of a non-linear system can be extracted through the use
of a linear sine sweep as a test signal.

2.4.2 Exponential Sine Sweep Deconvolution
By using an ESS as a test signal, the non-linear system

adds new frequencies, which are parallel lines, and shown
in Fig. 6a, whereas the same non-linear system adds new
frequency to a LSS test signal that are not parallel. The
spectrogram of the deconvolution of the ESS test signal
shown in Fig. 6c, differs from the spectrogram of the de-
convolution of the LSS shown in Fig. 5c.

Fig. 5. Linear sine sweep test deconvolution.

In the ESS test signal, the lines are parallel, and in time
domain they result in separated impulses. In the LSS test
signal the lines are not parallel, and in time domain they
cannot be separated.

2.5 Kernel Calculus
It is possible to determine the relationship between these

vertical lines and the kernels of the diagonal Volterra model
of the system being tested: first, it is necessary to isolate
every line. Fig. 7 shows the theoretical extension for t <0
of a spectrograph of the output of a non-linear system stim-
ulated with an ESS.

The gaps �t2,�t3, . . . �tn between these lines remain
unchanged after the deconvolution. Every �tn represents
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Fig. 6. Exponential sine sweep test deconvolution.

Fig. 7. Time delay gaps in ESS.

Table 1. Trigonometric identities

sin2 (ω0t) 1
2 − 1

2 cos (2ω0t)

sin3 (ω0t) 3
4 sin (ω0t) − 1

4 sin (3ω0t)

sin4 (ω0t) 3
8 − 1

2 cos (2ω0t) + 1
8 cos (4ω0t)

sin5 (ω0t) 5
8 sin (ω0t) − 5

16 sin (3ω0t) + 1
16 sin (5ω0t)

sin (ω0t) sin (ω1t) 1
2 cos [(ω0 − ω1) t] − 1

2 cos [(ω0 + ω1) t]

the delay the sine sweep spends in duplicate, triplicate,
etc., multiplied by n times its instantaneous frequency
f (t∗) ,∀t∗ > 0.

Recalling that the instantaneous frequency function for
ESS is (20) and considering the trigonometric identities in
Table 1, the time gaps can be calculated as follows:

f (t∗ + �tN ) = N f (t∗) f0e
t∗+�tN

T ln
(

f1
f0

)

= N f0e
t∗
T ln

(
f1
f0

)
e

�tN
T ln

(
f1
f0

)

= N e
�tN

T ln
(

f1
f0

)

= eln N �tN

T
ln

(
f1

f0

)
= ln N (25)

and finally

�tN = ln N
T

ln
(

f1

f0

) , wi th N ≥ 2 (26)

For our purposes, it is useful to know the absolute starting
time of every impulse. Knowing that the last impulse starts
at t = T, it is possible to use (26) and obtain:

tN = T − �tN = T

⎡
⎣1 − ln N

ln
(

f1

f0

)
⎤
⎦ wi th N ≥ 1 (27)

It is then possible to isolate the impulses and find a re-
lationship between them and the Volterra kernels. Calling
ss [ω (t)], the exponential sine sweep of length T seconds
from f0 to f1, it is possible to rewrite (6), assuming that

x (t) = αss [ω (t)] , α ∈ � (28)

and thereby obtain

y (t) = h0 + h1 (t) ∗ α ss [ω (t)] + h2 (t) ∗ α2 ss2 [ω (t)]

+ . . . + hn (t) ∗ αn ssn [ω (t)] (29)

Using the identities in Table 1, it is possible to write (29)
as follows

y (t) ≈ h0 + αh1 (t) ∗ ss [ω (t)]

+ α2h2 (t) ∗
{

1

2
− 1

2
cs [2ω (t)]

}

+ α3h3 (t) ∗
{

3

4
ss [ω (t)] − 1

4
ss [3ω (t)]

}

+ α4h4 (t) ∗
{

3

8
− 1

2
cs [2ω (t)] + 1

8
cs [4ω (t)]

}

+ α5h5 (t) ∗
{

5

8
ss [ω (t)] − 5

16
ss [3ω (t)]

+ 1

16
ss [5ω (t)]

}
(30)
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where the series expansion is truncated at the fifth order. In
(32), the expression cs [ω (t)] indicates the cosine sweep, a
signal defined as a sine sweep with a phase delay of π

/
2.

Equation (30) can be rewritten as follows:

y (t) ≈
[

h0 + α2h2 (t) ∗ 1

2
+ α4h4 (t) ∗ 3

8

]

+
[
αh1 (t) + 3

4
α3h3 (t) + 5

8
α5h5 (t)

]
∗ ss [ω (t)]

+
[
−1

2
α2h2 (t) − 1

2
α4h4 (t)

]
∗ cs [2ω (t)]

+
[
−1

4
α3h3 (t) − 5

16
α5h5 (t)

]
∗ ss [3ω (t)]

+
[

1

8
α4h4 (t)

]
∗ cs [4ω (t)]

+
[

1

16
α5h5 (t)

]
∗ ss [5ω (t)] (31)

Convolving with ss [ω (t)], produces

y (t) ∗ ss [ω (t)] ≈ A (t) ∗ ss [ω (t)]

+B (t) ∗ ss [ω (t)] ∗ ss [ω (t)]

+C (t) ∗ cs [2ω (t)] ∗ ss [ω (t)]

+D (t) ∗ ss [3ω (t)] ∗ ss [ω (t)]

+E (t) ∗ cs [4ω (t)] ∗ ss [ω (t)]

+F (t) ∗ ss [5ω (t)] ∗ ss [ω (t)] (32)

where we have considered the following equivalences

A (t) = h0 + α2h2 (t) ∗ 1

2
+ α4h4 (t) ∗ 3

8

B (t) = αh1 (t) + 3

4
α3h3 (t) + 5

8
α5h5 (t)

C (t) = −1

2
α2h2 (t) − 1

2
α4h4 (t)

D (t) = −1

4
α3h3 (t) − 5

16
α5h5 (t)

E (t) = 1

8
α4h4 (t) F (t) = 1

16
α5h5 (t) (33)

As it is necessary to Fourier transform the equation (32), it
is also necessary to note that

A (t) = constant h0 = constant α2h2 (t) ∗ 1

2

=
+∞∫

−∞
α2h2 (t)

1

2
dt = 1

2
α2

+∞∫
−∞

h2 (t) dt

= constant α4h4 (t) ∗ 3

8
=

+∞∫
−∞

α4h4 (t)
3

8
dt

= 3

8
α4

+∞∫
−∞

h4 (t) dt = constant (34)

where:

- A (t) ∗ ss [ω (t)] is also constant and represents a DC
offset that could be removed by applying a high-pass

filter. This offset is not relevant to this calculus, so
there is no need to consider it;

- X (ω) = � [ss (ω (t))] and X (ω) define the inverse ESS
such that �−1

[
X (ω) X (ω)

] = δ (t − t0);

- If � [g (ω (t))] = X (ω), then � [g (aω (t))] = X( ω
a )

|a| ;
- All of the signals are real; therefore, it is sufficient to

consider the positive side of the spectrum and leave
the Hermitian symmetry properties (i.e., even ampli-
tude spectrum and odd phase spectrum) to manage the
negative one. This makes it possible to affirm:

� [cs (ω (t))] = j� [ss (ω (t))] = j X (ω) (35)

The term j = e j π
2 delays every component of the ESS by

π/2 degrees. As ESS only has one frequency component in-
stant by instant, the product between j and X (ω) transforms
sine to cosine and the sine-sweep to a cosine-sweep. Fourier
transforming (34) and deleting the DC offset produces the
following:

� [
y (t) ∗ ss [ω (t)]

] ≈ B (ω) X (ω) X (ω)

+ C (ω) j
X

(
ω
2

)
|2| X (ω)

+ D (ω)
X

(
ω
3

)
|3| X (ω)

+ E (ω) j
X

(
ω
4

)
|4| X (ω)

+ F (ω)
X

(
ω
5

)
|5| X (ω) (36)

where B (ω) , C (ω) , . . . F (ω) represent the Fourier trans-
form of B (t) , C (t) , . . . F (t). As

�−1 [
X (ω) X (ω)

] ∼= δ (t − τ1)

�−1

[
X

(
ω
2

)
|2| X (ω)

]
∼= −δ (t − τ2)

�−1

[
X

(
ω
3

)
|3| X (ω)

]
∼= δ (t − τ3)

�−1

[
X

(
ω
4

)
|4| X (ω)

]
∼= −δ (t − τ4)

�−1

[
X

(
ω
5

)
|5| X (ω)

]
∼= δ (t − τ5) (37)

the inverse-transform of (36) will be:

deconv (t) ∼= �−1 [
B (ω)

] ∗ δ (t − τ1)

+�−1
[− jC (ω)

] ∗ δ (t − τ2)

+�−1
[
D (ω)

] ∗ δ (t − τ3)

+�−1
[− j E (ω)

] ∗ δ (t − τ4)

+�−1
[
F (ω)

] ∗ δ (t − τ5) (38)

that can be written as follows

deconv (t) ∼= k1 (t − τ1) + k2 (t − τ2) + k3 (t − τ3)

+ k4 (t − τ4) + k5 (t − τ5) (39)
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The addenda in (39) are, from right to left, the first five
impulses in Fig. 6d; their starting point is described by
(27). Once they have been isolated, it is necessary to anti-
transform the Hn (ω) to obtain the Volterra kernels hn(t)
using the following:

K1 (ω) = B (ω) = αH1 (ω) + 3

4
α3 H3 (ω) + 5

8
α5 H5 (ω)

K2 (ω) = − jC (ω) = − j

[
−1

2
α2 H2 (ω) − 1

2
α4 H4 (ω)

]

K3 (ω) = D (ω) = −1

4
α3 H3 (ω) − 5

16
α5 H5 (ω)

K4 (ω) = − j E (ω) = − j
1

8
α4 H4 (ω)

K5 (ω) = F (ω) = 1

16
α5 H5 (ω) (40)

that can be rewritten as:

H1 (ω) = K1 (ω) + 3K3 (ω) + 5K5 (ω)

α

H2 (ω) = −2 j K2 (ω) − 8 j K4 (ω)

α2

H3 (ω) = −4K3 (ω) − 20K5 (ω)

α3

H4 (ω) = 8 j K4 (ω)

α4

H5 (ω) = 16K5 (ω)

α5
(41)

Once the kernels of the system are known, it is possible to
calculate the system’s output using (6).

It should be noted that the approximations in (37) be-
come worse the higher the degree of non-linearity becomes.
However, assuming that all of these terms are similar, both
to each other and to δ (t − τn), makes it possible to easily
solve the operations, and in practice, even with these kind
of known errors, the results will be satisfactory.

Figs. 8, 9, and 10 show how this approximation worsens
when the system becomes more non-linear, and therefore
the higher kernels, where the mismatch increases, cannot
be neglected.

2.6 Phase Mismatch
The harmonic components of the sine sweeps have a

phase distortion that provokes an incorrect emulation of
the non-linear system. This could be avoided by modifying
the ESS signal as proposed in [14]. Considering Eq. (37),
the first equation states that convolving a sine sweep, e.g.,
of 15 s from 20 Hz to 48 kHz, with its inverse results in a
waveform of the Dirac Delta type. This is always verified as
shown in Fig. 9b. The amplitude diagram of the frequency
response shows a flat spectrum, and the waveform also has
a shape that can be compared to that of a Dirac Delta.

The second equation in Eq. (37) states convolving the
aforementioned inverse sine sweep with a sine sweep of 15
seconds between 40 Hz and 96 kHz should equally obtain
the Dirac Delta. Fig. 10b shows how this expectation failed
to be met in this case. The problem is not caused by aliasing
limitations but is due to a phase distortion of the harmonic
components of the signal. To solve these problems, it is nec-

Fig. 8. Worsening of the assumption in (39) as the degree of
nonlinearity rises.

Fig. 9. Delta Dirac from the first equation of (37).
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Fig. 10. Delta Dirac from the second equation of (37).

Fig. 11. Emulation of a nonlinear system:(a) real waveform, (b)
virtual waveform without phase correction, (c) virtual waveform
with phase correction.

essary to calculate four FIR filters, which, once they have
been applied to the Dirac Deltas, are able to “re-align” the
phase, returning the signal to the type of shapes shown in
Fig. 9. The FIR filters may be easily calculated for example
by means of the Nelson/Kirkeby frequency-domain regu-
larization [15]. Once the four corrective filters have been
calculated and applied to the corresponding harmonic re-
sponses in Eq. (16), it is finally possible to correctly emulate
the non-linear system, as shown in Fig. 11.

3 EXPERIMENTAL RESULTS

To test the efficiency of the theoretical formulation given
above, a non-linear hardware device was tested (namely,
the Ibanez Tube Screamer guitar overdrive pedal, Fig. 12).
This choice, made also by other authors [15, 16, 17], was
due to the natural non-linearity of this device and its fame
in music production.

Fig. 13a shows the input signal for the test. A set of five
exponential sine-sweeps, different in amplitude, with the
following features were used: f0 = 40 Hz, f1 = 20 kHz,
duration 15 s, amplitude = 10%, 25%, 50%, 75%, 90%
full scale. This signal stimulates the device in five different
regions of operation, mapping its behavior roughly across
its whole dynamic.

Fig. 12. Tube screamer anatomy.

Fig. 13. Tube Screamer’s test.

Fig. 13b shows the Tube Screamer’s output, and Fig. 10c
shows the deconvolution of the output signal with an ESS
50% full scale as input. The large number of impulses un-
masks the non-linear nature of the device.

Table 2 shows the RMS values of the five exponential
sine sweeps; it could be possible to calculate five sets of
kernel (one set per amplitude value) and, according to the
power of the input, choose which set must be used during
emulation, depending on the power input of the overdrive.
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Table 2. RMS value of the five ESS
input signals

Amplitude RMS

90% 0.96 dB
75% 2.54 dB
50% 6.06 dB
25% 12.08 dB
10% 26.06 dB

3.1 Numerical Simulation
A numerical code was developed to properly recreate the

non-linear effect up to the tenth order. It could handle the
output of the non-linear system, starting from the knowl-
edge of the ESS utilized for the measurements, i.e., f0, f1,
T, amplitude.

3.2 ESS Emulation
The first test consisted of emulating the output of the

device if the input was the train of ESS used for the mea-
surement, as depicted in Fig. 14.

The spectral analysis in Fig. 14 highlights the circled
case in Fig. 14f as the best emulated, and Fig. 14e shows
the worst one. The difference between the two cases is

due to the different level of matching between the kernel
set and the input file: the chosen deconvolution file and,
consequently, the kernel set is relative to the 1/2 full scale
of the ESS signal; therefore, the best emulation is clearly
achieved with the 1/2 full scale ESS.

As the numerical code emulates a finite number of or-
ders, it is expected that the real output has more harmonics.
However, it is significant to note how well the amplitudes
of the emulated harmonics match the original ones.

3.3 Music Emulation
The second test consists of the emulation of the device

with a piece of music as input. The chosen song (namely
“I Thank You Child,” Book of Shadows, Zakk Wylde) con-
tains a clean guitar arpeggio; this is the type of input with
which the Tube Screamer has been designed to work. The
mean RMS value of the input file is –11.73 dB; from Table
2, the better deconvolution file to be used is the 25% full
scale ESS relative one. To estimate the results, a compari-
son between the real-out spectrum and the virtual-out spec-
trum could be misleading because too many frequencies
are present. The comparison between the waveform and a
simple listening test can prove the effects of the emulation.

Fig. 14. Real and virtual output of the device.
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Fig. 15. Clean guitar sound emulation.

4 CONCLUSIONS

The sine sweep measurement techniques developed by
Farina and the mathematical framework developed in this
paper provide a way to obtain an approximated version of
the kernels to use in Eq. (7). It is known that by using a
sine sweep (one frequency at time), only information about
harmonic distortions at given amplitudes can be captured.

Nothing is known about intermodulation distortions. They
are generated by the Volterra diagonal model but are treated
with the same kernels used to equalize the harmonic ones.

Even with these known limitations, sine sweeps and the
Volterra diagonal model provide excellent results when
adopted to emulate non-linear devices such as the Tube
Screamer in which the richness of sound resides mainly in
harmonic distortions.
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