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Abstract 

Sol-gel synthesised bioactive glasses may be formed via a hydrolysis condensation 

reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS) and calcium 

is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an 

aqueous environment; the resultant gel is dried, before stabilisation by heat treatment. 

These materials, being amorphous, are complex at the level of their atomic-scale 

structure, but their bulk properties may only be properly understood on the basis of that 

structural insight. Thus, a full understanding of their structure : property relationship may 

only be achieved through the application of a coherent suite of leading-edge experimental 

probes, coupled with the cogent use of advanced computer simulation methods. Using as 

an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, to whose 

memory this paper is dedicated, we illustrate the successful use of high-energy x-ray and 

neutron scattering (diffraction) methods, magic-angle spinning solid state NMR, and 

                                                           
1 Corresponding author: r.j.newport@kent.ac.uk 
2 Present address: Department of Materials, Loughborough University, LE11 3TU, UK. 
3 Mark Smith’s present address: Vice-Chancellor’s Office, Lancaster University, LA1 4YW, UK. 
4 Richard Martin’s present address: Engineering & Applied Science, Aston University, Birmingham, B4 7ET, UK. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/226614892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Molecular Dynamics simulation as components to a powerful methodology for the study of 

amorphous materials. 

 

Introduction 

Obtaining information on the positions of atoms within the regular array that is a crystal 

is well understood – take away that sample-wide order and one faces a more challenging 

problem altogether. Given an amorphous solid, e.g. a glass, which possesses no order to 

the arrangement of their atoms beyond that driven by short-range chemical/electrostatic 

forces (i.e. over a distance corresponding to only a few atomic diameters), how does one 

extract quantitative information about the distribution of atoms of one element with 

respect to the other elements present? One may illustrate the complexity of this question 

by considering a ‘simple’ glass containing only the two elements Si and O. For a full 

understanding of the atomic-scale structure of the silica glass one needs to know the 

distribution of Si atoms around O (and equivalently, O around Si), Si atoms around other 

Si atoms, and O around other O atoms. Thus, from one experiment yielding a single data 

set – the structure factor from diffraction, say – one must attempt to extract three distinct 

distributions, the partial structure factors: this is, self-evidently, not possible. The 

complexity of the puzzle increases rapidly if one were to add more elements; in general, 

there are ½N(N+1) partial structure factors for a sample comprising N elements. Even if 

one chooses to ignore the residual presence of H in a sol-gel calcia-silica glass, there would 

be six partial pairwise correlations to consider. Add to this the fact that the scientifically 

key pair terms may be associated with an element present at low concentration and the 

problem becomes even less tractable. However, this intrinsic limitation may be overcome 

by combining multiple complementary datasets in a coherent manner; we describe herein 

one such approach. 

Neutron and X-ray diffraction 



Synchrotron-based high-energy X-ray diffraction (HEXRD) and neutron diffraction (ND) 

are powerful techniques that can be used to probe the structure of amorphous materials 

such as sol-gel glasses. This may include key stages of materials processing as well as 

providing insights into the glass’ final state [nx1, nx2]. Conventional HEXRD and ND 

experiments on amorphous materials yield a real-space pair-distribution function (PDF) 

which contains a series of peaks that correspond to the correlations between pairs of 

atoms. The PDF can be simulated to obtain structural parameters such as interatomic 

distances, coordination numbers and disorder parameters. The major limitation of this 

method is the difficulty of obtaining information on individual correlations from a single 

PDF where the correlations overlap. For example, in the PDF from bioactive 

(CaO)0.3(SiO2)0.7 sol-gel glass the Ca-O correlation appears as a broad feature at around 

2.35 Å that overlaps with the strong O-(Si)-O correlation at 2.64 Å; this makes a 

quantitative determination of the Ca environment impossible [nx3, nx4]. The case of 

(CaO)0.3(SiO2)0.7 sol-gel glass is further complicated by the fact that calcium often adopts 

complex local environments in silicates, as evidenced by the diverse calcium environment 

in crystalline calcium silicate minerals [nx5]. 

 

The approach adopted by Skipper et al. to circumvent the problems described above was 

to use neutron diffraction with isotopic substitution (NDIS) to extract the atomic 

correlations involving calcium [nx4]. This technique makes use of the fact there are stable 

isotopes of calcium with different neutron scattering lengths. By preparing two samples 

that are identical except for the isotope of calcium they contain, and taking a difference 

between the measured ND datasets, a PDF can be obtained that contains only the 

correlations that involve calcium (all other pairwise correlations being identical in the 

datasets collected from the two samples). 

 

Two (CaO)0.3(SiO2)0.7 samples were prepared by the sol-gel method [nx6]: one containing 

natural calcium (natCa) which has an average coherent scattering length of 4.70 fm and 

one containing calcium enriched with 44Ca, scattering length 1.42 fm. HEXRD data 



confirmed the samples to be structurally equivalent. The ND data were collected on the 

GEM diffractometer on the ISIS Spallation Neutron Source, UK. The resultant PDFs are 

shown in Figure 1.  

 

Figure 1. Neutron PDFs from (CaO)0.3(SiO2)0.7 (black lines) and their simulations (red 

lines) showing key correlations: (a) PDF from (44CaO)0.3(SiO2)0.7 and (b) natCa-44Ca 

difference PDF with non-Ca correlations eliminated [nx4]. The fits and partial correlation 

functions were generated using NXFit [nx7]. 

 

Analysis of the neutron PDFs from the two samples revealed that sol-gel (CaO)0.3(SiO2)0.7 

has a structure based on an incomplete network of SiO4 tetrahedra with non-bridging 

oxygen atoms (NBOs) terminated by protons and Ca2+ ions. The results of fitting the NDIS 

PDF showed that the calcium environment consists of three partially overlapping Ca-O 

correlations with resolvable distances of 2.3, 2.5 and 2.75 Å. On the basis of molecular 

dynamics simulations, Mountjoy and Mead assigned these correlations to Ca-NBO, Ca-OH 

and Ca-BO (BO = bridging oxygen), respectively [nx8]. The Ca-NBO and Ca-BO 

correlations have since been confirmed in the melt quench 45S5 analogue at ~2.33 and 

2.75 Å using diffraction and computer modelling; as anticipated, the Ca-OH is absent in 

the melt quench derived sample [nx9] . The complex Ca-O environment provided the first 

clue towards explaining why calcium loss from sol-gel (CaO)0.3(SiO2)0.7 occurs readily by 

simple ion exchange with body fluid. 

 



Skipper et al. have shown that calcium is not incorporated into the silica network until the 

glassy material is heated to ~400 °C, at which point the nitrate breaks down and Ca enters 

the network [nx1] . However, the NDIS study described above was extended by soaking 

the heat-treated final materials in simulated body fluid (SBF) for 30 minutes and repeating 

the NDIS experiments [nx10]. The results revealed that calcium associated with non-

bridging oxygens was preferentially leached into the SBF. The reduction in intensity of the 

peak at 2.3 Å in the first order difference function PDF was accompanied by a domination 

of the feature at 2.5 Å by the peak at 2.7 Å. These changes were interpreted as the 

formation of calcium phosphates after immersion in SBF, since the Ca-O distances are 

longer in calcium phosphates [nx11]. FitzGerald et al. undertook a complementary in situ 

and time-resolved HEXRD study of bioactive sol-gel (CaO)0.3(SiO2)0.7 foam immersed in 

SBF on beamline ID15 at the ESRF, France [nx3]. The results showed that after ~1 hour 

of exposure to SBF, weak Bragg peaks could be observed, after ~3 hours a layer of 

tricalcium phosphate and hydroxyapatite was evident and after ~5 hours the formation of 

hydroxycarbonate apatite was observed. Again, evidence of preferential dissolution of 

calcium from the Ca-NBO environment was observed. Furthermore, changes to the O-(Si)-

O correlation associated with SiO4 groups provided direct evidence of disruption to the 

underlying glass network as the reaction proceeded. 

 

The structure of a bioactive calcia–silica sol–gel glass from solid state NMR 

Solid state NMR provides information about the details of local atomic scale structure of a 

material. Each nucleus experiences certain interactions that reflect the surroundings of 

that atomic position; this influence can extend up to a few atomic neighbours away from 

the position under study, with this information being manifest as spectral features in the 

solid state NMR data. The two most commonly invoked nuclear interactions are the 

chemical shift (for spin I ≥ ½ nuclei) and the quadrupolar (for spin I > ½ nuclei) interaction 

[NMR1]. A fully multinuclear approach means that a perspective is provided from each 

different nucleus [NMR1], with any proposed structure having to be compatible with all 



available information, as well as the information from other complementary techniques. 

In recent years the increasing availability of first principles quantum calculations of the 

NMR parameters from the structure has provided an additional dimension to NMR as a 

probe technique of the intricacies of the atomic scale structure [NMR2, NMR3], which for 

bioactive glasses directly influences their osteogenic properties. 

 

For the (CaO)0.3(SiO2)0.7 sol-gel glass considered here the three nuclei (17O, 29Si, 43Ca) can 

all be observed by NMR with varying degrees of difficulty. In addition for a sol-gel produced 

sample 1H NMR has provided direct evidence about the proton content in the porous 

structure. Then on reaction with SBF 31P NMR reports on the inclusion of the phosphorus 

from the SBF and how the phosphate phases develop over time. In the initial gel the most 

straightforward nucleus to observe and interpret is spin-½ 29Si. The chemical shift of the 

differently connected SiO4 species – termed Qn units where the number of corners 

connected to other SiO4 varies between zero (Q0) and four (Q4) – can usually be readily 

distinguished from their differing chemical shifts within the resolution of the magic angle 

spinning (MAS) 29Si spectra, even for amorphous solids [NMR1]. Although the Qn 

distribution provides information about the network connectivity, it is often helpful to 

reduce the distribution to a single number capturing the network’s average connectivity 

(Dc) which is the sum of (n× (fraction Qn)). These gels were aged (60C), dried 

(120/130C) and stabilised (500-800C). With most conventional sol-gel formed mixed 

silicate-based systems there is a monotonic increase in Dc as hydroxyls are driven off with 

heat treatment. Ca(NO3)2 is a common Ca source in sol-gel formed bioactive 

(CaO)0.3(SiO2)0.7 and it was very interesting that Dc initially increases and was much higher 

than the composition predicted. Extensive study and cross referencing the different 

characterisation techniques showed very clearly that the 5-8 nm secondary silicate 

particles have Ca2+ and NO3
- interacting with the surface, such that the Ca is not yet 

playing a direct role in the silicate network [NMR4]. On stabilisation at 600C the nitrate 

thermally decomposes and the Ca has to directly interact with the silicate to satisfy its 



charge balance needs, creating non-bridging oxygens thereby decreasing the network 

connectivity, which is observed in the 29Si MAS NMR data [NMR4]. 

 

The utility of 29Si MAS NMR as an indicator of the interaction of Ca is well illustrated by 

comparing different calcium sources for the sol-gel formation of (CaO)0.3(SiO2)0.7. Although 

Ca(NO3)2 has many advantages, the high stabilisation temperature required to decompose 

the nitrate makes it unsuitable for producing hybrids as these temperatures destroy the 

polymer component. In making a detailed comparison of Ca(NO3)2, CaCl2 and 

Ca(OCH2CH2OCH3)2 as calcium sources 29Si NMR gave Dc for initially aged samples of 3.65, 

3.55, 2.17 and those stabilised at 700C of 3.28, 3.75 and 3.14 for the three calcium 

sources respectively [NMR5]. The data clearly show that CaCl2 is completely unsuitable as 

the Ca appears to interact very little with the silicate network at any temperature. However 

the low Dc in the initial gel for Ca(OCH2CH2OCH3)2 indicates that Ca is already strongly 

interacting with the network, making it highly suitable for low temperature processing 

schemes. Although Dc is a highly useful concept, a direct structural interpretation is more 

complex in comparison to that for melt-quench produced samples due to the presence of 

residual protons which mainly reside in the form of hydroxylated species. Hence network 

connectivity can be reduced via both conventional charge-balancing oxygens (i.e. Si-O) 

or as Si-OH. As protons are relatively dilute in these systems modest MAS can produce 1H 

NMR spectra which have been used to identify the types of proton species present, but 

perhaps equally important provide a means of quantifying the proton content (i.e. protons 

per g) by comparison of the signal intensity with that of a standard sample of known 

proton content [NMR6]. For monoliths produced from Ca(NO3)2 optical microscopy clearly 

revealed two distinct macroscopic regions, with secondary ion mass spectrometry showing 

a much higher calcium concentration in the outer region [NMR7]. The combination of 1H 

and 29Si was able to show that both the proton content (by a factor 3) and the connectivity 

of the silicate framework (by 3%) were higher in the inner region, consistent with lower 

Ca content. 

 



The two quadrupolar nuclei (17O, 43Ca) are both quite challenging nuclei for NMR [NMR1]. 

17O has much potential as a direct observer of the framework species, with a relatively 

large chemical shift range and usually modest quadrupolar interaction. The low natural 

abundance 0.017% necessitates isotopic enrichment, but this is relatively straightforward 

in a sol-gel produced sample. The distinction between bridging O (BO) and non-bridging 

O (NBO) for calcium silicates is straightforward even in direct MAS spectra. It is clear from 

Fig. 2(a) that in a sample heated to 120C there is no NBO peak at ~100 ppm. However 

on increasing heat treatment to 500 then 700C the NBO peak can be seen to progressively 

increase in intensity as the calcium creates NBO [NMR8]. A combination of multiple applied 

magnetic fields and triple quantum (3Q) NMR accurately determined the intensity and NMR 

parameters [NMR8]. 

 

Figure 2.  17O MAS NMR data collected at 14.1 T of (CaO)0.3(SiO2)0.7 heated to (a) 120, (b) 

500 and (c) 700C, and of (CaO)0.2(SiO2)0.8 (d) before and after (e) 1 hour and 24 hours 

reaction with SBF (adapted from [NMR8]). 

 

The 43Ca nucleus belongs to a group of nuclei with small magnetic moments, termed low-

 which combined with its low natural abundance and quadrupolar nature has limited the 

number of studies until the advent of higher magnetic fields [NMR1]. However natural 

abundance studies are often sufficient to produce interesting information. 43Ca NMR 

directly confirmed that in the sol-gel production of calcium silicates that at temperatures 

≤ 350C, although no X-ray diffraction peaks of Ca(NO3)2 could be detected, the 43Ca 
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resonance was very similar to bulk Ca(NO3)2 indicating that very highly dispersed calcium 

nitrate is present. After higher temperature heat treatment the 43Ca NMR signal is lost 

which is attributed to the chemical shift dispersion present as calcium has a wide range of 

local environments in the stabilised gel. This makes an interesting comparison with the 

melt-quench analogue where a strong signal is observed in the glass [nx9]. Inversion of 

43Ca 3QMAS NMR data [nx9] could be rationalised with two signals; a Ca largely 

coordinated with BO and the other largely associated with NBO [NMR9]. This data provided 

good corroboration of the ND data by cross-referencing the various Ca correlations. 

 

The ultimate utility of these calcium silicates depends on their bioactivity on subsequent 

reaction with SBF. The release of Ca2+ (and silicate) ions into the solution is an important 

trigger event for subsequent cell development. 17O MAS NMR shows that on contact with 

SBF the NBOs associated with Ca are rapidly lost (Fig. 2). It appears that there is a rapid 

exchange between Ca2+ ions and H+ such that calcium is released and the surface becomes 

rapidly hydroxylated [NMR8]. During this process Dc drops slightly. This then creates 

favourable conditions for the surface deposition of calcium phosphates on the way to 

hydroxycarbonate apatite (HCA). The spin-½ 31P is an ideal probe nucleus with high 

intrinsic signal sensitivity and a highly dispersed chemical shift range for detection of 

different phosphate environments. The 31P NMR data shows that a phosphate phase forms 

very rapidly (within a few minutes) and that from an early stage in these systems its 

chemical shift closely resembles quite well ordered HCA [NMR8]. 

 

 

The structure of a bioactive calcia–silica sol–gel glass from Molecular Dynamics 

simulation 

Molecular dynamics (MD) simulation is a powerful computational method for probing a 

material’s structure and properties. It is conceptually simple: for each timestep, starting 

from the atomic positions, the interatomic forces are modelled via Newton’s Law F = ma, 



and the atoms are then moved to new positions under those accelerations. The new 

positions are used in the subsequent timestep, in an iterative process. Because MD 

provides the atomic positions throughout the trajectory, it can be used to extract 

information about structure and properties at local and larger length scales, providing a 

powerful complement to experimental spectroscopic techniques. 

 

The standard method for preparing a glass in the computer is to create an equilibrated 

melt (or liquid) whose temperature is then reduced to body or room temperature [MD1, 

MD2], thus forming a disordered glassy solid. Bioactive glasses such as 45S5 Bioglass® 

and related phosphosilicate glasses have been modelled in this way [MD3, MD4].  Further 

simulations have extended this basic composition space by substituting Sr for Ca [MD5] 

and introducing fluorine [MD6, MD7]. Characterisation of these simulated structures show 

that the network connectivity parameter introduced by Hill [MD8], whilst being a useful 

guideline, does not reflect the range of topological structure in these glasses, embodied in 

the Qn distribution, for example, or in the greater extent of network fragmentation 

displayed by the more bioactive glasses and the concomitant spatial distribution of the 

modifiers in these glasses (which, of course, determines the Qn distribution). 

 

For applications in tissue engineering, melt-quenched glasses are often not suitable, and 

low-temperature sol-gel preparative routes are used instead. Glasses formed in this way 

still retain a number of OH groups which leads to more open, lower-density glasses. The 

most common composition of sol-gel derived bioactive glasses is (CaO)0.3(SiO2)0.7.  Mead 

and Mountjoy [MD9] investigated the structure of nominally such a glass. One of the more 

interesting conclusions was that there were hydroxyl species not bonded to SiO4 

tetrahedra, but were, rather, preferentially coordinated to the network modifying Ca ions. 

These “free” OH come from the dissociation of H2O molecules which were added.  Likewise, 

a quantum-mechanical study of water in bioglass [MD10] also revealed the existence of 

free OH, which, again, arose from the dissocation of the additional water molecule. A 

similar observation was made by Tilocca [MD11] on a 45S5 glass in which a quantity of 



Na were, formally, at least replaced by protons. However, in this case, the number of 

oxygens in the system was not changed.   

 

The presence of modifiers, such as calcium and protons (as hydroxyl ions), in the glass 

structure should, in principle, reduce its network connectivity and is hence likely to 

enhance bioactivity. However, as just noted, a significant fraction of the hydroxyl oxygen 

atoms bond directly to the (sodium and) calcium, and not to silicon. In this case, the effect 

on the glass structure is to increase the silicate network connectivity above that which 

might be expected [MD9, MD10]. Similar effects have recently been found in more 

complicated hydrated yttrium aluminosilicate glasses, where the modifying yttrium ions 

create yttrium and hydroxyl-rich spatial domains in the glass structure [MD12]. 

 

Clustering of modifier cations is also potentially important because it is known to increase 

bioactivity [MD5]. Such spatial distributions of modifier cations throughout the glass 

structure are readily addressed by MD simulations [MD13]. In the calcium silicate glasses, 

for example, the extent of clustering of atoms can be simply found by comparing the Ca-

Ca coordination number (usually using a cutoff of 5.0A) to that which would be expected 

if the Ca atoms were distributed randomly and homogeneously throughout the model. For 

the (CaO)0.3(SiO2)0.7 composition, some slight clustering is observed: the Ca-Ca 

coordination number is 4.0, compared to an expected 3.6 for a homogeneous distribution. 

The amount of Ca clustering appears to increase with decreasing Ca content, as has been 

found for other network modifier ions in, e.g., melt-quenched yttrium aluminosilicate 

glasses [MD14].   

 

When a silicate glass is implanted into the body for therapeutic purposes, depending on 

composition, it undergoes a series of chemical reactions which determine its bioactivity 

(or inactivity). These reactions will change the composition, structure and properties of 

the glass at its surface, which will alter how it dissolves, and how it releases its component 

ions. Although there has not been any simulation of the (CaO)0.3(SiO2)0.7 composition 



interacting with the surface, simulations of other bioactive glass compositions provide 

some insight. 

 

These bioactive glass compositions contain both sodium and calcium as network modifiers, 

so the structures are not exactly comparable, although there are many similarities. The 

surface of these glasses is first enriched with sodium, which interacts with water outside 

the glass, allowing water to enter the glass itself, which begins the dissolution [MD9]. For 

these glasses, Ca-water interactions occur after Na has been leached into the solution; it 

is likely that for the Na-free (CaO)0.3(SiO2)0.7 composition, the Ca-water interactions will 

occur first, although more slowly as Ca is known to be less mobile through the glass 

structure than Na [MD10]. Ca also binds to hydroxyl groups created by water dissociation, 

stabilising this process [MD10]. One might speculate that the migration of the Ca cation 

in such cases (e.g. surface gel layers) is a co-operative process involving the hydrating 

OH species as well as the Ca cation itself. 

 

Amongst the most reactive sites on the glass surface are non-bridging oxygen atoms 

(often associated with modifier cations) [MD10, MD15, MD16]; these can promote water 

dissociation and the formation of silanol Si-O-H groups on the surface of the glass, which 

is one of the early steps in the bioactive glass dissolution process. In addition, a large 

number of the free hydroxyl groups introduced into the glass structure are bound to the 

modifier cations [MD11], as also observed in (CaO)0.3(SiO2)0.7. 

 

In summary, MD simulations, whether classical or quantum mechanical, provide 

information about the structure and structure-related properties, such as reactivity, which 

both complement and supplement experimental data. Because they offer “direct” atomic 

scale pictures of the structure, the simulations are valuable aids to the interpretation of 

that experimental data. 
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