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Abstract 

This paper introduces growth curve modeling for the analysis of language change in corpus 

linguistics. In addition to describing growth curve modeling, which is a regression-based method 

for studying the dynamics of a set of variables measured over time, the technique is 

demonstrated through an analysis of the relative frequencies of words that are increasing or 

decreasing over time in a multi-billion word diachronic corpus of Twitter. This analysis finds 

that increasing words tend to follow a trajectory similar to the s-curve of language change, 

whereas decreasing words tend to follow a decelerated trajectory, thereby showing how growth 

curve modeling can be used to uncover and describe underlying patterns of language change in 

diachronic corpora. 
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1. Introduction 
 

The study of language change has always been one of the main concerns of corpus linguistics. 

Research in diachronic corpus linguistics has focused both on understanding the change in the 

relative frequency of a single feature (e.g. Biber 2004, Biber & Burges 2000, Hundt 2014, 

Siemund 2014) and on analyzing change in the relative frequencies of many features in order to 

describe change across entire varieties of language and to discover general principles of language 

change (Biber & Finegan 1989, Nevalainen & Raumolin-Brunberg 2003, Säily et al. 2011, Biber 

& Gray 2013). Corpus linguists have also analyzed the chronological change in the frequency of 

words to uncover changes in culture and society as opposed to language itself (e.g. Baker et al. 

2013, Baker et al. 2008). Similarly, big data approaches have been used in culturomics to explore 

trends of cultural or historical change in the Google Books Corpus, such as the decrease in the 

frequency of the word God or the increase in the frequency of the word feminism (Michel et al. 

2011). Analyses of the Google Books Corpus have also found that linguistic evolution slows 

down as the vocabulary of a language grows richer (Petersen et al. 2012a) and that diachronic 

fluctuation in the frequency of words is negatively related to a word's frequency rank (Petersen et 

al. 2012b). More recently, corpus-based studies on language change have begun to analyze very 

large data sets harvested from social media platforms to study language change over short 
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periods of time (Eisenstein et al. 2012, 2014, Grieve et al. 2015). For example Grieve et al. 

(2016) identified newly emerging words through a diachronic analysis of the relative frequency 

of lexical items in a multi-billion word corpus of tweets from 2014.  

Several methodological advances have also recently been made in diachronic corpus 

linguistics. For example, Gries & Hilpert's (2008) use of neighbor clustering and Hilpert & Gries' 

(2009) iterative sequential interval estimation and regression with breakpoints are new methods 

for uncovering diachronic stages in time data. Similarly, Hilpert's (2011) motion charts offer a 

better approach for the visualization of time series data in corpus linguistics. Finally, Millar 

(2009) introduced an approach for fitting a curve to language time series data using regression, 

which is especially useful for testing for particular types of distribution over time in frequency 

data. Despite these methodological advances, an issue with many diachronic studies in corpus 

linguistics is that although numerous features are taken into consideration, eventually the values 

of these variables are summed together in one category and treated as a single feature in order to 

obtain an overall picture of change. For example, Säily et al. (2011) sum the frequencies of 

nouns and pronouns, while Biber (2004) sums the frequencies of stance-related features such as 

modal verbs and stance adverbials. Although informative, this operation can result in a 

substantial loss of information and thus risk obscuring important patterns in the distribution of 

these forms, especially when large numbers of forms with varying frequencies of different 

magnitude are analyzed together. 

 In addition to corpus linguistics, language change is also commonly analyzed in 

sociolinguistics. For example, understanding the general mechanism and principles of language 
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change is one of the main goals of variationist sociolinguistics (e.g. Labov 1978, Labov 1995, 

Chambers 2001). This type of research commonly analyzes the frequency of a linguistic form 

relative to the frequency of one or more equivalent forms, such as alternative pronunciations and 

grammatical constructions, in language data collected through sociolinguistic interviews. 

Variationist research also generally adopts an apparent time methodology, where change over 

time in the values of these alternation variables is estimated by sampling subjects within different 

age strata. Based on this approach to the analysis of language variation and change, 

sociolinguists have proposed that an s-shaped curve model of language change generally 

describes the replacement of one linguistic form with another (Denison 2003, Kroch 1989, 

Labov 1995, 2001). The model specifies that this replacement occurs following a logistic curve, 

that is, a slow-fast-slow change trajectory tracing an s-shaped pattern. This model has been 

validated by many studies, a comprehensive review of which is Blythe & Croft (2012). However, 

as Blythe & Croft (2012: 278) specify, no model of change has been so far proposed for 

introduced changes, that is, no model has been so far proposed for the trajectories taken by the 

frequencies of single variants changing in time—the types of feature commonly analyzed in 

corpus linguistics. Furthermore, most research in sociolinguistics has focused on analyzing 

temporal trends of individual variables, rather than on multivariate datasets, as is common in 

corpus linguistics. 

 Part of the reason for the lack of research on modeling diachronic frequency change in 

corpus linguistics is due to the absence of methods for analyzing the type of multivariate lexical 

and grammatical frequency data generally investigated. The object of this study is therefore to 
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introduce and explain the use of growth curve modeling, a statistical method primarily used in 

economics and behavioral sciences for modeling multilevel data that can be applied to the 

analysis of multivariate diachronic frequency data in corpus linguistics. Generally speaking, this 

regression-based technique allows the modeling of the latent change trajectory of a number of 

variables in longitudinal data while accounting for the information given by the trajectory of 

each variable. Within corpus linguistics, growth curve modeling allows the analysis of the mean 

growth trajectory of a frequency change for a bundle of linguistic variables while controlling for 

the variation of each individual trajectory. In the remainder of the paper growth curve modeling 

is first introduced and its application is then illustrated through the analysis of the trajectories of 

increasing and decreasing words in a diachronic corpus of Twitter. 

2. Growth Curve Modeling 
 

Growth curve modeling is a regression-based method for the analysis of longitudinal data (i.e. 

where the same subjects are observed repeatedly over time) commonly applied in social and 

behavioral sciences such as psychology and economics (Field 2009). The use of growth curve 

modeling allows for the estimation of a latent trajectory representing the single trajectories over 

time of a bundle of different observations while accounting for the clustered nature of the data 

(Hardy & Bryman 2014). The usefulness of such a method for corpus-based diachronic linguistic 

research lies in its power to test and predict the average pattern of growth or decay of the relative 

frequency of a bundle of words, grammatical structures, or other linguistic forms in a 

longitudinal corpus. The advantage of growth curve modeling over other methods is that this 

technique permits the testing of several types of trajectories until the one with the best fit to the 
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data is found. If the analyst's goal is to arrive at a simple model that summarizes, explains, and 

predicts the average trajectory of a bundle of variables, growth curve modeling is a technique 

that returns an output far more precise than other statistical means, such as plotting the 

mathematical average values of the bundle at each time point. This increased precision is 

achieved by controlling the variance across the several single trajectories while calculating the 

trajectory that best represents the whole bundle. 

 Growth curve modeling has not been applied in corpus linguistics research that analyzes 

changes in frequency of linguistic features and, more generally, it is still uncommon in 

linguistics. An area of linguistics in which growth models have seen some use is 

psycholinguistics. However, in this strand of research the variable being predicted is the speed of 

learning of a linguistic structure as opposed to its development and change in time (e.g. Mirman 

et al. 2008). In terms of the application of growth curve modeling to language change, recently 

Winter & Wieling (2016) have pioneered the use of growth curve modeling to study patterns of 

linguistic evolution in data sets of iterated learning experiments. 

 The application of growth curve modeling in diachronic corpus linguistics can be illustrated 

by considering a hypothetical example. Let us imagine that a linguist has measured the relative 

frequencies of numerous words or other linguistic forms longitudinally in a corpus—for example 

across several days, months, or years—in order to identify the overall trajectory of this bundle 

over time, such as whether the relative frequencies of this set of features has accelerated or 

whether their growth has slowed at some point or whether their increase has been constant. To 

tackle this problem, the linguist could plot the relative frequency of one of these linguistic 
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features over the time on a graph, producing a line that fluctuates and changes, perhaps 

identifying a relatively clear trend, if a diachronic pattern does indeed exist. The linguist could 

then add lines for more and more of the features under analysis to the same graph in an attempt 

to identify a general pattern of change in that set of features. Unfortunately, this process would 

likely result in a noisy graph characterized by a multitude of lines at different scales, each with 

its own idiosyncrasies, thus making the interpretation of a general trend impossible. The power 

of growth curve modeling lies in its ability to test and provide estimates for the coefficients of 

the overall latent trajectory that best fits the data, while also controlling for the differences 

among the trajectories of each single item of the bundle. In other words, growth curve modeling 

is a statistical method for fitting a line or curve in order to estimate growth trajectories of a set of 

outcome variables modeled as a function of time. As there are several different regression 

techniques that can be used to fit a line or curve, there thus exist several ways of performing 

growth curve modeling. In particular, this paper performs growth curve modeling through multi-

level linear regression using maximum likelihood estimation.  

 A standard linear regression is a statistical method that derives the equation of the line that 

best fits the input dataset and that thus allows the prediction of a response variable using some 

set of predictors. A multi-level linear regression, sometimes also called mixed-model regression, 

is a linear regression that also accounts for the idiosyncratic behavior of different observations, 

so that a latent pattern can be extracted more accurately (Snijders & Bosker, 1999).  This 

technique has been recently proposed as a more efficient statistical method for many linguistic 

applications. For example, multi-level linear regression has been applied to the study of 



8 

diachronic morphological change (Gries 2013) and in the creation of models that can predict 

native-speakers behavior (Gries & Deshors 2014). Multi-level regression has also been adopted 

to improve the application of variable rule analysis in sociolinguistics (Johnson 2009). The use 

of multi-level linear regression for growth curve modeling is another powerful application of this 

statistical technique in linguistics. 

 Growth curve models estimated using multi-level regressions are composed of two parts. 

The first part, usually referred to as fixed effect, represents the latent trajectory of the time trend 

underlying the entire bundle of observations. This may be used to represent the trajectory of 

frequency change across time for the bundle as a whole. The second part, defined as random 

effect, represents the variance for each individual observation around the value given by the fixed 

effect, which can be estimated for both the intercept and the slopes of the trajectories. Taken 

together, these two elements allow for the characteristics and patterns of change of the entire 

bundle of individual trajectories over time to be captured jointly. 

 A multi-level regression used to perform a growth curve modeling for a set of linguistic 

variables predicts relative frequency using time as predictor. Such a regression model can be 

represented formally using the following equation: 

f = Ct + z + ut + zu 

 fixed effect  random effect 

 

where f is the relative frequency of any item of the bundle, t is time in whichever scale it was 

measured, and z is the value of the intercept, that is the value of frequency when time is equal to 
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0. The equation above is broken down into its fixed effect and random effect. The random effect 

involves the term u, which represents a parameter that accounts for the idiosyncratic variation 

between the single trajectories. Once the regression estimates the coefficients of such an 

equation, the fixed part of the equation can be used to draw the line that best fit the growth 

trajectory of the bundle of observations as a whole. 

 It is common practice in growth model analysis to test for three different linear and 

curvilinear time trends: linear growth, quadratic growth, and cubic growth. More complex 

polynomials including powers over four can also be fitted. However, the use of polynomials of 

degree higher than three often leads to models that are more complex but that do not add 

significant amount of new information (Field 2009). Using the same notation as above, this 

procedure can be formalized in the use of, respectively, these three equations: 

 

f = Ct + z + ut + zu linear growth 

f = Bt
2
 + Ct + z + ut + zu

1
 quadratic growth 

f = At
3
 + Bt

2
 + Ct + z + ut + zu cubic growth 

 fixed effect random effect  

 

 If the first equation is found to be the best fit for the data , then this suggests that the bundle 

follows a linear growth, i.e. the average trajectory for the bundle is a straight line corresponding 

                                                 

1  In the mixed model framework, it is also possible to estimate random slopes for the quadratic and cubic effects 

but this comes with a significant increase in the complexity of the model and the within-variation in the data is often 

insufficient to calculate the covariance for all different combinations. However, it is generally possible to include 

random slopes only for the linear term without significant loss of efficiency in the model (Rabe-Hesketh and 

Skrondal, 2012). 
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to increasing or decreasing constant rate of change in time, depending on the sign of the 

coefficient C. Alternatively, if the second equation is found to be the best fit, then the bundle 

follows a quadratic growth, i.e. the average trajectory for the bundle contains a curve with 

variable degrees of steepness and corresponding to an acceleration or deceleration, depending on 

the sign and value of the coefficient B. Finally, if the third equation is found to be the best fit, 

then the bundle follows a cubic growth, i.e. the average trajectory for the bundle behaves 

quadratically until a further curve occurs, which can correspond to an acceleration or 

deceleration with variable degrees of steepness, depending on the value and sign of the 

coefficient A. The growth curve modeling used for exploring the latent trend of a dataset 

essentially consists in examining the significance, the sign, and the value of the coefficients 

estimated to understand the dynamics of change of the data in time. In the remainder of this 

paper, this methodology is further demonstrated through an application on lexical change in a 

dataset of American Twitter. 

3. Case study 

To demonstrate the application of growth curve modeling in diachronic corpus linguistics, an 

analysis of the dynamics of the growth and decay of word frequencies is presented below. As 

explained above, more research is needed on the modeling of the dynamics of frequency change 

for linguistic features, including on the dynamics of word frequency change. This case study 

makes a first step toward filling these gaps by using growth curve modeling to discover the 

general trajectories of change taken by words that are increasing and decreasing in frequency in a 

multi-billion word corpus of American Tweets. In addition to demonstrating the application of 
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growth curve modeling in diachronic corpus linguistics, this case study also uncovers models of 

language change that inform our understanding of the dynamics of word frequencies. 

3.1 Data 

The data used for this analysis consists of a corpus of American English Tweets produced from 
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October 2013 to 22 November 2014, which was collected at the University of South Carolina 

using the Twitter API (see Grieve et al. 2015, 2016, Huang et al. 2015, Wieling et al. 2016). The 

corpus includes approximately 1 billion tweets written by 7 million users totaling 8.9 billion 

words. Due to some technical problems, for 16 days data could not be collected. The final 

number of days studied was therefore 392, each one containing on average 22 million word 

tokens. In addition, this corpus contains only English language tweets that were geocoded with a 

longitude and latitude that falls within the contiguous United States, because this corpus was 

compiled with the intention of studying geolinguistic variation. 

The corpus was analyzed by first extracting all word types from the corpus. For this study, a 

word type is defined as an orthographic string of characters divided from other word types by 

white space or punctuation marks. The set of word types included in the analysis thus consists of 

many strings of characters that might not be considered as standard English words, such as 

acronyms (e. g. tbh for to be honest), creative spellings (e. g. b for the verb be), abbreviations (e. 

g. bro for brother), or interjections (e. g. ohh, ahah). These strings, however, are distinct and 

often very common forms in this particular variety of language and are therefore included in this 

analysis, although a similar analysis of a corpus representing this variety of language or another 

variety of language could be repeated using a different set of features. 
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 To focus only on the most common words with a reliable number of observations, a 

minimum frequency threshold of at least 1 million total occurrences in the whole corpus was 

chosen, which resulted in a sub-sample of 12,580 word types. For each of these words, the 

relative frequency per billion words was calculated for each day by dividing the number of 

occurrences of a word by the total number of word tokens for the day and multiplying by 10
9
 in 

order to control for variation in sample size. In this way, each word type was represented by a 

time series consisting in word frequency per billion words evolving in time from day 1 to day 

392. 

 To answer the research question regarding the description of the dynamics of words that are 

increasing or decreasing in the corpus, the sample of 12,580 word types was filtered to identify 

forms that showed a clear increase or decrease over the course of the year.  To identify these 

words, a Spearman correlation test was performed by correlating the rank of the relative 

frequency of each of the 12,580 words of the sample against the rank of the 392 days, following 

the procedure outlined in Grieve et al. (2016). If the Spearman correlation coefficient for a word 

was greater than 0.7 then the word was classified as increasing. Likewise, if the coefficient for a 

word was smaller than -0.7 then the word was classified as decreasing. The value of ±0.7 was 

chosen as it is a common threshold in correlation analysis used to identify strong correlations. 

Other values could have been used, however using a more conservative cutoff such as 0.8 or 0.9 

would have resulted in far fewer words to examine. This operation of filtering is by no means 

necessary for the growth curve modeling. However, the filtering of the increasing and decreasing 
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words is essential for the present study as its aim is to understand the dynamics of change of 

these two types of words. 

 After applying the Spearman correlation test in the way described, two groups of words were 

thus isolated: a set of 344 increasing words and a set of 345 decreasing words, the analysis of 

which is described in the section below. 

3.2 Analysis 

The first set of words examined is the 344 increasing words. When these words are plotted on the 

same graph the interpretation of the underlying trend is largely unintelligible, aside from the fact 

that the words are all clearly increasing in frequency, which is already known given the process 

through which they were selected. This problem is illustrated in Fig. 1, which shows the top 50 

increasing words plotted on the same graph against time. 



14 

 

Figure 1: Frequency of the top 50 increasing words plotted on the same graph against time 

Although it is possible to perceive a pattern, even by limiting the set to the top 50 increasing 

words out of 344, this is far from clear. Furthermore, the graph reveals how different words vary 

within different frequency bands. With the growth curve modeling analysis reported below, the 

latent trend underlying these trajectories can be estimated, also accounting for the fact that words 

are changing in time at different frequency bands. 

 The application of growth curve models to the 344 increasing words can be summarized by 

three tables and their relative models that are reproduced in Table 1 below. As explained above, 

the analysis of this set of words starts with fitting a multi-level regression model to predict 

relative frequency using time, which is reported in Table 1a. The χ
2
 statistic of this model is 
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significant, indicating that the model as a whole can be considered accurate. However, because 

the words analyzed were selected due to their positive correlation with time, it is not surprising 

that time significantly predicts relative frequency or that the coefficient for time has a positive 

sign, indicating that as time increases so does relative frequency. The values SD cons and SD 

time represent the random effect parts of the equation and indicate the standard deviation of the 

intercept and the standard deviation of the slope. The relatively high standard deviations obtained 

indicate that there is considerable variation across the words, as seen in Fig. 1. As explained 

above, the fixed part of the equation can be used to represent the latent trajectory in the data, 

which is plotted in a scatter plot next to Table 1a. The plot shows time in days on the x axis and 

the relative frequency on the y axis. 

 After carrying out the regression with only time as predictor, the next step of the growth 

model analysis is to add time
2
 as a predictor to the equation in addition to time to verify whether 

there is a significant quadratic term that contributes to the modeling of relative frequency 

increasing in time. Adding a quadratic term amounts to testing for the presence of a curve in the 

latent trajectory of the increasing words, either facing up or down and with varying degrees of 

steepness depending on the value of the quadratic coefficient. The statistics reproduced in Table 

1b show that a quadratic effect is present. The χ2 statistic of the quadratic model is significant 

and the significant p-value of the time2 term suggests that the average trajectory of increasing 

words curves at some point in time. Because the quadratic term is positive, this curve is facing 

upwards. The random effects again indicate that there is considerable variation for intercepts and 

slopes. Similarly to the result of the linear analysis, it is possible to produce the visualization of 
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the quadratic model in the graph next to Table 1b by using the coefficients and the constant 

resulting from the regression.  

 The final step of the growth curve modeling as applied in this work is the fitting of the cubic 

growth model, performed by adding time
3
 to the analysis. The statistics reported in Table 1c 

indicate that a cubic effect is also present. The χ
2
 statistic for the cubic model is again significant 

and the results reveal that the cubic term is a significant predictor of relative frequency increase. 

The cubic coefficient is negative, thus pointing to the presence of a point in which the curve 

changes direction and starts decreasing. The quadratic term of this model is, instead, positive, 

indicating a curve facing upwards. Finally, the linear coefficient for this model is negative, 

which suggests that the average line for the cubic model of increasing words starts with a 

decrease. In terms of the random effects, similar conclusions can be drawn as for the other two 

models. Overall, these results mean that if a cubic model is fitted, the increasing words are best 

modeled as growing slowly at the beginning, then having an acceleration in increase and then 

slowly increasing again until almost declining. The cubic model thus indicates that relative word 

frequency behaves in a slow-fast-slow pattern similar to the s-shaped curve of change that has 

been extensively found in sociolinguistics. Plotting the graph as before shows clearly how to the 

model translates visually.  
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Increasing words (N = 344, N obvs = 

134796) 

Linear model (a)   

  Coefficient P-value 

 

time 71.88 < 0.01 

      

      

constant 32190.25 < 0.01 

SD cons 145062.6   

SD time 136.55   

χ2 95 < 0.01 

AIC 3010648   

Quadratic model (b)   

  Coefficient P-value 

time 47 < 0.01 

 

time2 0.06 < 0.01 

      

constant 33886.33 < 0.01 

SD cons 145047.6   

SD time 136.52   

χ2 351.65 < 0.01 

AIC 3010393   

Cubic model (c)   

  Coefficient P-value 

time -19.06 0.023 

 

time2 0.47 < 0.01 

time3 -0.0007 < 0.01 

constant 36055.19 < 0.01 

SD cons 145066.8   

SD time 136.55   

χ2 678.85 < 0.01 

AIC 3010069   

 

Table 1(a, b, c): Multi-level linear regression models for increasing words  
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If no other polynomials are fitted, the growth model analysis concludes with the interpretation of 

the results and the selection of the best model. A standard measure to compare goodness of fit 

among competing models to select the best fitting model is Akaike's Information Criterion 

(AIC), reported in each table in the AIC rows (Sakamoto et al. 1986). Using this model selection 

method, the model with the lowest AIC is the model that best fits the data. The best overall 

model for the increasing words considered for this analysis is therefore the cubic model. This 

result is also supported by likelihood ratio tests used to test the contributions of the each 

additional coefficient: the addition of the quadratic coefficient significantly improves the linear 

model (LR χ
2
 = 256.36, p < 0.001), as does the addition of the cubic coefficient to the quadratic 

model ( LR χ2 = 326.22, p < 0.001). 

 In order to explore how the model relates to the data, Fig. 2 below shows the scatterplots of 

the top eight rising words in the corpus: fuckboy, rn, timehop, fw, ft, sm, squad, and asf. 
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Figure 2: Scatterplots for top eight increasing words 
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 Although a glance at these top rising words does suggest an s-shaped cubic pattern, it is 

evident that not all the words follow the same trajectory and that not all of them follow a cubic 

trend. The large variation that is present in the data is reflected statistically in the large standard 

deviations reported above. The usefulness of growth curve modeling however lies in the 

possibility of extracting a general latent pattern that would otherwise be unnoticeable by 

examining a small data sample such as in Fig. 2. The cubic pattern of increase shown in Table 1c 

is the common trajectory that best summarizes the behavior of all of the 344 increasing words. 

 Given the method explained above, the same growth curve analysis can now be applied to 

the set of decreasing words. The results of the analysis is in Table 2a,b,c below. 
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Decreasing words (N = 345, N obvs = 

137050) 

Linear model (a)   

  Coefficient P-value 

time -130.42 < 0.01 

 

      

      

constant 309847.6 0.03 

SD cons 2599862   

SD time 840.36   

χ2 8.29 < 0.01 

AIC 3504926   

Quadratic model (b)   

  Coefficient P-value 

time -52.83 0.25 

 

time2 -0.19 < 0.01 

      

constant 304675.3 0.03 

SD cons 2599860   

SD time 840.36   

χ2 110.22 < 0.01 

AIC 3504826   

Cubic model (c)   

  Coefficient P-value 

time -10.42 0.83 

 

time2 -0.46 < 0.01 

time3 0.0004 0.02 

constant 303253.5 0.03 

SD cons 2599861   

SD time 840.36   

χ2 115.62 < 0.01 

AIC 3504822   

 

Table 2 (a, b, c): Multi-level linear regression models for decreasing words.  
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 For the decreasing words the linear model is again appropriate, and this is the result of the 

fact that the words were selected only if they had a negative relationship with time. In the case of 

the quadratic model, the analysis reveals a decreasing trend that is similar to the linear model. 

While the negative coefficient for the quadratic term seems to suggest a curve facing 

downwards, as visualized in the line plot in Table 2b, the p-value of the linear coefficient is, 

however, not significant, meaning that it is not possible to reject the hypothesis that the initial 

decline may in fact be null. Finally, the cubic model reveals a decreasing pattern characterized 

initially by a decelerated trend followed by an acceleration in the decline. The coefficient of the 

first term is however not significant. Furthermore, the magnitude of the cubic coefficient is quite 

limited, as visualized in Table 2c, indicating that this effect does not substantially change the 

decreasing trend from the one obtained from the quadratic model, at least within the time span 

from 0 to 400 words considered for this study, as can be seen from the figures of Table 2. The 

random effects for all the three models are similar to the random effects for increasing words, 

with both intercepts and slopes varying considerably across words. An examination of the AIC 

values suggest that the cubic model is once again the best fitting model, as do likelihood ratio 

tests that evaluate the contribution of the quadratic coefficient to the linear model (LR χ
2
 = 

101.89, p < 0.001) and of the cubic coefficient to the quadratic model (LR χ2 = 5.39, p = 0.02). 

 As for the analysis of increasing words, an exploration of how the model relates to the data 

can be performed using Fig. 3 below, which shows the top eight decreasing words in the corpus: 

haha, fdb, uoeno, ooo, ratchet, ohh, yolo, cx. 
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Figure 3: Scatterplots for top eight decreasing words 
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 As for the increasing words, although most of the words in Fig. 3 above approximate the 

trajectory found by the growth curve model, not all of them follow exactly the same pattern, and 

this variety is again reflected statistically by the large standard deviations. Given the 

idiosyncrasies that each word exhibits, large variations are expected, as it is expected that 

commonalities are almost invisible to the naked eye unless a technique such as growth curve 

modeling is applied. 

 The two growth curve models thus provided describe the increase or decrease of words that 

were in a state of strong frequency change in American Twitter in 2014. These two models, 

represented by two equations that can be plotted onto a graph, are useful to visualize the latent 

tendency of the bundle of hundreds of words considered. 

3.3 Discussion  

In addition to demonstrating the application of growth curve modeling for diachronic corpora, 

the analysis of decreasing and increasing words are of relevance to theories of language change. 

The results have shown that words on the increase in American Twitter in 2014 follow a 

trajectory that is similar to the s-shaped pattern of language change already familiar to 

sociolinguists. Although this pattern has been repeatedly found in cases of alternations between 

two or more forms and occasionally in studies concerning frequencies over total number of 

words, this study identified a similar pattern across a large number of word frequencies measured 

in a corpus over real time. The model of growth for increasing words found in this study suggests 

that word frequency change tends to start slowly and then develop quickly until reaching a point 

of saturation while decelerating. In the research on sociolinguistic variables, several explanations 
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have been proposed for the emergence of such an s-shaped pattern for cases of competing 

changes. Labov (1995) suggests that it is the probability of contact between individuals who use 

the new variant with those who do not that explains the pattern, since this probability increases 

until the new variant becomes equally likely as the old variant and then it decreases, thus 

forming an s-shaped pattern. Alternatively, Blythe & Croft (2012) explain that the s-shape results 

from the fact that competing variants are unequally weighted by social factors. 

 The findings of the case study are in all probability accounted for by similar explanations, 

although the methodology here adopted consisted in the measurement of frequency relative to 

the total number of words as opposed to the frequency of related variants. The cubic model 

found demonstrates that the average trajectory of a word that is increasing in popularity firstly 

accelerates, and this phase corresponds to a state of diffusion in the community. However, there 

is a point in which this increase diminishes in power until leveling off, as if reaching saturation 

in the speech community. As recently proposed for emergent words, in accordance with the 

Verhulstian model of population dynamics, the maximum frequency of a word corresponding to 

the top of the s-curve is likely to correspond to the semantic carrying capacity of the word, or the 

maximum frequency of use of that form and of all the other forms that cover the same semantic 

space (Grieve et al. 2016). Since the words examined are not novel or emergent forms, the case 

study reported in the present paper provides evidence that a similar mechanism of diffusion also 

applies to words already established in a community. 

 Another important finding of the present study that concerns theoretical diachronic 

linguistics and language change is that the way relative word frequency increases is not exactly 
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symmetrical to the way relative word frequency decreases. On the one hand, the average increase 

of a word tends to be an s-shaped cubic pattern. On the other hand, the average decrease tends to 

approximate a decelerated trajectory. This asymmetry is not easy to explain in relation to 

previous research, as not enough research has been dedicated to the decrease in frequency of 

linguistic items. However, similar effects have been recently noted by Maslennikova et al. 

(2015), who found that 'the phase of decrease in the frequency is longer than the phase of 

increase in the frequency' for 500 billion words of the Google N-gram database. Similar 

asymmetry has been observed by Krawczyk et al. (2014) studying the dynamics of baby names 

adoption in the US, who noted that 'the popularity [of names] increases more quickly than it 

decreases' (Krawczyk et al. 2014: 387). The explanation for this effect is only hinted at by these 

authors, who mention that when a baby name is declining this name is already well spread and 

popular. The explanations for this asymmetry observed are rather speculative and require more 

attention in future research. 

  Overall, in terms of the general pattern of development of word frequency increase and 

decrease, it is possible to draw interesting parallelism between the dynamics of word frequency 

change derived by the growth curve models of the present study and the patterns of 

developments of products according to the marketing concept of the Product Life Cycle 

(Armstrong et al. 2015; Hunt 2010). According to this model, typically new products develop in 

time following four stages: introduction, growth, maturity, and decline. A product starts its life 

very slowly, then increases rapidly until a point of saturation after which it faces a slow decline. 

The growth models found in the present study for both increasing and decreasing words 
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combined reveal a similar type of behavior. This similarity could suggest possible theoretical 

connections between models of market change and language change requiring further 

investigation. 

4. Conclusion 

As well as making first steps towards a better understanding of the dynamics of lexical frequency 

change, the main goal of this paper is to introduce growth curve modeling for the analysis of 

large longitudinal diachronic linguistic datasets. 

 The present study has demonstrated how growth curve models can be used to capture the 

latent trajectory of a large bundle of linguistic features that are changing in time by estimating 

and testing the trend representing their tendencies that best fit the data. If an analyst is confronted 

with a longitudinal dataset of frequency data and their goal is to understand the dynamics of a 

category or bundle of features, growth curve modeling can help reveal such patterns. 

 Since the model returned by a growth curve modeling is in the form of an equation, the 

model can be easily plotted onto a scatter plot to be visualized. This method is therefore an 

excellent tool for diachronic research, providing a statistical tool to analyze the latent trend of a 

bundle of feature that is more powerful than summing up the frequencies in one category. 

Although the method was applied to relative word frequency change, the frequency of any kind 

of linguistic structure can be used instead. For example, bundles of relative frequencies of 

grammatical structures or of morphological items can also be used instead of lexical frequencies. 

The frequency of a variant over the frequency of another variant can be used instead of 

frequencies over the total number of words in a day.  
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 Although growth curve models as described in this paper are powerful and flexible tools, 

they do present limitations. For example, polynomials of the kind explored in the present work 

are only an approximation of the dynamics of the relative frequencies considered, since the 

proposed models assume that the predicted variable is unbounded when, in fact, relative 

frequency is bounded (i. e. can only vary from 0 to 1) and the response data may approach an 

asymptote. Although for the sake of the present study this limitation is less important, as the 

focus of the study is the understanding of the shape of the latent trajectories, researchers dealing 

with relative frequencies who are are primarily interested in more flexible and precise curve 

fitting properties may adopt other techniques that explicitly account for bounded data. In 

addition, further improvements in modeling reliability, for example in case of variables that 

present many fluctuations, can also be adopted with more sophisticated techniques such as 

Generalized Additive Modeling (Winter & Wieling 2016). However, with its balance between 

power and simplicity of application as well as interpretation, growth curve modeling lends itself 

well to become a standard technique for the analysis of trends of change in diachronic corpora. 
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