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in the current form.

The “5’ end mRNA artifact” issue refers to the incorrect assignment of the first AUG codon in an mRNA, due to
the incomplete determination of its 5’ end sequence. We performed a systematic identification of coding regions
at the 5" end of all human known mRNAs, using an automated expressed sequence tag (EST)-based approach.
Following parsing of more than 7 million BLAT alignments, we found 477 human loci, out of 18,665 analyzed,
in which an extension of the mRNA 5’ coding region was identified. Proof-of-concept confirmation was obtained
by in vitro cloning and sequencing for GNB2L1, QARS and TDP2 cDNAs, and the consequences for the functional
studies of these loci are discussed. We also generated a list of 20,775 human mRNAs where the presence of an
in-frame stop codon upstream of the known start codon indicates completeness of the coding sequence at 5’

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The term “5’ end mRNA artifact” refers to the incorrect assignment
of the first AUG codon in an mRNA, due to the incomplete determina-
tion of its 5’ end sequence [1]. Since the '70s, the amino acid sequence
of gene products has been routinely deduced from the nucleotide se-
quence of the relative cloned cDNA (DNA complementary to mRNA),
according to rules for recognition of the start codon (first-AUG rule,
optimal sequence context) and the genetic code [2]. All standard
methods for the cloning of cDNA are affected by a potential inability
to effectively clone the 5’ region of mRNA [3]. This is due to the re-
verse transcriptase failure to extend first-strand cDNA along the full
length of the mRNA template toward its 5’ end [3]. These incomplete
clone sequences consequently lead to the incorrect assignment of the
first AUG codon. The identification of a more complete mRNA 5’ end
could reveal an additional upstream AUG - in-frame with the previ-
ously determined one - thus extending the predicted amino terminus
sequence of the product and avoiding subsequent relevant errors in
the experimental study of the relative cDNA [1].

Methods to determine the full-length mRNA sequence on a large
scale have been developed, such as 5’ cap trapping [4], cap analysis
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of gene expression (CAGE) [5], systematic empirical annotation of a
set of transcript products by 5’ rapid amplification of cDNA ends
(RACE) and high-density resolution tiling arrays [6]. However, they
are experimentally labor-intensive and they have not been widely ap-
plied in comparison with the standard expressed sequence tag (EST)
approach for fast characterization of cDNAs [7,8].

We previously used individual EST-based gene model refinement
by classic in silico sequence analysis to revise the mRNA sequence
of 109 human chromosome 21 protein-coding genes [1]. The suc-
cess of this approach encouraged us to develop a piece of software
(“5’_ORF_Extender” software) in order to automate the steps that
were previously performed manually, applying it to the Danio rerio
(zebrafish) genome [9].

The aim of this work was to perform a systematic identification of
coding regions at the 5’ end of all human known mRNAs. However, it
proved difficult to simply transfer the method used for D. rerio to
Homo sapiens, due to the much larger size and complexity of RNA and
EST sequence databases as well as the sequence analysis (BLAST, Basic
Local Alignment Search Tool) results file. In order to overcome these
problems, a fully revised computational biology strategy was adopted,
which has been able to conclude the task for human mRNAs. We have
thus been able to compile a database containing 477 loci, out of a total
of 18,665 investigated (2.6%), where an extension of the RNA 5’ coding
region has been identified. Proof-of-concept confirmation has been
obtained by actual in vitro cloning and sequencing for GNB2L1, QARS
and TDP2 genes. The availability of the database with the results of the
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whole analysis should help further to reduce the incidence of 5’ end
mRNA artifacts when studying human gene structure and function in
biomedical research.

2. Materials and methods
2.1. Database construction

The 5’_ORF_Extender software parses RefSeq (http://www.ncbi.
nlm.nih.gov/RefSeq/) and EST sequence databases and makes calcula-
tions on these sequences. This is done following the import of BLAT
(BLAST-like alignment tool) genome alignment data for human
mRNAs and ESTs, in order to determine a list of genes with an incom-
pletely described mRNA 5’ coding sequence (CDS). The algorithm,
previously described for D. rerio [9], has been completely revised
and improved for H. sapiens analysis. It has been developed using
the FileMaker Pro 10 Advanced (FileMaker, Santa Clara, CA) database
management system for both Windows and Macintosh operating sys-
tems. It is freely available as a stand-alone software (version 2.0) in-
cluding the FileMaker runtime and a step-by-step user tutorial at
http://apollo11.isto.unibo.it/software/.

The downloading, import and parsing of RefSeq and EST sequence
databases as well as of the corresponding BLAT genome alignment
data are described in detail in the software documentation.

2.2. Computational analysis

The 5’_ORF_Extender analysis script performs the following steps:
extraction of the EST sequence stretch upstream of the matched
RefSeq mRNA first base when BLAT alignment shows a 5’ extension
of the EST compared with the known RefSeq sequence (following
removal of introns from both EST and mRNAs genome-aligned se-
quences); a search in this EST stretch for the most upstream existent
ATG (corresponding to AUG in RNA) in-frame with the described one
in the RefSeq mRNA sequence entry; calculation of the new putative
extended coding region by merging the EST extended stretch starting
from the new ATG with the previously known 5’ UTR of the RefSeq
mRNA sequence; confirmation of the coding potential of this new ex-
tended sequence by excluding the presence of any in-frame stop
codon within it (Fig. 1). It can also be estimated whether or not the
determined extended CDS is complete, by searching for any in-
frame stop codon that might occur in the transcript upstream of the
newly determined start codon.

As a final result, the software provides a list of genes whose mRNA
possesses an extended 5’ CDS on the basis of EST comparison.

2.3. Quality control and summarization of results

Due to the very large size and high complexity of the human genome
and of the human EST database, together with the unavailability of a
systematic assignment of mRNA and EST sequences to a defined geno-
mic locus (in the form of an official gene symbol) in the UCSC data,
we have introduced an automated method of quality control of results
compared with the previous version [9] of our software. This ex-ante
control verifies if each investigated EST has been assigned by UniGene
(http://www.ncbi.nlm.nih.gov/unigene) system to the same locus as
the mRNA sequence for which the EST is a possible candidate for 5’
end extension. This has been made possible thanks to the availability
of a UniGene parser (the “UniGene Tabulator”) able to produce a struc-
tured table including all UniGene updated text information [10]. This
table is imported into the 5'_ORF_Extender as a first step, allowing anal-
ysis to be limited to the mRNAs and corresponding ESTs that are
mapped to the same defined locus. Due to possible errors in the large
text file generated by UniGene Tabulator data parsing, a quality control
assessment of the completeness of the UniGene entries was made as
described in the software guide of the TRAM tool [11].

2.4. In vitro cloning and sequencing of the mRNA 5’ region

We decided to confirm the sequence analysis predictions of three
example genes of the 5_ORF_Extender results list. We utilized a reverse
transcription-polymerase chain reaction (RT-PCR) approach, based on
the amplification of a stretch extended from the new putatively defined
5’ UTR to at least as far as the known exon 2, in order to prove that the
amplified cDNA is derived from mRNA. The human RNA sources were:
skeletal muscle, small intestine, ovary, brain and bone marrow total
RNA purchased from Clontech (Palo Alto, CA).

Details concerning primer sequences, RT-PCR and amplicon se-
quencing are described in the Supplementary File available at http://
apollo11.isto.unibo.it/suppl/.

2.5. Sequence analysis

In order to test whether the newly determined CDS at 5’ was con-
served in different species, TBLASTN searches were performed using
standard parameters, except the filter for low complexity regions
was unchecked. Alignment of the protein products was made by
ClustalW software (version 2.1 at: http://www.ebi.ac.uk/Tools/msa/
clustalw2/).

In order to identify novel domains which were not present in the
described gene products, the predicted extended amino acid sequences
for the three example genes were searched for in domain databases
such as the Simple Modular Architecture Research Tool (SMART,
http://smart.embl-heidelberg.de/) and the Conserved Domains Data-
base (CDD, http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml).

3. Results
3.1. Database construction and computational analysis

The processing by 5’_ORF_Extender of 30,909 human RefSeq
mRNA sequences assigned by UniGene to a defined locus (out of a
total of 31,903) revealed the presence of an in-frame stop codon up-
stream of the known start codon in 20,775 cases. 10,134 sequences
had a CDS which was putatively further extendable at their 5’ end.
159,378 UCSC EST-to-genome alignments, for the EST candidate to
potentially extend the mRNA CDS at its 5’ in these 10,134 selected
human mRNAs, were then processed to identify positive final results.
Following calculations executed by the software, it was possible to
obtain candidate extended coding regions at 5’ end from 2505 ESTs
(Table 1).

3.2. Summarization of results

The final set of 2505 ESTs corresponded to 477 distinct human loci
(2.6% of all studied genes with a RefSeq sequence) (Table 1). The
mean number of EST sequences that allowed the extension of one
mRNA sequence was 4.1, with 298 different mRNAs extended by at
least two distinct EST sequences. In particular, the ESTs extending
270 out of these 298 mRNAs were not derived from the same library.
The mean size of the additional open reading frames (ORF) stretch
was 178.5 bases, with a standard deviation of 134.8 bases (range:
3-1014 bases) (Table 1).

For 224 genes (46.96%) it can be estimated that the determined
extended CDS is complete, due to the presence of an in-frame stop
codon upstream of the newly determined start codon.

3.3. In vitro cloning and sequencing of the mRNA 5’ region

The predicted additional coding region was cloned for each of the
three example genes: GNB2L1, QARS and TDP2 (Supplementary Table
available at http://apollo11.isto.unibo.it/suppl). The nucleotide se-
quences of the extended coding regions determined exactly between
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Fig. 1. Pipeline of the 5_ORF_Extender software version 2.0 approach. Sequence comparisons exploit BLAT-pre-computed UCSC genomic coordinates of the RefSeq and EST se-
quences. Detailed explanation in the text. A. Identification of RefSeq mRNA sequences without a known in-frame stop codon upstream of the described initiation codon (and
thus candidates for further extension of their CDS at 5'). B. The parsed and embedded UniGene database allows the determination of those EST sequences that cluster with each
RefSeq mRNA sequence and that are possible candidates for extending their 5’ coding region. C. Identification of EST sequences with an upstream in-frame AUG codon and absence
of any stop codon between the previously and the newly determined AUG codons. D. Calculation of the new extended open reading frame (new AUG codon indicated with an *).

the 3’ end of the primer pairs for GNB2L1, QARS and TDP2 cDNAs have
been deposited in the GenBank database under accession nos.
JN104586, JN104585 and JN104587, respectively.

3.4. Sequence analysis

The extended coding sequences for GNB2L1, QARS and TDP2 were
analyzed using the TBLASTN program to compare them with known
nucleotide sequences deposited in the NCBI databases. This confirmed
that no human matching sequence had been previously deposited in
the “mRNA” (molecular type) division of GenBank, except two
sequences (#AK302867 and #AK298699) relating to QARS and TDP2,
respectively. Although these sequences are not present in the GenBank
EST division, they were generated in the context of the NEDO large-
scale cDNA sequencing project [12] and the relative entries were not

tagged with the corresponding gene symbol as well as their predicted
proteins (classified as “unnamed protein product”). They were not
used by the genome browsers NCBI Map Viewer [13] and University
of California at Santa Cruz (UCSC) Genome Browser [14] to build
mRNA models with the extended CDS. mRNA models including the ex-
tended CDS reported here for QARS (Ensembl Entry ENST00000420147)
and TDP2 (Ensembl Entry ENST00000545995), but not for GNB2L1,
were available at the European Bioinformatics Institute (EBI) Ensembl
genome browser [15]. These CDSs were not however included in the en-
tries containing coding sequences (Ensembl CCDS) available for the two
genes, respectively, and the mRNA models were mainly based on mRNA
sequences. These include the aforementioned “mRNA” sequences relat-
ing to QARS and TDP2, with limited support from available ESTs (2 ESTs
out of the 24 identified by 5'_ORF_Extender in the case of QARS and 2
out of the 12 in the case of TDP2). In addition, as stated in the Ensembl
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Table 1
Summary of computational analysis. CDS, coding sequence. Length is given in
nucleotides.

Summary of analysis

Human loci analyzed 18,665

Human Reference mRNAs (RefSeq) analyzed 31,903

Human RefSeq mRNA sequences assigned by UniGene 30,909
to a defined locus

mRNAs with CDS not extendable at 5’ end (in-frame stop 20,775
codon located upstream of the known start codon)

mRNAs with CDS possibly further extendable at 5 end 10,134

ESTs assigned to the same locus of the 10,134 mRNAs 7,166,113
possibly further extendable at 5’ end

EST-to-genome alignments for the EST candidates to potentially 159,378
extend the mRNA CDS at their 5’ end

Final set of results

ESTs with putative CDS extension 2505

mRNAs with putative extension of their known CDS at 5’ end 615

Loci with putative extension of their known CDS at 5’ end 477

Mean number of ESTs with extended sequence per mRNA 4.1

Mean length of extended 5’ CDS 178.5

Standard deviation of the extended 5’ CDS length 134.8

Minimum length of extension 3

Maximum length of extension 1014

mRNAs with CDS extension supported by more than one EST 298

mRNAs with CDS extension supported by more than one EST not 270
derived from the same library

Loci with CDS extension supported by more than one EST 232

Loci with CDS extension supported by more than one EST not derived 213

from the same library

genome annotation documentation, EST alignments are displayed on
the website but are not usually used as supporting evidence in the
gene-building process. The nucleotide and amino acid analysis data
are summarized in the Supplementary Table.

A

GNB2L1 HUMAN

Sequence comparison also showed the presence of high conservation
of the extended stretch with predicted proteins in non human primates,
a finding consistent with the coding nature of these regions (Fig. 2).

The amino acid sequences predicted at the amino terminus of these
three genes did not show new known functional domains through data-
base searches.

4. Discussion

The continuous incorporation of information derived from individual
and large-scale ¢cDNA sequencing projects (including those specifically
designed to characterize mRNA 5’ end [4,16,17]) in the last few years
led to continuous improvement of completeness of mRNA reference
sequences (e.g., RefSeq), and also to the corresponding protein coding
sequences. However, genome browsers do not appear to systematically
extract useful information from the ever-increasing vast quantity of EST
data. To date, EST data remain invaluable due to significantly longer
continuous RNA sequences they may provide in comparison with the
very short fragments typically deposited in current high-throughput
nucleotide sequencing databases. We first showed in zebrafish that EST
analysis by 5’_ORF_Extender software could extend the currently
known mRNA CDS [9], thereby differing from other methods, which do
not incorporate prediction of the putative CDS extension (e.g., [18]).

In this work, we have presented a modified strategy that was able to
analyze the much more numerous human sequences. Firstly, we fully re-
vised the software algorithm by using pre-computed coordinates of the
UCSC-downloaded RefSeq and EST genome alignment data (rather than
the results of a large scale BLAST comparison), and specific UCSC-
downloaded EST sequence entries. Rather than GenBank EST raw
entries, these are EST sequence entries in which nucleotides which are
unaligned to the genome are removed, and undetermined (‘N’) or
mismatched nucleotides are replaced by the corresponding nucleotides

GNB2L1 PANTR
GNB2L1 PONAB
GNB2L1 HILLE
GNB2L1 MACMU
GNB2L1 CALJA

GNB2L1 HUMAN
GNB2L1_PANTR
GNB2L1 PONAB
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MPCNFPLPFALHGAAILSRSVSWGSPFCMVERVFPVPAGGF -XSLSLQGGGGSGCGASFS
MPYNFPLPFALHGAAILSRSVSWGSPFCMVERVFPVPAGGF - LSLSLQGGGGSGCGASFS
MPCNFPLPFALHGAAILSRSVSWGSPFYLVEWVFPVPAEGF - -SLSLQGGGGSGCVARFS
MRCNFPSPFAIQGAAILNRGVGKGSPFCLVVRVFPVPEGGG-SLSSTQGGGGRSCGAVFS
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MRERHGTGACAEPRVGLLFRLKGRCRGGKKMELGSCLEGGREAAEEEGEP 50
MRKRHGTGACAEPRVGLLFRLKGRCRGGKKMELGSFLEGGREAAEEEGEP 50
MRERHGTGACAEPRVGLLFRLKGRCTGGKKMELGSSLEGGREAAEEEGEP 50

MRERRGAGACAEPTVGLLFRLKGRCGSGKKMELGSCLG- - - -AAEEEGEP 46
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Fig. 2. ClustalW alignment of GNB21L (A), QARS (B) and TDP2 (C) protein sequences from different species. Human sequences are derived from the original cDNA sequencing data
presented here. The methionine corresponding to the previously determined start codon in the human mRNA reference sequence is underlined, followed by the first 20 amino acids
of the reference protein sequence. HUMAN: Homo sapiens, PANTR: Pan troglodytes, PONAB: Pongo abelii, HILLE: Nomascus leucogenys, MACMU: Macaca mulatta, CALJA: Callithrix
Jjacchus. Asterisk: residue conserved in all sequences; colon: conservative substitution; dot: less conservative substitution.
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present on the genome. This key change significantly improved a num-
ber of areas: the software speed of analysis, sensitivity (due to the
implementation of management of sequence in ‘complement’ orientation
with respect to the genome recorded DNA strand, with consequent iden-
tification of previously undetected mRNA extensions thank to ESTs in
opposite orientation to the corresponding mRNA), specificity (due to
the use of EST sequence entries processed by UCSC as described above,
thereby avoiding false positive identification of start codons in the EST
sequence, and possibly false negatives too, thus further improving sensi-
tivity), and usability (due to the removal of all steps previously requiring
Unix functions, such as local running of BLAST and manipulations of large
text files). Furthermore, we adopted an original quality filter which was
able to test if each single EST candidate with sequence information of
possible use for extending a known mRNA, was attributed to the same
locus of that mRNA by an updated, complete and embedded version of
UniGene. Lastly, we automated data summarization for an analyzed
genome.

Following these improvements, 5'_ORF_Extender recognized a total
of 477 loci, out of the 18,665 human loci represented in the mRNA ref-
erence set, as bona fide candidates for extension. The percentage of
genes with an estimated incomplete mRNA 5’ coding sequence (2.6%)
is in the lower range compared with previous estimates (in the range
of 2-5%), which were based on more limited samples of sequences
[1,16,17]. The sensitivity of the method depends on the size of the
ever-growing EST repertoire available. Although EST single-pass se-
quencing itself is prone to experimental errors, we strongly suggest
that the mRNAs for which more than one EST was found, deriving
from two independent cDNA libraries and leading to the same predic-
tion, possess a longer CDS than the one described so far.

The identification of the most upstream currently definable AUG
start codon in an mRNA sequence cannot itself formally exclude that
in some cases a downstream AUG codon may also be used by the
ribosome, due to the phenomenon of alternative translation [19]. In
addition, due to the availability of a large number of tissue- or stage-
specific EST data, the EST-based extended CDS and/or the mRNA with
the incomplete ORF could possibly derive from alternative transcription
starting sites and/or splicing at the investigated locus. Nevertheless, the
protein-coding nature of additional nucleotides at the 5’ of the locus is
highlighted, and in the results each distinct alternative RefSeq mRNA
isoform mapping to the same locus is associated only with the EST-
based extended CDS with which it is compatible.

As a proof-of-concept, we have experimentally confirmed the EST-
based models showing an extended coding region at 5’ for three random-
ly chosen mRNAs: GNB2L1 (guanine nucleotide binding protein (G pro-
tein), beta polypeptide 2-like 1), QARS (glutaminyl-tRNA synthetase)
and TDP2 (tyrosyl-DNA phosphodiesterase 2) (Supplementary Table). In
these three cases, cross-species comparison at amino acid level indicated
a very high grade of conservation of the extended sequence among pri-
mates (Fig. 2). Therefore, the predicted product for these three human
genes should be redefined for functional studies. A detailed analysis of
these extended sequences is provided in the Supplementary File.

In conclusion, while genomic browsers continuously scan deposited
sequences and try to build mRNA models employing different methods,
they appear not to systematically address the issue of completeness of
the coding region at mRNA 5’ end. Our approach has been able to
generate, on a genome scale, 477 EST-driven original extended CDSs
of human mRNAs, which are now available to researchers interested
in these loci. In addition, software users can access a list of 20,775
human mRNAs in which the presence of an in-frame stop codon
upstream of the known start codon indicates completeness of the
coding sequence at 5’ in the current form.
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