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1 Introduction

Since the seminal work of Ficici et al. [10], Embodied Evolutionary Robotics (EER) as a field has greatly
matured. Its main objective is two-fold: on the one hand it provides an on-line distributed learning
method for designing swarm behaviors and, on the other hand, it allows making predictions and verifying
hypothesis stemming from natural or artificial life models [4]. There has been a lot of work on both
ends by the research community, furthermore there has also been some work to improve and deepens our
understanding of the algorithm themselves.

In a nutshell, EER are algorithms in which evolution is carried out in a decentralized manner. Each agent,
typically a mobile robot, runs an EA onboard and exchange genetic material with other agents when they
meet. Selection and variation are performed locally by the agent. As such, there is no central process that
governs evolution, in contrast with traditional evolutionary robotics (ER).

Analyzing and understanding these algorithms present many challenges some of which exist also in tradi-
tional ER and some of which are inherent to their distributed nature and the fact that they operate online
and on which many questions remain open. In this paper, we attempt to contribute to this latter issue by
studying the effect of recombination or what is commonly known as crossover in these algorithms.

From the theoretical work on evolution strategies (ES) [3], it has been shown that recombination is a
central component of these algorithms. It allows the strategy to speed up its progress toward good solu-
tions and to improve robustness against selection errors. These benefits were discussed in [2, 3], where
the author argues that recombination is beneficial due to the genetic repair principal (GR) which reduces
the effect of the harmful components of mutation as a result of the averaging process. This can be seen
as a compensation of the statistical error rather than the combination of good traits, as advocated by the
building bloc hypothesis. As a consequence of GR, recombinant evolution strategies are able to cope and
operate under larger mutation steps than their non recombinant counterparts. Furthermore, the benefit
of GR has also been emphasized in the presence of noise in fitness evaluations where [1] argues that, com-
bined with higher mutation steps, recombination can reduce the signal-to-noise ratio in the evaluation.
This is of particular interest in EER, where evaluations are subject to noise and evaluation conditions are
dynamic.

Recombination is not new in on-line EER, different authors have proposed implementations with different
forms of crossover. To our knowledge however, none attempted the weighted intermediate recombination
from ES. We briefly review some of that work in the following. For a more comprehensive review, we
recommend [4].

In the Probabilistic Gene Transfer Algorithm (PGTA) [18], as the name suggests, recombination is im-
plemented at a gene level. Agents broadcast randomly sampled genes from their genomes and when they
receive genes from other agents, they replace the corresponding gene with a probability. The rate at which
the agents broadcast their genes is proportional to their energy level (fitness) and conversely, the rate at
which they accept a received gene is inversely proportional to their energy level. This way, selection
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pressure is introduced in the fact that fit agents transmit their genes to unfit ones.

In the Embodied Evolutionary Algorithm (EEA) [13], agents select a gnome from their local population
(received from potential mates) using a binary tournament. This selected genome is then recombined
with the current active genome with a probability proportional to the ratio of its fitness and that of
the currently active genome. The newly created genome is the average of both parents. In this case,
the fitter the selected genome is, the higher is the recombination probability. More recently [12] used a
uniform crossover between a genome selected from the local population and the active genome. In [14],
when agents meet, they exchange genetic material and accept the partner’s genome if it is fitter. On
replacement, the newly generated genome is obtained using a binary crossover.

The above mentioned articles used fixed topology controllers where the controller elements need not be
matched prior recombination due to the competing conventions problem [15]. Few implementations
adapted the innovation marking introduced in the Neuro-Evolution of Augmenting Topologies algo-
rithm [17], to the distributed case. In this case, innovations appear locally in the population and are
not known to all agents who must order them correctly before performing a crossover [16, 9].

1.1 Objectives

EER algorithms are different from their traditional ER counterparts in many aspects. We will emphasize
our discussion on two aspects. On the one hand, in addition to learning the task, solutions must also
spread their genetic material in order to survive. On the other hand solutions get evaluated in different
conditions. The consequence of the first aspect is obvious, solutions can only overcome environmental
selection pressure, if they manage to spread copies of themselves to other vehicles, having a good fitness
is not sufficient. The consequence of the second aspect is less obvious. When solutions manage to survive
and are reevaluated on other agents, their behaviors will be different due to the interactions with the
environment. Therefore, having been evaluated favorably on one agent, does not guarantee survival, the
solution must be robust to noisy evaluations. In a sense EER can be viewed as constantly searching for an
equilibrium between finding solutions that are fit and robust and that can spread to ensure survival.

We propose the (µ/µW, 1)-On-line EEA which adapts the well-known weighted intermediate recombi-
nation [11] scheme to on-line EER settings. Since this operator was designed for real vectors, we consider
controllers with a fixed topology and evolve only their weights. We study the impact of different variants
of this recombination scheme on different collective robotics scenarios. More precisely, we would like to
show if the observed effects of recombination in ES can also benefit EER.

We state the following hypotheses claiming that recombination:

H.1 allows the algorithm to reach better solutions than without, and,

H.2 reduces the effect of an inappropriately chosen mutation step.

We will start by describing the (µ, 1) and introduce its recombinant counterpart on two variants (µ/µW, 1)
and (µ/µD, 1). We then describe our experimental procedure along with the tested scenarios, and conclude
with the discussion of the results.

2 Methods

2.1 The (µ, 1)-On-line EEA

The main inspiration of the (µ, 1)-On-line EEA (Algorithm 1) is the original version of mEDEA [5]. The
algorithm considers a swarm of λ mobile agents aj with j = 1, . . . , λ each executing a neuro-controller
whose parameters are xj (the active genome). Each agent maintains a list Lj , initially empty, in which it
stores other genomes that it receives from other agents.

At each time step t < tmax, an agent executes its active controller and broadcasts its genome within
a limited range. In parallel, it listens for genomes originating from other agents, and when a genome
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is received (a mating event), it is stored in the agent’s list Lj (its local population). This procedure is
executed in parallel on all agents during tmax steps, the evaluation period or one generation.

At the end of a generation, the agent selects a genome from its list Lj (the selection step), and replaces
its active genome with a mutated copy of the selected one. The list is then emptied and a new generation
begins.

In the event where an agent had no mating opportunities and finishes its evaluation period with an empty
list Lj = ∅, it becomes inactive; a state during which the agent is motionless. During this period, the
inactive agent continues to listen for incoming genomes from other agents, and once Lj 6= ∅ the agent
becomes active again at the beginning of the next generation.

The number of genomes the agents collects µj = |Lj | (0 ≤ µj ≤ λ) is conditioned by its mating encounters.
Since the communication range is limited, agents that travel long distances will increase their probability
of mating. We should note that mating encounters allow agents to spread their active genome and to
collect new genetic material. The algorithm stores only one copy of the same genome1 if it is received
more than once.

Since the algorithm runs independently on each agent, fitness values are assigned to the individual agents
based on their performance with regard to the given task. These values are continuously updated during
the agent’s lifetime (line 11). Each agent stores this value internally and broadcasts it along with its
genome during mating events. Agents on the receiving end store the genome and its fitness in their lists.
If an agent receives an already seen genome, it updates the genome’s fitness as it is the most up to date
value. Furthermore, to ensure that genomes are transmitted with accurate fitness values, a maturation age
is required of the agent before broadcasting [19, 13]. This ensures that the fitness is sufficiently updated
before transmission. Finally, we should emphasize that fitness evaluations are intrinsically noisy since
measurements are performed in varying circumstances.

The (µ, 1)-On-line EEA can be viewed as λ instances of (|Lj |, 1)-EA running independently in parallel,
where for each instance, Lj ⊆ {x1, . . . , xλ}, i.e. each local population is a subset of the set of all active
genomes of the generation. Furthermore, the sizes of the individual local populations µj are not constant
although bounded by λ and depend on the number of mating events (possibly none) the agent had in
the previous generation. The selection procedure (line 16) is based on the fitness of the genomes in

Algorithm 1: (µ, 1)-On-line EEA.

1 for 1 ≤ j ≤ λ in parallel do
2 xj ← random()
3 aj is active

4 repeat
5 for 1 ≤ j ≤ λ in parallel do
6 t← 0, f j ← Lj ← ∅
7 while t < tmax do
8 t← t+ 1
9 if aj is active then

10 execute(xj)
11 update(f j)
12 if t > τtmax then
13 broadcast(xj , f j)

14 Lj ← Lj ∪ listen()

15 if Lj 6= ∅ then
16 xj ← mutate(select(Lj))

17 else aj is not active

18 until termination condition met

1The term same is here used in the sense “originating from the same agent”.
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the individual lists. In this work, the genome is a vector x ∈ IRN , which represents the weights of the
neuro-controller and f : IRN → IR. Only the weights undergo evolution (fixed-topology). We will note
L = {x1 . . . xµ} the local population on some agent, and we consider a maximization scenario where xi is
fitter than xk imply f(xi) ≥ f(xk).

2.1.1 Selection in (µ, 1)-On-line EEA

The next active genome is the winner of an adapted k-tournament selection scheme which randomly draws
k > 0 solutions from the local population L of µ parent solutions and returns the best solution among the
parents. The tournament size k, sets the selection pressure of the procedure, and is usually a parameter
of the EA. However, since the size of the parent population varies from agent to agent and from one
generation to another, the size of the tournament cannot be chosen beforehand. In practice, we fix k as a
function of µ and in its simpler form this function can be a linear projection such as k = bαµc + 1 with
α ∈ (0, 1), but more sophisticated functions could also be considered. In this case, α is the parameter that
tunes the selection pressure. We present results for the following variants α ∈ {0, 0.25, 0.5, 1.0}, where the
case α = 0 (no selection pressure) is similar to the original mEDA algorithm.

The selected genome, which we note x̄, is then mutated to generate the next genome. Mutation is Gaussian
with a fixed step size σ ∈ IR:

x := x̄+ σ2 ×N (1, 0) (1)

2.2 Adding recombination

The only difference between algorithm 1 and (µ/µ, 1)-On-line EEA, its variant with recombination, lies
in the generation of the next active genome. When recombination is considered, all the genomes in the
local list undergo mutation before recombination. Line 16 is replaced by the lines in Algorithm 2 in which
mutation is identical to eq. 1. We consider two types of recombination schemes that are detailed below.
All individuals in Lj participate in the recombination, one can also implement truncation by selecting a

Algorithm 2: (µ/µ, 1)-On-line EEA.

15 · · ·
16 foreach xi ∈ Lj do
17 xi ← mutate(xi)

18 xj ← recombine (Lj)
19 · · ·

portion of the list containing the most fit elements 2 this allows to further increase selection pressure.

2.2.1 Weighted intermediate recombination

This recombination scheme is similar to weighted intermediate recombination from CMA-ES [11]. The
newly generated genome is defined as:

x̄ =

µ∑
i=1

wi xi:µ, with
µ∑
i=1

wi = 1, and w1 ≥ w2 ≥ . . . ≥ wµ > 0,

where wi=1...µ ∈ IR+ are the recombination weights and the index i:µ denotes the i-th ranked individual
and f(x1:µ) ≥ f(x2:µ) ≥ . . . ≥ f(xµ:µ). By assigning different values to wi it can also be considered
as a selection scheme since fitter solutions have greater weights in the sum. We call this version of the
algorithm (µ/µW, 1)-On-line EEA.

2Truncation should take into account variable population sizes similarly as in tournament size.
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In [11], the weight generation function was defined as wi =
w′
i∑µ

k=0 w
′
k

where w′i = log(µ + 0.5) − log i. In
our implementation, we chose to define a more flexible weight generation function which can be tuned to
specify a desired selection pressure. Let g(x) = (1−x)β with g : IR→ IR and β ∈ IR+, and h(i) = (i−1)/µ
with i = 1, . . . , µ, we define the weight generation function as:

w′i = (g ◦ h)(i) i = 1, . . . , µ

and normalize to make sure the sum is 1. We emphasize that g is monotonically decreasing and positive
on (0, 1), to ensure that w′i ≥ w′i+1 and that w′i ≥ 0. Furthermore, β allows to define the profile of g which
in turn define a selection pressure: the amount of weight we give to the fittest individuals (Figure 1 left).
Note that when β = 0, all weights are equal and there is no advantage given highly ranked individuals,
we can consider this as a case where there is no selection pressure. We present results for the following
variants β ∈ {0, 1, 4} and the original log rule from [11].

2.2.2 Dominant recombination

This recombination scheme [3] is closely related to recombination in PGTA [18]. In this version, offspring
are composed of genes originating each from different agents. The newly generated genome is constructed
gene by gene, where each gene at a given locus is selected among the parents in the local population at
the same locus. We call this version of the algorithm (µ/µD, 1)-On-line EEA.

We test different variants, each parent in L = {x1, . . . , xµ} is assigned a selection probability: 1) propor-
tionate to its fitness, 2) proportionate to its rank and 3) uniform. If we note the locus k of a genome xi as
x
[k]
i then we write these probabilities as:

Pr
(
x̄[k] = x

[k]
i

)
=



f(xi)∑µ
j=0 f(xj)

fitness prop.

1− exp(−(i:µ))

c
rank prop.

1

µ
uniform.

where (i:µ) is the rank of xi and c is a probability normalizing constant. The last instance corresponds to
the case where there is no selection pressure towards fit individuals.

2.3 The effect of variable population sizes

The fact that the size of the local lists L varies from agent to agent depending on their respective mating
encounters, affect the sampling process that generate the new active genome, which in turn affects the
selection pressure applied on the agent level. It is higher on agents with small population sizes.

For example, in (µ, 1), the probability of selecting the best solution from the list by tournament is α <
bαµc+1

µ ≤ α+ 1
µ . This probability is higher on agents with small populations than it is on agent that have

larger ones. This is also the case of (µ/µD, 1): the probability of selection the fittest individuals is higher
on smaller population.

Variable population sizes also affects (µ/µW, 1), even thought selection is a byproduct of the weight values
and not a sampling process. The weights wi may also be different from agent to agent due to their
normalization (Figure 1 right). And here again the EA gives a selection advantage to agents that had less
mating encounters.

The importance of this fact remains an open question. We conjuncture that this is a minor issue since over
time its effects may be smoothed out. Nevertheless, this side effect suggests that the algorithm naturally
gives an advantage (an incentive or a chance to survive) to genomes that performed poorly (whose agents
had the less mating encounters) which could be a desirable feature.
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Figure 1: Recombination weights with different generating functions (left), same generating function for
different population sizes (right).

2.4 Learning tasks

We considered three different learning tasks: locomotion, item collection and item foraging (Figure 2).
All tasks share the same circular environment with the same obstacles (rectangles in the figure). In the
collection and foraging scenarios, items (red dots in the figure) are randomly placed in the environment.

Agent perceive obstacles within their sensing range using 12 range sensors and an additional 12 sensors
that are high when the obstacle is a wall. All sensors are evenly placed around the agent’s body and
measure distances on a line of sight. Agents move using 2 motor effectors (differential drive motion).
The neuro-controller we consider in this work is a simple feed-forward multi-layered perceptron with one
hidden layer that maps sensory inputs (values in [0, 1]) to motors outputs (values in [−1, 1]). This is the
base architecture shared by all learning tasks. Additional sensors and effectors depending on the task are
detailed in the following.

Finally, we define learning assessment measures, m1 and m2, that give insights on how well the task is
performed. They take values in [0, 1], where large values reflect good behaviors. These measures are not
used in the evolutionary process, although they are recorded during evolution.

2.4.1 Locomotion

In this scenario, there are no additional sensor or effectors and the goal of the swarm is to learn to
travel long distances. The fitness function in this case is the distance traveled since the beginning of the
generation. To measure how well the agent perform we compute:

m1 =
1

tmax

tmax∑
t=1

|vt| and m2 =
1

tmax

tmax∑
t=1

1− |ωt|

where vt and ωt are the normalized instantaneous translation and rotation velocities. When the agent
travels at maximum speed in a straight line m1 = m2 = 1.

2.4.2 Collection

In this scenario, the goal is to maximize the number of collected items. The fitness function is simply the
number of items collected since the beginning of the generation. Agent must bump on items to collect
them, and when collected, the item reappear at some random location. There is always the same number
of items in the environment. For this task, 12 additional sensors are added to the agents that are active if
the sensed obstacle is an item. For this task:

m1 =
1

tmax

tmax∑
t=1

ct and m2 =
1

tmax

tmax∑
t=1

cos(st)
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where ct ∈ {0, 1} depending on whether the agent collected an item or not3, st is the angle between the
most activated item sensor and the heading of the agent. m2 measures how well the agent aims at the
sensed items.

Figure 2: An overview of the Roborobo simulator, locomotion (left) collection (center) and foraging
(right).

2.4.3 Foraging

This last task is the most difficult among the three. The goal here is to collect items and deposit them the
closest to one of two specified locations (black circles in Figure 2 right). Using the ant foraging metaphor,
a constant pheromone gradient (green color level in the figure) is present in the environment whose value
is the highest (1) at the goal locations and lowest (0) at the lighter areas.

Agent can carry more than one item at a time up to a given limit, their maximum basket capacity. In
addition to the item sensors described for the previous task, agents have 12 additional pheromone sensors.
At each time step, only the one on the highest pheromone value is active all the rest remain inactive,
giving a sense of direction of the pheromone concentration. Agents have one extra sensor that gives the
number of items in the basket (0 meaning empty and 1 meaning full).

Finally, to deposit the items, agents must make a decision to drop one or more items at their current
position. For that they have as many effectors as the maximum capacity of their basket, each taking
values in [−1, 1]. The number of effectors that output a positive value is the number of items dropped.
The items reappear at some random location as in the previous task.

The fitness function is updated at each deposit decision, and is computed as the number of dropped items
multiplied by the pheromone value at the drop location. For this task:

m1 =
1

tmax

tmax∑
t=1

{
cos(st) if basket empty

cos(pt) otherwise

where st it the same as in the previous task and pt is the angle between the most activated pheromone
sensor and the heading of the agent. And,

m2 =
1

tmax

tmax∑
t=1

2(φt)2dt − ((φt)2 + dt)− 1

where φt is the pheromone value at the drop position, and dt is the number of dropped items normalized
by the maximum capacity. m1 measures how well the agent aims at the sensed items or the nest depending
on if it is carrying items or not, and m2 measure the suitability of the dropping decision.

3The value of m1 is equal to the average fitness in one time-step.
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3 Results

All the results, data analysis scripts and the source code of the implementations of the algorithms are
publicly available.4

3.1 Experiments

The experiments were performed on the Roborobo simulator [6] an environment that allows us to run ex-
periments on large swarms of agents5. In this simulator, agents are e-puck like mobile robots with limited
range sensors and two differential drive wheels. We emphasize, that our main goal is to compare algorithm
instances, and not solve the tasks optimally. All algorithms are run on the exact same environment, with
the same conditions. All the parameters of the experiments are summarized in Table 1.

3.2 Measures

To assess of the performance of an algorithm, we use the fitness, it variance, and both learning assessment
measure m1 and m2. At each generation, these values are summed over the entire population (except
for the variance) to summarize the performance of the swarm in one run of a given algorithm on a given
scenario. For example, the fitness and variance are measured as:

f̂(g) =

λ∑
j=1

f j(g), Var[f ](g) =
1

λ

λ∑
j=1

(
f j(g)− f̂(g)

λ

)2

,

for g = 1, . . . , gmax

(2)

where f j(g) is the fitness of agent j at generation g. f̂(g) indicates the total fitness of all the agents and
V ar[f ](g) indicates how the fitness values of the individual agents are spread at generation g.

To compare all three algorithms and their variants, each algorithm is executed 30 times, and we compare
the above measures using median and the percentiles. Furthermore, we compare the algorithms using a
Mann-Whitney U test with the null hypothesis being “the distributions of results of both algorithms are
equal”. Here again we employ a summation to compress the results of one run of one algorithm instance
in one value. For instance in the case of fitness:

f =

gmax∑
g=1

f̂(g) (3)

This is done for all measures, and their distributions (30 values) are compared in the statistical test. We
establish that instance “A” outperforms instance “B” on a given measure, if the median value for instance
“A” is better than for “B” and there is significant statistical difference between the distributions. The
level of statistical significance is indicated on the figures by the number of asterisks where for example 4
asterisks indicate a p-value < 10−4.

3.3 Discussion

Before discussing the result, we give short recap of the algorithms and their variants we tested, this is
shown on Table 2. Figures 3, 4 and 5 present the results. The curves illustrate fitness values f̂(g) during
evolution (left column) and box-plots of f of 30 independent runs. On the rightmost column, we show the
scatter plot of m1 and m2 (the closest to the top right corner, the better is the behavior). The size of the
colored circles is scaled according to f , and the gray ellipses indicate where 50% (inner ellipse) and 90%
(outer ellipse) of the points lie. The black dot being the median.

4https://gitlab.inria.fr/boumaza/public-code/
5Roborobo3 at commit 95702593ae37d2a2b313fd0f084f98a6dab081f6
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Table 1: Simulation parameters.
Arena diam. (pix) 400 λ 120
tmax 600 gmax 300
Sens./com. range 32 α {0, 0.25, 0.5, 1}
Agent/item diam. 6 β {0, 1, 4}
Max trs. vel. (pix.) 2 / tic σ, σ0 0.25
Max rot. vel. (deg) 30 / tic (σ−, σ+) (0.01, 1.1)
Init. weights [−1, 1] γ 0.35
Nb. runs 30 Mat. Time 0.8× tmax

Loc. Col. For.
Nb. items - λ/2 λ/2
Basket Size - - 5
Sensors/in 24 36 49
Effector/out 2 2 7
Hid. Neuron 5 5 10
N (genome size) 135 195 570

Table 2: Algorithm variants.
Algorithm Variants
(µ, 1) α ∈ {0, 0.25, 0.5, 1}
(µ/µD, 1) fitness proportional, rank proportional, uniform
(µ/µW, 1) β ∈ {0, 1, 4}, log

3.3.1 Comparing Variants

Before comparing algorithms, we first look at their variants (Figure 3), which will allow us to choose the
variant that performs the best for the rest of the comparison.

In the case of (µ, 1), the selection pressure (the tournament size) is varied from less selective to most
selective. Overall, in all three scenarios, the more selective the strategy is, the higher its fitness is. This
result is not new, at least for locomotion and collection, it has been reported by several authors, see for
example6 [8]. Interestingly, if we look at m1 and m2 there is no statistical significance (p − value > 0.05)
between α = 0.5 and α = 1.

In the case of (µ/µD, 1), the instance that selects genes proportionally to the fitness of their host genome,
outperforms all other instances in all scenarios. The difference is significant on all measures. On the other
hand, rank-based selection performs as badly as uniform selection.

Finally, in the case of (µ/µW, 1), except for case where the recombination weights are equal, all other
instance performed almost equally (although statistically different). Fitness-wise, the overall winner is
the variant (β = 4). However, on m1 and m2, it does not win by much.

We should note that there is a high fitness variance in locomotion than in the other tasks. This is probably
due to the fact that fitness is updated at a higher frequency (every time step) in locomotion whereas only
when collecting or dropping items in the other tasks, which smooths the values. The second observation
we can make, is that in all task, the algorithm variant that is the most selective performs better. This
is due to the fact that selection pressure does not affect ERR algorithms similarly as in traditional ER
algorithms7. Agents act as quasi separate islands on which selection is performed after which the popula-
tion are emptied. Although there may be a high selection pressure locally within agents, globally on the
swarm this is not the case. Finally, foraging is the task for which the results are the less discriminant. It is
the hardest task (sequential decision making) and our choice of fitness function or controller architecture8

might not be the best. But for the purpose of this work it is sufficient.
6Even though we use a different fitness function for locomotion, the result holds.
7Where selection is performed from one population.
8Feed-forward no recurrent connections.
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3.3.2 Verifying claim H.1

In order to establish if recombination improves the quality of the solution, we compare the best variants of
each algorithm i.e. (µ, 1) with α = 1 (the highest selection pressure), (µ/µD, 1) with fitness proportional
selection and (µ/µW, 1) with β = 4. Figure 4 shows the results. When comparing fitness values, we
observe clearly that (µ/µW, 1) outperforms and by far both (µ, 1) and (µ/µD, 1) on all three scenarios this
behavior is also observed on the scatter plots. This establishes the fact that recombination can improve
the results, although not any recombination, only weighted intermediate.

3.3.3 Verifying claim H.2

Now that we established that recombination can improve solution quality in the tested scenarios, let
consider our second claim. i.e. recombination reduces the effect of badly chosen mutations steps. In
other to test this hypothesis, we compare recombination with a fixed step-size to a self-adaptive version
to (µ, 1)-On-line EEA with a σ-update rule [5]. Each genome has its own step-size σ whose initial values
is σ0. When broadcasting, in addition to the genome and its fitness, agents broadcast their step-sizes. On
the receiving end, when a genome is selected from the local list it is mutated using its σ. Updates take
place on the sending end, where at each broadcast, the agent transmits with equal probability (0.5) either
an increased or a decreased value of its genome step-size. The motivation behind this rule is that the most
adapted value between the two, will survive and spread in the swarm. The update rule is defined as:

σ =

{
min

(
σ(1 + γ), σ+

)
if increase

max
(
σ(1− γ), σ−

)
if decrease

where σ+ and σ− are the allowable upper and lower bounds (Table 1). This version of the algorithm is
dubbed (µ, 1).

The results (Figure 5) show that, not only (µ, 1) outperforms it non self-adaptive counterpart, it performed
better than (µ/µW, 1) (on locomotion and collection). The difference is not that clear when we look
at the curves, it is however statistically significant. Both these tasks are considered easy and do not
require learning complex behaviors. On the foraging task the results are reversed, (µ, 1) does not win,
but it increased its performance by a large factor in comparison to (µ, 1). This suggests that in higher
dimensional search spaces, recombination with a fixed step size can perform a slightly better than a
strategy with an adaptive step size. From the values of f , m1 and m2, we see that both (µ/µW, 1) and
(µ, 1) produce behavior that are roughly similar. Furthermore, if we look at the values of the step-size, we
observe that they converge to a low value which suggests a convergent behavior of (µ, 1).

The poor performance of (µ, 1) could thus be explained by the value of the fixed step-size that was wrongly
fixed not allowing the algorithm to converge. The same fixed step-size with which (µ/µW, 1) reached much
better results. [7] emphasized that mutation step size adaptation is important in EER settings. Although
they used a different adaptation rule, our result is coherent with theirs.

The results on the foraging scenario could also be explained by the fact that the combination of noise and
the size of the search space, might require a longer time for the adaptation rule to find optimal values for
σ. A less conservative rule might perform better. Further, [1] states that in the presence of noise, higher
mutation steps and recombination reduce the signal-to-noise ratio which improves the robustness against
selection errors. This could explain the performance of (µ/µW, 1), the averaging effect of recombination
reduces the effect of the inadequate mutation step. Perhaps a related argument could be made regarding
the adaptation of σ. Upon convergence, lower step size values create a noise smoothing effect, however,
they also reduce the chance to reach better solutions in high dimensional spaces, something that (µ/µW, 1)
could do with its higher step size. A better σ adaptation rule, one that integrates the progress history,
could avoid this premature convergence. This can however be a very challenging task in EER settings.
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4 Conclusions

It has been argued that recombination is beneficial in evolution strategies because of the genetic repair
principle. The main idea in this work was to test if these could also be observed in EER. We proposed
(µ/µ, 1)-On-line EEA that implements two types of recombination and studied its behavior on three
different tasks. The results suggest that it is the case at least for intermediate weighted recombination:
solutions are improved significantly and the algorithm can in fact cope with inadequately set mutation
steps. At this stage, we can identify different research directions to pursue. Since recombination performs
an averaging, does it have an effect on the genetic diversity of the population? Could we design a step-size
adaptation mechanism that could be applied in the case of recombination and that would help further
convergence? Finally, to further strengthen these results, other scenarios should be considered.
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Algo. Task f̂(g) (Eq. 2) Var[f ](g) (Eq. 2) f (Eq. 3) m1 and m2
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Figure 3: Results of all algorithms on all tasks. Curves represent median (solid line), the range between
the 25th and the 75th percentile (darker area) and between the 5th and the 95th percentile (lighter area).
On the scatter plots, m1 lies on the abscissa and m2 on the ordinate.
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Task f̂(g) (Eq. 2) Var[f ](g) (Eq. 2) f (Eq. 3) m1 and m2
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Figure 4: Comparison of (µ, 1) with α = 1, (µ/µD, 1) with fit. prop. selection and (µ/µW, 1) with β = 4.
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Figure 5: Comparison of (µ, 1) with α = 1, and (µ/µW, 1) with β = 4.
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