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Human-Like Decision-Making for Automated Driving in Highways

David Sierra González, Mario Garzón, Jilles Steeve Dibangoye, and Christian Laugier

Abstract— In this work, we present a decision-making system
for automated vehicles driving in highway environments. The
task is modeled as a Partially Observable Markov Decision Pro-
cess, in which the physical states and intentions of surrounding
traffic are uncertain. The problem is solved in an online fashion
using Monte Carlo tree search. At each decision step, a search
tree of beliefs is incrementally built and explored in order to
find the current best action for the ego-vehicle. The beliefs
represent the predicted state of the world as a response to the
actions of the ego-vehicle and are updated using an interaction-
and intention-aware probabilistic model. To estimate the long-
term consequences of any action, we rely on a lightweight
model-based prediction of the scene that assumes risk-averse
behavior for all agents. We refer to the proposed decision-
making approach as human-like, since it mimics the human
abilities of anticipating the intentions of surrounding drivers
and of considering the long-term consequences of their actions
based on an approximate, common-sense, prediction of the
scene. We evaluate the proposed approach in two different nav-
igational tasks: lane change planning and longitudinal control.
The results obtained demonstrate the ability of the proposed
approach to make foresighted decisions and to leverage the
uncertain intention estimations of surrounding drivers.

I. INTRODUCTION

Sharing the road with humans constitutes, along with
the need for robust perception systems, one of the major
challenges holding back the large-scale deployment of auto-
mated driving technology. This statement holds true even in
highway scenarios, where experimental autonomous vehicles
continue to be disengaged by the human operators due
to their inability to anticipate and react adequately to the
maneuvers of surrounding human drivers [1].

The actions taken by human drivers are determined by
a complex set of interdependent factors, which are very
hard to model (e.g. intentions, perception, emotions). As a
consequence, any prediction of human behavior will always
be inherently uncertain, and becomes even more so as the
prediction horizon increases. Moreover, current perception
systems can only provide noisy observations of the state
of the world. Fully automated vehicles are thus required to
make navigation decisions based on the uncertain states and
intentions of surrounding vehicles.

Despite the evident complexity of the task, humans excel
at interpreting the motion cues of other drivers and at taking
anticipatory driving actions. A common approach in the
literature to replicate this human ability is to formulate
the driving task as a Partially Observable Markov Decision
Process (POMDP), which is a principled framework for
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Fig. 1: Exemplary tree simulations illustrating the proposed
approach. Each belief node is indexed by a history of actions
and observations. For each belief, the location of all vehicles
is shown as a number of Gaussians; their mean velocities
in km/h are also indicated. The ego-vehicle’s planner can
select action a1 (lane keeping) or a2 (change lanes). To
estimate the long-term consequences, each simulation ends
with a model-based rollout, where the color dots represent
successive predicted locations of the vehicles in the scene.

sequential decision-making under uncertainty. Unfortunately,
planning with POMDPs is computationally expensive. Exist-
ing POMDP-based planning approaches for automated driv-
ing differ mainly in the trade-offs made to render the problem
tractable, namely, which uncertainties are considered, how
the problem is discretized, and which assumptions are made
about the dynamics of the world (Table I).

Ulbrich and Maurer propose to model the highway lane-
changing decision task using a small POMDP with 8 possible
states [2]. The states correspond to binary random variables
representing whether a lane change is possible, beneficial, or
currently in progress. This approach relies heavily on custom
hand-engineered models (observation, reward, transition),
thereby limiting its scalability to complex scenarios.

Instead of discretizing the state using heuristics, Brechtel
et al. propose to automatically and iteratively learn a low-
level, discrete state-space representation [3]. This approach
is applied to planning in intersection merging scenarios.
However, the uncertainty in the intentions of surrounding
vehicles is not explicitly considered.

In contrast, Bandyopadhyay et al. propose to consider the



Reference Uncertainty Discretization Offline/
Online

Bi-directional
interactions ApproachC X I S A O

Ulbrich et al. [2] 7 3 7 D D D Online 7 RTBSS
Brechtel et al. [3] 3 3 7 C D C Offline 3 DBN MCVI
Liu et al. [4] 3 3 3 D D D Online 3 Hard-coded DESPOT
Bandyopadhyay et al. [5] 3 7 3 D D D Offline 3 pedestrian model MOMDP, SARSOP
Hubmann et al. [6] 3 3 3 C D C Online 3 Longitudinal custom model ABT
Sunberg et al. [7] 3 7 3 C D C Online 3 IDM + MOBIL POMCP-DPW
Bouton et al. [8] 3 3 3 C D C Online 7 POMCP-DPW + IMM
Proposed 3 3 3 C D C Online 3 DBN + driver mod. POMCP-PW + DBN

TABLE I: Existing POMDP-based approaches for decision-making in automated vehicles. The uncertainty can be considered
in the controls (C), physical states (X) or manuever intentions (I).

uncertainty only in the intentions of surrounding traffic par-
ticipants [5]. In particular, they address an scenario in which
the ego-vehicle circulates in the presence of pedestrians. The
pedestrians’ motion is dependent on their intended destina-
tion and on the state of the ego-vehicle. The planning task is
modeled as a Mixed Observability MDP (MOMDP), where
the interactions between pedestrians are not considered.
The authors suggest solving a different MOMDP for each
pedestrian in the scene, and choose the most conservative
action for the ego-vehicle. In consequence, this approach
cannot be directly applicable to highway driving where the
behavior of traffic participants is highly correlated.

Liu et al. propose instead to infer the motion of traffic
participants by exploiting the road context, classifying their
motion intentions into stopping, hesitating, normal or aggres-
sive [4]. Then, a POMDP is used to model the intersection
navigation task, considering the uncertainties in the motion
intentions of other drivers. A drawback of this approach is
that the interactions between vehicles are only considered
through a series of hard-coded rules specific for intersection
scenarios. A similar POMDP-based approach for intersection
navigation was proposed by Hubmann et al. [6]. In this case,
the interactions are also formulated as hard-coded rules.

Similarly, Bouton et al. also propose a POMDP plan-
ner for the task of navigating unsignaled intersections [8].
The state is factored into the physical state of the ego-
vehicle, the physical state of all other vehicles, and their
maneuver intentions. The POMDP is solved online using
the Monte-Carlo-based algorithm POMCP [9] with double
progressive widening to control the branching factor. At
each execution step, a Gaussian belief over the physical
states of the obstacles and over their intentions is maintained
using an Interacting Multiple Mode (IMM) filter with two
modes. This is the same model that is used to simulate the
dynamics of the system and constitutes the main drawback
of this approach, since the IMM completely disregards the
interactions between vehicles. In consequence, the search
tree is built with observation samples that do not capture the
essence of human driving, which might explain some of the
collision rates this approach achieved in simulated scenarios.

POMCP with double progressive widening has also been
applied to the task of highway navigation [7]. In this case, the
behavior of surrounding traffic is modeled using the IDM car-
following model for lane keeping [10], and the MOBIL gap-
acceptance model for lane changes [11]. The only uncertainty
considered is in the parameters of the models, which have

a direct incidence in the aggressiveness of the drivers. As
two risk-averse models are used to model the dynamics, no
car accidents will ever be predicted, and in consequence the
planner will never be able to take anticipative action when
facing potentially dangerous situations.

In this paper, we also model the highway navigation
task using the POMCP algorithm with progressive widening
for the observations. We consider the uncertainty in the
physical state and lane changing intentions of surrounding
vehicles. To model the dynamics of the world, we rely
on a Dynamic Bayesian Network (DBN), which enables
us to model the interactions between traffic participants
[12]. This DBN model can detect and predict dangerous
traffic situations, which enables the proposed planner to
make anticipatory driving decisions, much like human drivers
would do. Furthermore, in the highway it is particularly
important to take into account the long-term (5 seconds into
the future and beyond) consequences of any action. With this
idea in mind, we model the dynamics of the world—beyond
a given point in future—using an interaction-aware, model-
based prediction method. This method produces sensible
long-term predictions of highway traffic scenes, providing
valuable insights about the long-term optimality of the avail-
able driving actions.

II. BACKGROUND
A. POMDPs

In a Markov Decision Process (MDP) framework, an
agent interacts with a given environment by taking actions
at discrete time steps. Upon taking an action, the state of
the world changes and the agent receives a cost signal. In
this setting, the goal of the agent is to take actions so as to
minimize the long-term expected cumulative amount of cost
it receives. In an MDP, the environment’s dynamics are fully
determined by the current state s, which is always known.

POMDPs extend the MDP framework to environments
that cannot be observed directly. Instead, the agent receives
noisy or incomplete observations of the state. Since the true
state is unknown, the agent can select its actions based on
the history ht

.
= {a0, o1, . . . , at−1, ot}. Alternatively, it is

possible to maintain an estimate of the state of world, known
as the belief distribution, and map instead beliefs to actions.
The belief bt(s)

.
= P (st = s|ot, at−1, ot−1, . . . , a0, b0)

is a sufficient statistic for the history. The policy is then
π : B 7→ A. The value function Vπ(b) is the expected cost
accrued from belief b when following policy π. The optimal



value function is the minimum value function achievable by
any policy V ∗(b) = minπ Vπ(b), from where the optimal
policy could be extracted using a one time step lookahead.

B. Offline vs online planning

Offline POMDP approaches aim to find, prior to execution,
an optimal policy under consideration of all possible future
situations. In contrast, online approaches alternate planning
and execution stages. Once the planning time runs out, the
agent executes the best action found for the current belief,
receives an observation, and restarts the planning stage from
the new belief state. In POMCP, as in our approach, Monte
Carlo tree simulations are used to approximate the value
function for the current belief during the planning stage.

III. PROPOSED APPROACH

In this section, we formalize the proposed POMDP model
for decision-making in highways.

A. POMDP model

The proposed POMDP model is a tuple 〈S,A, T , C,Z,O〉
where:

A state s ∈ S contains:
• The ego-vehicle’s physical state xe = [xe, ye, ẋe]T ∈

R3, where xe, ye represent the longitudinal and lateral
positions of the vehicle’s center of mass in road coor-
dinates, and ẋe represents the longitudinal velocity.

• The surrounding vehicles’ (hereafter, obstacles) physical
states x1:N−1, each of them with the same components
as the ego-vehicle’s. We assume the constant presence
of N − 1 obstacles throughout any traffic scene con-
sidered. The space of all joint physical states of the
obstacles is denoted by X .

• The maneuver intentions of the obstacles m1:N−1 ∈
{LCL, LCR, LK }N−1, where LK represents a lane
keeping maneuver, and LCL/LCR represent lane change
maneuvers to the left and to the right, respectively.

That is, at any discrete time step t, the state st is given by
st = [xet ,x

1:N−1
t ,m1:N−1

t ].

The actions me
t ∈ A correspond to the maneuvers of the ego-

vehicle. We consider two different experimental scenarios,
each with a different action space:

1) In the first scenario, the ego-vehicle can perform
lane changes, but its acceleration is set automati-
cally using the IDM car-following model. That is,
A1 = {LCL, LCR, LK}.

2) In the second scenario, the ego-vehicle drives in a
given lane and it needs to adjust its speed so as to
drive comfortably and safe. The action space for this
scenario consists of three different discrete acceleration
values A2 = {−1, 0, 1, } m/s2.

The state transition function T (s, a, s′) is given by the
dynamics of the system, detailed in subsection III-B.

The cost function Ci : X 7→ R provides the cost associated
to a particular joint physical state of all vehicles in the

scene, from the point of view of the ith vehicle. It is a
linear function on a set of selected features, which are also
calculated from the point of view of the ith vehicle:

Ci([xe,x1:N−1]) = wT f i([xe,x1:N−1]) (1)

The selected features include the lane index, Gaussians mod-
eling the time-to-collision and time-headway to the leading
and trailing vehicles in the same lane and the deviation
from the desired velocity. The weight parameters balancing
the importance of the difference features were learned from
human-driven demonstrations using Inverse Reinforcement
Learning [13].

The observation zi of the physical state of any vehicle i
is composed of noisy versions of all the components in
its physical state. The intentions of surrounding traffic are
not observable. The joint observation at each time step is
zt = [zet , z

1:N−1
t ]. The continuous space of all possible

observations is denoted by Z .

The observation function O : S × A 7→ P(Z) is given by
the predictive step of the DBN that models the interactions
between traffic participants. Given an action and resulting
state, it returns a probability distribution over the possible
observations. Further details are provided in subsection III-
D.

B. Dynamics and maneuvers

The interactions between traffic participants are modeled
using a DBN model, following previous work [12]. The
factorization of the joint distribution of the model is the
following:

P
(
x1:N
1:T ,m

1:N
1:T , z

1:N
1:T

)
= P

(
x1:N
1 ,m1:N

1 , z1:N1

)
(2)

T∏
t=2

N∏
i=1

[P (xit|mi
t−1:t,x

1:N
t−1) P (mi

t|m1:N
t−1,x

1:N
t−1) P (zit|xit)]

where T indicates the number of time steps considered.
The term P (xit|mi

t−1:t,x
1:N
t−1) describes the maneuver-

dependent dynamics of the ith vehicle. In this paper, we
treat vehicles as point objects. The point dynamics satisfy
the following equations:

xt+1 = xt + ∆t ẋt

yt+1 = yt + ∆t vlat

ẋt+1 = ẋt + ∆t along

(3)

where along and vlat are the longitudinal acceleration and lat-
eral velocity control inputs, which are maneuver-dependent
values. The longitudinal acceleration is set for all vehicles
using the IDM car-following model, except for the ego-
vehicle in the second experimental setting. For a lane change
maneuver, the lateral velocity is set to a fixed value vLC until
the vehicle reaches the centerline of the target lane, moment
at which it is set to 0.
The motion is assumed to be perturbed by Gaussian noise
to account for modeling errors, that is:

P (xit|x1:N
t−1,m

i
t=m) ∼ N

(
gm
(
x1:N
t−1
)
,Qm

)
(4)



where gm is a maneuver-dependent predictive function that
integrates (3) over an interval of time ∆t to obtain the next
state, and Qm is the noise covariance matrix associated to
maneuver m.

The term P (zit|xit) in (2) is the measurement model, which
is linear-Gaussian P (zit|xit) ∼ N (Cxit,R) and defined by
the output matrix C, and the observation noise covariance
R. Finally, the term P (mi

t|m1:N
t−1,x

1:N
t−1) defines a predictive

probability distribution over the available maneuvers of the
ith vehicle given the estimated states and intentions of all
vehicles at the previous time step. This term is discussed in
further detail in the following subsection.

C. Belief updates

In previous work, we saw an approximated method to
recursively track over time the state and maneuver intentions
of each vehicle in the scene [12]. We apply the same filtering
method in this work to maintain the belief (note that for
the ego-vehicle there is no need to track the intentions). We
provide a summary of the method here and refer the reader
to the original publication for the complete details. The goal
is to track, for each vehicle, the distribution P (xit,m

i
t|z1:t),

which is decomposed into two terms, and the first one
approximated by a Gaussian mixture:

P (xit,m
i
t|z1:t) = P (xit|mi

t, z1:t)P (mi
t|z1:t)

≈ [
∑
ct

P (xit|ct,mi
t, z1:t)︸ ︷︷ ︸

Gaussian component

P (ct|mi
t, z1:t)︸ ︷︷ ︸

Weight

]P (mi
t|z1:t)︸ ︷︷ ︸

Marginal mi
t

(5)

The recursion for the first term after receiving the new
observation zt+1 is given by:

P (xit+1|mi
t+1, z1:t+1) =

∑
mi

t,ct

P (xit+1,m
i
t, ct|mi

t+1, z1:t+1)

=
∑
mi

t,ct

P (xit+1|mi
t, ct,m

i
t+1, z1:t+1)︸ ︷︷ ︸

Gaussian component

P (mi
t, ct|mi

t+1, z1:t+1)︸ ︷︷ ︸
Weight: w(mi

t,ct,m
i
t+1)

The new Gaussian components are obtained by propagating
with a Kalman filter the components at the previous time step
using all available dynamics (indexed by mi

t+1). Let |M | be
the number of available maneuvers and |C| the number of
Gaussian components. The proposed procedure increases the
number of Gaussian components from |M ||C| to |M |2|C|,
so a collapse is done as the final step of the recursion. To
update the weights, we consider:

w(mi
t, ct,m

i
t+1) ∝ P (mi

t, ct,m
i
t+1, z1:t+1)

= P (zt+1|mi
t,m

i
t+1, ct, z1:t)P (mi

t+1|mi
t, ct, z1:t)×

P (ct|mi
t, z1:t)P (mi

t|z1:t) (6)

where P (zt+1|mi
t,m

i
t+1, ct, z1:t) is the likelihood of the

observation zt+1 under the corresponding Gaussian projected
onto observation space. Intuitively, if the prediction using the
dynamics of maneuver mi

t+1 corresponds to the observed
movement of the target, the likelihood will be high and,
by extension, also the weight. The terms P (ct|mi

t, z1:t)
and P (mi

t|z1:t) are available from the previous step of the
recursion.

The term P (mi
t+1|mi

t, ct, z1:t) represents the probability
that the ith vehicle will execute maneuver mi

t+1 from
the corresponding Gaussian component. We calculate this
probability using model-based prediction, where a maneuver
is exponentially more likely is it leads to a trajectory that
accrues lower cost than all others according to the model:

P (mi
t+1 = m|x1:N

t ,m1:N
t ) ∝

E

[
exp

(
−

Tm−1∑
k=0

wT f i([xit+k,m,x
−i
t+k,m̂−i

t

])

︸ ︷︷ ︸
Cost accrued over Tm time steps by vehicle i.
Vehicle i executes maneuver m.
The obstacles execute sampled maneuvers m̂−i

t .

)]
(7)

where the expectation is with respect to the posterior dis-
tribution over state and maneuver intentions of all traffic
participants at the previous time step and is solved using
Monte Carlo sampling. In (7), we have overloaded the
notation for the physical state to explicitly indicate the
maneuver being used to propagate it between time steps,
and the notation m̂−i indicates the sampled maneuvers for
all agents other than i.

The recursion for the maneuver marginal P (mi
t|z1:t) in

(5) is given by:

P (mi
t+1|z1:t+1) ∝

∑
mi

t,ct

w(mi
t, ct,m

i
t+1) (8)

In (6) and (8), there is a fusion between dynamic evidence
(the likelihood of the observation under each of the available
dynamics) and scene understanding (the maneuver forecast-
ing using model-based prediction). This has been shown to
increase the robustness of the lane change intention estima-
tions in highways [12]. Hence, each POMDP planning cycle
starts from a belief distribution that provides an accurate
estimation of the maneuver intentions of surrounding traffic.

D. Observation model

The DBN model can also be used in a generative manner
to sample realistic observations of the surrounding traffic
participants after a maneuver has been executed for the ego-
vehicle during the tree search. In other words, for each traffic
participant we want to sample from P (xit+1,m

i
t+1|z1:t) =

P (xit+1|mi
t+1, z1:t)P (mi

t+1|zi1:t). The steps to obtain these
two components from the initial distribution P (xit,m

i
t|z1:t)

closely follow those presented in the previous subsection.
The main and critical difference lies in the absence of the
observation likelihood term in (6) and (8). Due to the lack of
this term, the predictive maneuver marginal P (mi

t+1|z1:t) is
dominated by the risk-aversive, model-based prediction term.
In consequence, the sampled observations, and by extension
the beliefs represented in the search tree, will only capture
a safe normative behavior for all surrounding drivers (as in
[7]). Even when a given driver had been estimated to be
performing a dangerous manever from the true observations
of the world, this information is not propagated across the
search tree from the root belief node. Under these conditions,
the planner will not be able to perform anticipative behavior.



To leverage the dynamics-aware information contained
at the root belief node, we modify (7) by including a
new term that promotes maneuver continuity across time
steps, effectively biasing the construction of the tree:

P (mi
t+1 = m|xit,mi

t) ∝

E

[
exp

(
−
[ Cost accrued by

maneuver m over
Tm time steps︸ ︷︷ ︸
Model-based,

risk-aversive component

]
+ Tm wmc δ(m,m̂i

t)

(
τ − t
τ − t0

)
︸ ︷︷ ︸

Term to promote
maneuver continuity

)]

where the term wmc ∈ R+ is a reward term, τ ∈ N indicates
the lifetime in time steps of a linear decay term, and δ(i,j)
denotes the Kronecker delta function. By including this
new term, the predicted probability of maneuvers that were
estimated likely for obstacle i is increased. This effect is
reduced as the depth in the tree increases using a linear
decay term.

E. Rollouts

Below a given depth dlim in the tree, the estimation
of the accrued cost is done using a rollout policy. In our
highway driving domain, we rely on model-based prediction
to determine the approximate long-term development of
any traffic scene. The procedure is as follows. First, states
are sampled for all vehicles in the scene from the belief
distribution at the leaf node. Then, we process all vehicles
from the front to the back of the scene. For each vehicle, we
calculate its model-based maneuver predictive distribution as
in (7), and sample a maneuver that will be used to propagate
the vehicle forward one time step. During the calculation
of the maneuver predictive distribution, trailing vehicles are
assumed to be performing a LK maneuver. The process is
repeated until all rollout steps have been executed. Two
examples of rollouts are shown at the bottom of Fig. 1 (each
dot corresponds to the resulting physical state of each vehicle
at each rollout step).

F. Planning algorithm

Our tactical decision-making approach is formulated in
Algorithm 1. This algorithm resembles the POMCP and
POMCP-DPW algorithms [9], [14], using Monte Carlo tree
search to explore a search tree of histories. However, in these
algorithms the belief is maintained using particle filtering,
whereas we rely on a variational approach to maintain
parametric beliefs for each history in the tree.

The tactical planning starts in the PLAN procedure. During
the allocated planning time, simulations are continuously run
from the initial history h0 and corresponding belief b0 to
construct and explore the search tree. A simulation consists
of a sequence of sampled actions and observations, ending
on a leaf node from where a rollout is executed. The goal
of the tree exploration is to maintain accurate estimates of
the value V (h0a) of the actions that can be taken from the
current belief state. Note that although it is indexed by a
history, V (h0a) represents the value of the associated belief.

The history tree exploration is based on selecting actions
using the UCT algorithm [15], and sampling observations

Algorithm 1: Human-like tactical decision-making in highways.

1 procedure PLAN(h0, b0):
2 while not timeout do
3 SIM(h0, b0, 0)
4 return arg min

a
V (ha)

5 procedure SIM(h, bh, d):
6 if d ≥ dlim then
7 return ROLLOUT (h, bh, d)
8 else
9 if h /∈ history-tree then

10 add-to-tree (h)
11 for ∀a ∈ available-actions(bh) do
12 init(V (ha), N(ha), N(h))
13 return ROLLOUT (h, bh, d)
14 else
15 a← arg min

a′
V (ha′)− c

√
logN(h)
N(ha′)

16 if |children(ha)| ≤ floor(k0N(ha)α0) then
17 bhao, o← dbn-model(bh, a)
18 children(ha)← children(ha) ∪ {o}
19 acc← COST(bhao, a) + γ SIM(hao,bhao,d+ 1)
20 else
21 o′ ← sample-observation(children(ha))
22 acc← COST(bhao′ , a) +γ SIM(hao′,bhao′ ,d+ 1)

23 N(h)← N(h) + 1
24 N(ha)← N(ha) + 1

25 V (ha)← V (ha) + acc−V (ha)
N(ha)

26 return acc

using the method presented in subsection III-D. Each sam-
pled observation is then used to obtain the belief bhao of the
new belief node. Since the observations are sampled from
a continuous predictive distribution, we apply progressive
widening to artificially limit the number of observations and
enable the exploration of the lower layers of the tree [14].

Once the planning time runs out, the estimated value func-
tion is used to select the action to execute. After execution,
an observation is received from the environment and used
to obtain the new belief node, from where the tree search
restarts.

IV. EXPERIMENTAL EVALUATION

In this section, we present the simulation platform and the
two experimental tasks used to validate our approach. For
each of the tasks, we show and discuss the results obtained
for different traffic situations.

A. Simulation platform

We evaluate our approach on a customized version of an
open-source driving simulator [16]. This simulator builds
upon two existing open-source simulation packages: 1) Sim-
ulation of Urban MObility (SUMO) [17], an open-source mi-
croscopic road traffic simulator; and 2) Gazebo, an advanced
3D simulation environment. Figure 2 shows a diagram that
illustrates how the simulator’s components interact with the
proposed decision-making system.

B. First task: selecting lane changes

In this task, the POMDP planner chooses the lane change
commands of the ego-vehicle. The longitudinal acceleration
is automatically set using the IDM car-following model. The
goal of this task is to evaluate the proposed approach for its
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Fig. 2: Architecture of our highway simulation platform.

ability to make decisions when the motion of surrounding
traffic is uncertain, as well as its ability to consider the long-
term consequences of any action. The performance of the
POMDP planner is compared to SUMO’s reactive model
for lane changing, which consists of a series of rules to
determine the gain of doing a lane change maneuver.

Main parameters selected: Number of tree simulations
per decision: 100, time step: 2s, max. depth tree: 3, max.
rollout steps: 7, k0: 2, α0: 0.3, γ: 0.9, wmc: 0, C: 1.

Results obtained: The top row of Fig. 3a shows the initial
conditions of a test scenario, where the ego-vehicle (label
’prius’) starts in the same lane as a much slower vehicle.
As the scene develops and the ego-vehicle draws closer to
the obstacle, both the POMDP and SUMO’s reactive planner
perform a lane change to overtake it. Once the obstacle has
been passed, both models perform another lane change to
merge onto the right lane. The only difference here lies on
how long SUMO takes to begin the lane change to overtake,
which is a consequence of its counter-based method to avoid
oscillations.

In the top row of Fig. 3b, we show a more challenging
test scenario. Here, the ego-vehicle again starts behind a
much slower obstacle. However, in this case, some obstacles
are approaching quickly from behind on the left lane. To
avoid getting stuck behind the obstacle in front, the POMDP
performs an early lane change at around t = 2s. Once the
overtake is complete, the ego-vehicle merges back to the
right lane, roughly 20m in front of the obstacle. In contrast,
SUMO’s reactive model does not realize the need for a lane
change until it is too late, and the left lane is blocked by
traffic. This forces the ego-vehicle to decelerate significantly
down to 70km/h. Once the left lane is clear, the overtake is
initiated at around t = 17s.

This scene highlights the importance of considering the
long-term consequences of any maneuver in the highway
through adequate prediction models. With the parameters
selected, the consequences up to 14s into the future are con-
sidered with our model. To gain insight on how our POMDP
model decided to change lanes so early, we show in Fig. 1
two exemplary tree simulations. In the simulation highlighted

in red, three LK maneuvers are sampled, followed by a
rollout. We can see in the illustrated beliefs and in the rollout,
how the ego-vehicle is predicted to significantly reduce its
velocity down to 80km/h. In contrast, the simulation in blue
shows the case where a LC maneuver is sampled, followed
by two LK maneuvers and a rollout. In this case, after the
LC maneuver, the belief bha2o2 shows how the fast trailing
obstacle on the left lane is predicted to decelerate as a
reaction the ego-vehicle’s lane change. The following beliefs
and rollout show how, following an initial LC maneuver, the
ego-vehicle will be able to continue at its desired velocity
and overtake the slow obstacle.

C. Second task: longitudinal control

In this task, the ego-vehicle navigates in the left lane of a
two-lane highway and the goal of the POMDP planner is to
choose its acceleration commands. To drive safely and avoid
falling into dangerous situations, the planner is required
to anticipate the lane change intentions of the vehicles
circulating on the right lane, even when these intentions
do not fit with a risk-averse driving style. This task tests
the ability of the proposed approach to consider the short-
term consequences of the selected actions by exploiting the
dynamics-based behavior estimations.

Main parameters selected: Number of tree simulations
per decision: 400, time step: 1s, max. depth tree: 4, max.
rollout steps: 2, k0: 2, α0: 0.2, γ: 0.9, wmc: 25, C: 1.

Results obtained: Figures 4a and 4b show in the top row
the identical starting conditions for the two scenarios tested.
In the first scenario (Fig. 4a), the obstacle is never estimated
to be performing a lane change maneuver during the scene
(second row, right axis), so the POMDP simply accelerates
the ego-vehicle to its desired velocity and overtakes the
obstacle. Note that SUMO does not allow acceleration inputs,
so the acceleration commands are executed as instant velocity
changes.

In the second scene (Fig. 4b), the obstacle is detected to
be performing a lane change with probability 0.6 between
t = 5s and t = 25s. As a response, the POMDP planner with
wmc = 25, decelerates the ego-vehicle to increase the lon-
gitudinal gap with the obstacle and enable the lane change.
The definition of safe gap for the POMDP is determined by
the parameters w of the cost model. Once the obstacle is
no longer estimated to be doing a lane change, the planner
accelerates again the ego-vehicle towards its desired velocity.
We show as well the results obtained when wmc = 5. In this
case, situations in which the obstacle executes a lane change
are under-represented in the search tree, leading to a behavior
of the ego-vehicle where the risk of a potential collision is
ignored. This shows the importance of properly tuning this
parameter.

V. CONCLUSIONS

In this paper, we have presented a POMDP-based decision-
making system for automated driving in highways. The pro-
posed method searches for the optimal ego-maneuver given
a belief over the physical states and maneuver intentions
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(a) Planning results obtained for a straight-forward highway overtake
scenario. Both the reactive SUMO model and the POMDP planner
recognize the advantage in doing a lane change to avoid deviating
too much from the desired speed. In the top figure, the numbers next
to the markers represent the current and desired (between brackets)
speeds in km/h. The time step between decisions is 2s.
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(b) Planning results obtained for a more complex highway scenario.
SUMO’s reactive model leads the ego-vehicle to get stuck behind
a slow driver and to deviate significantly from its desired velocity.
In contrast, the proposed POMDP planner considers the long-term
consequences of any decision and switches lanes at t = 2s, passing
the slow vehicle at around t = 13s.

Fig. 3: First experimental task: the POMDP planner decides when to perform lane changes; the longitudinal acceleration is
delegated to a car-following model.

of surrounding traffic. The approach works on an online
fashion, building during planning time a tree of possible
scene developments from the current belief state. To build
the tree, the dynamics of the world are modeled using an
interaction-aware probabilistic model that takes into account
both the observed dynamics of the targets and their expected
behavior given the traffic situation. The model is used in
a generative manner to sample likely observations as a
reaction to the ego-vehicle’s actions, and also to maintain
the belief over time. Finally, in order to account for the
long-term consequences of any decision, the approach relies
on a egoistic model-based prediction approach that produces
sensible long-term scene predictions.

We evaluated our approach on a simulator for two different
navigational tasks. In the first task, the POMDP was in
charge of the lane changing actions of the ego-vehicle while
the longitudinal control was delegated to a car-following
model. The results showed the ability of the proposed
approach to make foresighted lane changing decisions under
the uncertain dynamics of surrounding traffic (the model
to predict the obstacles’ motion was different from the
simulator’s actual model). In the second experimental task,
the POMDP controlled the longitudinal motion of the ego-
vehicle. The experimental results showed how the proposed

method can exploit the uncertain maneuver intention estima-
tions of the interaction-aware DBN model to produce human-
like, anticipative driving behavior.

In the current implementation, the tree is rebuilt at each
decision step, which precludes the proposed approach from
achieving real-time performance (the runtime was roughly
500ms per simulation on the complex scene from Fig.
3b). Once the planning time runs out, the POMDP planner
executes the best action according to the estimated action
values at the root of the tree, and it subsequently receives a
new observation of the world. Since the observation comes
from a continuous observation space, it is unlikely that it will
match any of the observations sampled with the generative
model during the construction of the tree; it is therefore not
clear which branch of the tree should be kept. In future
work, we plan to evaluate different discretization techniques
for the observation space that would allow us to match the
true observation to those in the first layer of the tree. This,
however, will have an impact on the tracking quality of
the state and maneuver intentions, which will have to be
measured and bounded.
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