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Abstract

Program transformation is a common practice in computer science, and its many ap-
plications can have a range of di�erent objectives. For example, a program written in
an original high level language could be either translated into machine code for execution
purposes, or towards a language suitable for formal veri�cation. Languages often have a
lot of di�erent constructions, and thus, transformations often focus on eliminating some of
these constructions, or at least processing some speci�c sequence of constructions. Rewrit-
ing is a widely established formalism to describe the mechanism and the logic behind such
transformations. It relies mainly on the principle of rewrite rules to describe the di�er-
ent operations performed. Generally type-preserving, these rewrite rules can ensure that
the transformation result has a given type and thus give syntactic guarantees on the con-
structions it consists of. However, we sometimes want the transformation to provide more
guarantees on the shape of its result by specifying that some patterns of constructions does
not appear. For this purpose, we propose in this paper an approach based on annotating
transformation function symbols with (anti-)pattern in order for such transformation to
guarantee stronger properties on the shape of its result. With the generic principles gov-
erning term algebra and rewriting, we believe this approach to be an accurate formalism
to any language providing pattern-matching primitives.

1 Introduction

Rewriting is a widely established formalism for a number of applications in both computer
science and mathematics and has been used, in particular, to describe program semantics [13]
and transformations [11, 4]. In general, compilation consists in several phases, also called
passes, eventually obtaining a program in a di�erent target language. These phases use some
corresponding intermediate languages which generally contain less and less constructions of the
original language.

Consider, for example, a very simple language allowing to express some form of λ-expressions:

Expr = V ar(String) | Apply(Expr,Expr)
| Lambda(String,Expr) | Let(String,Expr,Expr)

A �rst step in the compilation of such expressions is to eliminate the Let constructor using the
rewrite rule Let(name, e1, e2) _ Apply(Lambda(name, e2), e1) to obtain pure λ-expressions.

The goal is to provide a formalism allowing to describe such transformations and to guar-
antee that some language constructs are eliminated by these transformations.

Existing works addressed this problem from di�erent perspectives. In particular, a number
of approaches rely on the use of automata to implement transformation. Such approach is
particularly relevent as the input and output of the transformation can be viewed as a regular
language [1] or a tree [3]. While this approach focus on the decidability and complexity of some
speci�c cases it does not handle the general problems we target here. Functionnal approaches
to transformation [12] focus on the simplicity and expressiveness of the formalism more than on
verifying the elimination of constructs. This veri�cation can be performed by using �ne grained
typing systems which combine overloading, subtyping and polymorphism through the use of
variants [7] but is somewhat limited w.r.t. the type of constructs which can be eliminated.
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We use rewriting to de�ne such transformations and annotate the function symbols in order
to check that the associated transformation veri�es the desired elimination properties.

First, in the next section, we will introduce all the notions and notations used in the article.
We will then, in the following section, give a formal de�nition to the property we want pattern
eliminating transformation to guarantee: pattern-freeness. The 2 subsequent sections will be
focused respectively on introducing a method to reliably verify such properties and on studying
how they can be guaranteed by the considered transformations, using and extending notions of
pattern semantics introduced in the notions of the next section.

2 Pattern matching and term rewriting systems

We de�ne in this section the basic notions and notations used in this paper; more details can
be found in [2, 14].

A many-sorted signature Σ = (S,F), consists of a set of sorts S and a set of symbols F .
We distinguish constructors symbols from functions symbols by partitioning the alphabet F
into D, the set of de�ned symbols, and C the set of constructors. A symbol f with domain
Dom (f) = s1× . . .×sn ∈ S∗ and co-domain CoDom (f) = s ∈ S is written f : s1× . . .×sn 7→ s.
Variables are also sorted and we write x : s or xs to indicate that variable x has sort s. The set
Xs denotes a set of variables of sort s and X =

⋃
s∈S Xs is the set of sorted variables.

The set of terms of sort s ∈ S, denoted Ts(F ,X ) is the smallest set containing Xs and such
that f(t1, . . . , tn) is in Ts(F ,X ) whenever f : s1× . . .×sn 7→ s and ti ∈ Tsi(F ,X ) for i ∈ [1, n].
We write t : s when the term t is of sort s, i.e. when t ∈ Ts(F ,X ). The set of sorted terms
is de�ned as T (F ,X ) =

⋃
s∈S Ts(F ,X ). The set of variables occurring in t ∈ T (F ,X ) is

denoted by Var (t). If Var (t) is empty, t is called a ground term. Ts(F) denotes the set of
all ground �rst-order terms of sort s and T (F) denotes the set of all ground �rst-order terms,
while members of T (C) are called values. A linear term is a term where every variable occurs
at most once, and linear terms in T (C,X ) are called patterns.

A position of a term t is a �nite sequence of positive integers describing the path from the
root of t to the root of the sub-term at that position. The empty sequence representing the
root position is denoted by ε. t|ω denotes the sub-term of t at position ω and t [s]ω denotes the
term t with the sub-term at position ω replaced by s. We note Pos (t) the set of positions of t.

We call substitution any mapping from X to T (F ,X ) which is the identity except over a �nite
set of variables called its domain; any substitution extends as expected to an endomorphism of
T (F ,X ). Given a sort s, a value v : s and a constructor pattern p, we say that p matches v
(denoted p≺≺ v) if there exists a substitution σ such that v = σ(p).

A constructor rewrite rule is of the form ϕ(l1, . . . , ln) _ r ∈ Ts(F ,X ) × Ts(F ,X ) with
s ∈ S, ϕ ∈ D, l1, . . . , ln ∈ T (C,X ) and such that Var (r) ⊆ Var (l). A constructor term
rewriting system (CTRS) is a set of rewrite rules R inducing a rewriting relation over T (F),
denoted by −→R and such that t −→R t′ i� there exist l _ r ∈ R, ω ∈ Pos (t), and a
substitution σ such that t|ω = σ(l) and t′ = t [σ(r)]ω.

Starting from the observation that a pattern can be interpreted as the set of its instances, the
notion of ground semantics was introduced in [6] as the set of all ground constructor instances
of a pattern p ∈ Ts(C,X ): JpK = {σ(p) | σ(p) ∈ Ts(C)}.
Proposition 1. Given a pattern p and a value v, v ∈ JpK i� v = σ(p).

Note that the ground semantics of a variable xs is the set of all possible ground patterns:
JxsK = Ts(C), and since patterns are linear we can use a recursive de�nition for the non variable
patterns: Jc(p1, . . . , pn)K = {c(t1, . . . , tn) | (t1, . . . , tn) ∈ Jp1K × . . . × JpnK},∀c ∈ C. Moreover
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JxsK = {c(t1, . . . , tn) | c ∈ C s.t. c : s1× . . .×sn 7→ s ∧ ∀i, ti ∈ JxsiK} =
⋃

c∈CsJc(x1, . . . , xn)K.
We consider also a special pattern ⊥ with J⊥K = ∅. Given two patterns p, q we can com-

pute [6] their complement p \ q, i.e. a set p1, . . . , pn of patterns s.t. Jp \ qK = Jp1, . . . , pnK.

3 Pattern free terms

The sort provides some information on the shape of the terms of the respective sort and in
particular allows one to check if a given symbol may be present or not in these terms. In fact,
the precise language of the values of a given sort is implicitly given by the signature. Sorts are
less informative concerning the shape of the values obtained when reducing terms containing
de�ned symbols since they strongly depend on the CTRS de�ning these symbols.

We want to ensure that the normal form of a term, if it exists, does not contain a constructor
and more generally that no subterm of this normal form matches a given pattern. For this we
annotate all de�ned symbols with the patterns that are supposed to be absent from the normal
form and we check that the CTRS de�ning the corresponding functions are consistent with
these annotations. We will see later on how this consistence can be veri�ed and we focus �rst
on the notion of pattern-free term and the corresponding ground semantics.

We consider that every de�ned symbol f ∈ D is annotated with a pattern p ∈ T (C,X ) ∪
{⊥} and we use this notation to de�ne pattern-free terms. Intuitively, a term of the form
f−p(t1, . . . , tn) should ultimately be reduced to a value containing no subterms matched by p.

De�nition 3.1 (Pattern-free). Given a pattern p ∈ T (C,X ) ∪ {⊥},
• a value v ∈ T (C) is p-free i� ∀ω ∈ Pos (v) , p≺6≺ v|ω;
• a ground term t ∈ T (F) is p-free i� ∀ω ∈ Pos (t) such that t|ω = f−q(t1, . . . , tn) with
f ∈ D, q ∈ T (C,X ) ∪ {⊥}, CoDom (f) = s, we have ∀v ∈ Ts(C) q-free, t [v]ω is p-free;

• a linear term t ∈ T (F ,X ) is p-free i� ∀σ such that σ(t) ∈ T (F), σ(t) is p-free.

A value is p-free if and only if p matches no subterm of the value. A ground term is p-free
if and only if replacing (all) the subterms headed by a de�ned symbol f−q by any appropriate
q-free value results in a p-free term. For general terms verifying the pattern-freeness comes to
verifying the property for all ground instances of the term. While the pattern-freeness of a
value can be checked by exploring all its subterms this is not possible for a general term since
we potentially have to check the pattern-freeness of an in�nite number of values. We present
in the next section an approach for solving this problem.

4 Extensions of ground semantics

The previously introduced ground semantics can be used to compare the shape of the root of a
constructor pattern p1 to another constructor pattern p2. Indeed, by de�nition, if Jp1K∩Jp2K = ∅,
then ∀σ, σ(p1) /∈ Jp2K so p2 ≺6≺ σ(p1).

Example 4.1. Consider the signature Σ with S = {s1, s2} and F = C = {c1 : s2, s1 7→
s1, c2 : s2 7→ s1, c3 : [] 7→ s1, c4 : s2 7→ s2, c5 : s1 7→ s2}. Using the transformation method
proposed in [6] the complement c4(c3()) \ c4(x) is reduced to ⊥ indicating that Jc4(c3()) \
c4(x)K = Jc4(c3())K \ Jc4(x)K = ∅ and thus that c4(c3()) is redundant w.r.t. c4(x). Moreover
c4(c3()) \ (c4(c3()) \ c4(x)) is reduced to c4(c3()) \ ⊥ and then to c4(c3()) indicating now that
Jc4(c3())K ∩ Jc4(x)K 6= ∅ and thus that c4(c3()) is not c4(x) free.

Similarly, c4(c3()) \ (c4(c3()) \ c5(x)) and c3() \ (c3() \ c5(x)) are both reduced to ⊥ and
consequently we can deduce that c4(c3()) is c5(x)-free.
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The pattern-freeness properties in the above example could have been checked by trying to
match all the subterms and we can see this method as a starting point for the generalisation to
general terms. We �rst introduce an extended ground semantics:

De�nition 4.1 (Extended ground semantics). Given s ∈ S and a pattern p ∈ T (C,X ) ∪ {⊥}
• Jxs−pK = {v | v ∈ Ts(C) ∧ v p-free};
• Jf−p(t1, . . . , tn)K = Jxs−pK with CoDom (f) = s;

• Jc(t1, . . . , tn)K =
{
c(v1, . . . , vn) | vi ∈ JtiK

}
with c : s1× . . .×sn 7→ s ∈ C, ti ∈ Tsi(F ,X ).

The ground semantics of a term rooted by a de�ned symbol represents an over-approximation
of all the possible values obtained by reducing the term with respect to a TRS preserving the
pattern-freeness, this by taking into account the annotation of the respective de�ned symbol.
When restricting to patterns we retrieve the original de�nition of ground semantics.

The extended ground semantics of a p-free variable of sort s can be also de�ned as:

Jxs−pK =
⋃

c∈CsJc(x
s1
−p, . . . , x

si
−p)K \ JpK

and when p = ⊥ we retrieve the corresponding de�nition for the classical ground semantics. This
observation allows us to easily adapt the method introduced in [6] for computing constructor
pattern complements to general annotated terms.

We can now establish pattern-free properties using this extended ground semantics and the
reachable sorts w.r.t. a given sort s: bsc = {s′ | ∃ t ∈ Ts(C), ω ∈ Pos (t) s.t. t|ω : s′}
Proposition 2 (Pattern-free vs Extended Ground Semantics). Let p ∈ T (C,X ), t ∈ Ts(F ,X ):

• if t = xs and ∀s′ ∈ bsc, Jxs′⊥K ∩ JpK = ∅ then t is p-free;
• if t = f−q(t1, . . . , tn) and ∀s′ ∈ bsc, Jxs′−qK ∩ JpK = ∅ then t is p-free;
• If t = c(t1, . . . , tn) with c ∈ C, t is p-free i� JtK ∩ JpK = ∅ and ∀i ∈ [1, n], ti is p-free.

The extended semantics of annotated terms together with the corresponding transforma-
tion of complement patterns (corresponding to semantics intersections) into sets of construc-
tor patterns over-approximating their semantics allows us to systematically check if a term is
pattern-free. Unfortunately equivalent extended semantics do not guarantee the preservation
of pattern-freeness: having JuK = JvK and u p-free does not necessarily mean that v is p-free.

We introduce the notion of deep semantics of a term t ∈ T (F ,X ), denoted {[t]}, which can
be seen as an over-approximation of the set of all subterms of all values of its ground semantics,
i.e. {u|ω | u ∈ JtK, ω ∈ Pos (u)} ⊆ {[t]}:
De�nition 4.2. Given the sorts s1, . . . , sn, s ∈ S and a pattern p ∈ T (C,X ) ∪ {⊥}
• {[xs−p]} =

⋃
s′∈bscJx

s′

−pK;

• {[f−p(t1, . . . , tn)]} =
⋃

s′∈bscJx
s′

−pK with f : s1× . . .×sn 7→ s ∈ D;

• {[c(t1, . . . , tn)]} = Jc(t1, . . . , tn)K ∪
(⋃n

i=1 {[ti]}
)
with c : s1× . . .×sn 7→ s ∈ C.

The deep semantics of a variable must not only take into account its own sort, but also
the sorts of all the subterms of its instances. Similarly, for terms headed by a constructor we
consider the semantics of terms and of all its subterms.

We can now identify terms that have such a shape that a given pattern p does not appear in
any of their ground instances. In other words, we have an alternative method for establishing
pattern-free properties for linear terms in T (F ,X ):

Proposition 3 (Pattern-free vs Deep Semantics). Let p ∈ T (C,X ), t ∈ T (F ,X ), if {[t]}∩JpK = ∅
then t is p-free.

4
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Example 4.2. Let's consider the signature from Example 4.1: We add de�ned symbols D =
{f : s1 7→ s1, g : s2 7→ s2} such that f is supposed to eliminate the p1 = c1(c4(x), y) and g
eliminates p2 = c4(x). We therefore have the following constructor TRS:

f(c1(c4(x), y)) _ c1(g(x), f(y))

f(c1(c5(x), y)) _ c1(c5(f(x)), f(y))

f(c2(c4(x))) _ c2(c4(g(x)))

f(c2(c5(x))) _ c2(c5(f(x)))

f(c3()) _ c3()

g(c4(x)) _ c5(c1(g(x), c3()))

g(c5(c1(x, y))) _ c5(c1(g(x), g(c5(y))))

g(c5(c2(x))) _ c5(c2(g(x)))

g(c5(c3())) _ c5(c3())

Let's consider the term c1(g−p2(x), f−p1(y)). f−p1(y) and g−p2(x) have respectively the
same semantics has ys1−p1

and xs2−p2
. Therefore the deep semantics of the whole term is the

union of the ground semantics of c1(xs2−p2
, ys1−p1

), ys1−p1
, xs2−p1

, ys1−p2
and xs2−p2

. Similarily as in
Example 4.1, we can thus compare c1(xs2−p2

, ys1−p1
) to p1 and prove that it is p1-free.

5 Semantics preservation for CTRS

Pattern-freeness properties rely on the symbol annotations and assume thus a speci�c shape
for the normal forms of reducible terms. This assumption should be checked by verifying that
the CTRSs de�ning the annotated symbols are consistent with these annotations, i.e. verifying
that the semantics is preserved by reduction.

De�nition 5.1 (Semantics preservation). A constructor rewrite rule ϕ−p(l1, . . . , ln) _ r is
semantics preserving w.r.t. the extended semantics, resp. deep semantics, i� JrK ⊆ JlK, resp.
{[r]} ⊆ {[l]}. A CTRS is semantics preserving i� all its rewrites rules are.

Since the semantics of the left-hand side of a rewrite rule is the set of p-free values then
such a rule is semantics preserving i� its right-hand side is p-free. It is easy to check that:

Proposition 4 (Semantics preservation). Given a semantics preserving CTRS R we have that
then, ∀t, u ∈ T (F): t −→R u =⇒ {[u]} ⊆ {[t]}
Example 5.1. Let's consider the case presented in Example 4.2:

We want each of the rules of the constructor TRS to be pattern-free preserving, so that for
all v1 ∈ Ts1(C), f(v1) is and stays c1(c4(x), y)-free through every reduction step, and for all
v2 ∈ Ts2(C), g(v2) is and stays c4(x)-free through every reduction step.

In terms of pattern-free preservation we have:

Proposition 5 (Pattern-free preservation). Given a semantics preserving CTRS R we have
that ∀t, u ∈ T (F), p ∈ T (C,X ): t p-free ∧ t −→R u =⇒ u p-free

6 Conclusion and perspectives

We have proposed a method to statically analyse constructor term rewrite systems and verify
the absence of patterns from the corresponding normal forms. We can thus guarantee not only
that some constructors are not present in the normal forms but we can also be more speci�c
and verify that more complex constructs cannot be retrieved in the result of the reduction.

We suppose the existence of normal forms but the formalism does not rely on the termination
of the analysed rewriting systems; if the property is not veri�ed a �nal value is not obtained
but the intermediate terms in the in�nite reduction verify nevertheless the pattern-freeness
properties w.r.t. the speci�ed annotations. Moreover, di�erent termination techniques and
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tools [8, 10] on termination analysis can be used to analyse the termination of the rewriting
systems we addressed in this paper.

We believe this formalism opens a lot of opportunities for further developments. In par-
ticular, this method could be extended in the context of automatic rewriting rule generation
techniques, such as the one introduced in [5], in order to implement transformation approaches
of passes such as in [9]. Indeed, the formalism considered here relies on the same pattern
matching primitives as these techniques.
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