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Abstract 

    This paper describes the horizontal deflection behaviour of a single particle in 

paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was 

designed to carry out experiments and test assumptions. It was found that the particles were 

deflected away from the magnet bore centre and particles with different density and 

susceptibility settled at a certain position on the container floor due to the combined forces of 

gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was 

chosen to simulate the movement of the particle in the magnetic fluid, the simulation results 

were in good accordance with experimental data. The results presented here, though is still 

very much in its infancy, which could potentially form the basis of a new approach to 

separating materials based on a combination of density and susceptibility.  
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1. Introduction 

Magnetic phenomena have been known and exploited for many centuries [1]. Many kinds 

of magnetic separation techniques, such as beneficiation of iron ore, recovery of metal from 

waste material, attraction of very small ferro-magnetic particles onto steel filter wires (high 

gradient magnetic separation, HGMS), biomagnetic extraction of heavy metals and so on, 

have been developed and applied in industry. However, these techniques are restricted to  
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treating ferromagnetic substances as the separation criteria are based on the  

repulsion/attraction towards the magnetic field [2-8].  

Recently, the levitation of materials has become a topic of interest to a broad section of 

researchers [9]. There are two ways to levitate feeble magnetic substances, diamagnetic 

levitation and magneto-Archimedes levitation. The diamagnetic levitation of bismuth [10], the 

lifting of water [11] as well as the stable levitation of living frogs [12,13] have been reported. 

The Magneto-Archimedes effect was first noted by Braunbeck in 1939[10]. Since then much 

work has been carried out and continued; Ikezoe et al. successfully levitated KCl and NaCl 

grains in pressurized oxygen gas[14] and also a 1 cm diameter water drop in the centre of a 

10 Tesla magnet and levitated and separated Ti, C and S in 2.67 mol/l solution of dysprosium 

nitrate[15]. This highlights the importance of the paramagnetic fluid (magneto-Archimedes 

agent) in providing the additional force to enable the particles to levitate. In addition, Hirota et 

al [16] in 2004 successfully used magneto-Archimedes separation to separate biological 

materials. 

Comparing the two methods, the levitation of diamagnetic objects requires very large 

magnetic field-gradient products due to the small magnetic susceptibility of the diamagnetic 

materials, thus there are only a limited number of materials which could be diamagnetically 

levitated and only limited laboratories in the world could do this work [14].  

    In the presence of a background fluid, magneto-Arichimedes levitation applies the 

buoyancy principle to the levitation in a magnetic field, which could be modified as shown by 

the following equation [14]: 
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    Where 0χ  and 0ρ  are the magnetic susceptibility and density of the levitating object 

respectively and fχ  and fρ  are those of the background fluid. In diamagnetic levitation, the 

latter two terms on the left-hand side in Eq.(1) have been neglected. For the vertical direction 

magnet field gradient, the particle will endure four types of forces. Similar to wood in water, 

the particle in the media around it will receive a weight and buoyancy force provided by the 

media. Also the particle will be influenced by two further types of force, magnetic attraction 

and the magnetic levitation, which are related to the magnetic field strength.   Here the 



levitation is known as the Magneto-Archimedes effect and the media called the Magneto-

Archimedes agent [17-19].   

Mir et al. [20]  pioneered the use of ferrohydrostatic separators in 1973 by employing a 

kerosene-based ferrofluid to separate automobile scrap [20]. Considerable effort to develop 

this technology was subsequently expended in Japan and USA with a comprehensive review 

of the history of FHS in Japan and USA given by Fujita [21]. FHS technology has been used 

in industry to process gold and PGM concentrates as well as for diamond beneficiation but at 

a limited scale[22].  However, the fluids lack stability in contact with the atmosphere and the 

magnetic fluids are black in colour making the recovery and regeneration of the fluid a 

challenge, all of which must be addressed for large scale industrial implementation. 

With the development of the design and synthesis of superconductivity material, it will be 

possible to generate high magnetic fields at low cost and weakly magnetic fluids could 

replace the current ferrofluids [1]. Over the past decade a considerable amount of research 

has been conducted at the University of Nottingham on the levitation of particles under high 

magnetic fields and gradients [23-25]. An interesting phenomenon was noticed during some 

of the levitation experiments, that the particles were repulsed to the wall of a container to form 

a ring around the centre of magnetic. This paper is based on this phenomenon and explores a 

horizontal direction magnetic deflection system, which potentially provides a new concept to 

separate particles with different density and magnetic susceptibility. A model has been set up 

to simulate the phenomenon of deflection, which shows good accordance with the 

experimental results.  

 

2. Experimental procedure 

2.1 Materials 

    Manganese (II) chloride aqueous solution was used as the magnetic fluid during the 

experiments. A 4 mol/l solution was prepared by dissolving analytically pure MnCl2 in distilled 

water with the density and susceptibility of the resultant solution being 1395 kg m-3 and 

6.6x10-4 m3
·kg-1, respectively, which was used in all the following experiments where it was 

required. A range of well defined particulate materials were used including pyrite and glass 



spheres as well as a real mineral ore (copper sulphide ore).  The physical properties of the 

pyrite and glass spheres used in the experiments are listed in Table. 1.  

 

2.2 Superconducting Magnet 

  The experiments were performed using an Oxford Instruments Minimum Condensed 

Volume (MCV) superconducting magnet, which had a 5cm diameter open bore with the 

maximum magnet central field being about 17 Tesla in the magnet bore, and the maximum 

BdB/dZ field gradient about + 1470 T2m-1. The picture of the superconducting magnet is 

shown in Fig. 1a. The maximum field strength position is about 19 cm down into the bore 

from the top plate of the superconducting magnet. The magnet field strength from the top 

plate of the superconducting magnet rig is shown in Fig. 1b. 

 

2.3 Design of glass box 

As observed in the trial tests, the particles levitated in the Magneto-Archimedes fluid were 

repulsed to the wall of a container in the superconducting magnet field centre area.  

    In order to explore this interesting behaviour, a rectangular glass box was made with 

dimensions, 145 x 195 x 25 mm. The box was placed on top of the magnet as shown in Fig. 2 

with one of the end faces being positioned over the centre of the magnet bore.  This was the 

point where the particles were fed or introduced in the fluid.  

 

2.4 Data collection 

    When a single particle was placed into the liquid at the end of the box close to the magnet 

bore centre as shown in Fig. 2, a video camera was used to record the movement of the 

particle. The individual frame with 0.1 second interval was analysed to extract the path of 

particle during deflection. 

2.5 Numerical simulation details 

2.5.1 Equilibrium of a particle in a magneto-Archimedes solution 

    MATLAB is a numerical computing environment and fourth generation programming 

language, recently many researchers used this kind of software to develop the numerical 

modelling in engineering areas[26-29]. Numerical simulation of particle behaviour in a 



magnetic field was carried out to explore the deflection phenomena during the single particle 

experiments using Matlab software. To find a suitable model to simulate the process, the first 

step was to calculate the equilibrium of a particle in a magneto-Archimedes solution. To 

analyze the detailed forces acted on the particle, the forces were extracted to horizontal 

direction force Fr and vertical direction force Fz. From the equation of magnetic energy[13] ,  
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The equation of Fr and Fz can be achieved as below[30]. 

  Fz= 
dz

dU
=

dz

BdkV )(
2

2

0

∗
µ

= 
dz

dBkVB∗
0µ

                             (3)  

                        Fr=
dr

dBkVB∗
0µ

                                                               (4) 

    The above vertical force is just the magnetic vertical direction force. But actually the particle 

in the magneto-Archimedes fluid should stand the buoyancy force provided by the solution. 

Combing the gravity and buoyancy, the vertical direction force in total could be summarised 

as below [24]:  
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    The horizontal direction force also could be summarised as the following formula 

considering the solution effect.  
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    The total magnetic field strength of every position is the combination of horizontal and 

vertical direction magnetic field strength as shown below. Where Z means the vertical 

direction and r means the horizontal direction.  

      B= 22
rz BB +                                                                       (7) 

In the above equation, the total magnetic field strength B and vertical direction magnetic 

field gradient 
dz

dB
, horizontal direction magnetic field gradient 

dr

dB
 can be measured on site. 



Based on the measured magnetic field strength data, the force of the particles could be 

calculated. 

 

2.5.2 Horizontal deflection simulation 

    As to the deflection paths of the particle in 4M MnCl2 solution during the simulation, the 

velocity and displacement of the particle can be modelled according to the following 

fundamental formulas.  

    The relevance between the force and velocity acceleration can be shown as below 

                                                 f=ma                                                                                (8)      

    The relationship between the original velocity and the instantaneous velocity could be 

described as  

                                                 vt=vo+at                                                                           (9)   
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    Combining with the above formulas, the displacement of the particle can be summarised as 

following.  
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    According to the fundamental formulas on the force and velocity listed above, the track of 

particle can be simulated by computer based on the calculated forces in the above section.  

 

3. Results and discussion 

3.1 Single particle experiment 

    As manganese chloride solution is paramagnetic, it will be attracted close to the magnetic 

field centre, which leads to the slight distortion of the liquid surface [13], this had been 

observed during the experiments as well.  

Fig. 3 (a and b) presents the horizontal deflection of glass particles in a 4M MnCl2 solution 

under different magnetic fields from 9.5 T to 16.5 T, which is a typical phenomenon of particle 

horizontal deflection in a magnetic fluid. The glass particle was dropped into the container at 

the point above the angle position. The X axis represents the length of the glass box, which is 

about 195mm and the Y axis represents the height of the glass box, which is about 145mm. 

The right side of the figure was one side of the glass box which was close to the magnet bore 



centre. The left side of the figure is the side of the glass box which is far away from the bore 

centre. 

It can be seen from Fig. 3 (a and b) that the deflection behaviour and track of a particle at 

different magnetic field strengths was different. The particle was deflected more under a 

stronger field and took more time to settle to the bottom of the container due to the stronger 

buoyancy force competing with gravity. 

    The deflection behaviour of a glass particle with different sizes (diameters) is shown in Fig. 

4a, It would seem that a glass particle with a diameter of 0.7mm behaved similarly to that of a 

1mm diameter one, which indicated that the size of particle did not have an obvious effect on 

the horizontal deflection. This supports our assumption as the variation of particle size would 

not change the vertical and horizontal forces’ balance acted on the particle, thus the influence 

of particle size on the particle deflection should be negligible. 

Several experiments were conducted to explore the deflection of glass and pyrite under 

similar conditions, which is shown in Fig. 4b. It was clear that the pyrite and glass particles 

were separated as the particles settled down at different positions on the container floor due 

to the balance between the buoyancy force and gravity.  

 

3.2 Deflection of particles in the cylinder 

According to the previous results on the deflection of a single particle in a paramagnetic 

fluid, it could be presumed that the particles group will tend to show the same deflection 

behaviour when they were put into the same magnetic system. A cylinder shown in Fig. 5a 

was used to carry out the experiments (the particles were dropped from the top of the magnet 

bore centre), the result is shown in Fig. 5b.  Two clear rings were formed in the cylinder due 

to the deflection movement of particles, the inner ring with a dark colour of pyrite particles and 

an outer ring of sand particles. The sand particles were deflected furtheraway from the centre 

of the cylinder than the pyrite particles, which was due to the force balance between gravity 

and levitation as well as the unbalanced horizontal force raised by the distribution of the 

magnetic field.  

  

3.3 Simulation results 



3.3.1 Forces acted on particles in magnetic field 

   Based on the equations in section2.5.1, Matlab was chosen to measure the total forces 

acting on the particles in magnetic field. The total forces acting on glass particle in 4M MnCl2 

solution under the magnetic field of 16.5T was shown in Fig. 6. Different colour in the graph 

represents different force acting on particles. It can be seen that the forces were smaller as 

the height increased (Z vertical distance from the magnet bore centre) and the radial distance 

increased(r: the radial distance from the magnet bore centre).  

 

3.3.2 Single particle movement in magnetic field 

It was indicated from the experiments aforementioned that under different magnetic field, 

the particles were deflected in different paths. The modelling result of this was shown in Fig. 7. 

It is clear again that the glass particle (d=1mm, Fig. 7a) had different deflection path under 

different magnetic field strength. The stronger magnetic field strength, the glass particle was 

deflected more and settled at positions away from the bore centre. The different paths of 

glass particle and pyrite particle were modelled and the results are shown as Fig. 7b, which 

indicate that the pyrite and glass particle were deflected at different paths and settled at 

certain positions due to the difference of density and magnetic susceptibility.  

The effect of particle size on the horizontal deflection had been modelled as well, the 

results are shown in Fig. 7c and Fig. 7d. It could be indicated that particle size had negligible 

effect on the horizontal deflection, at least for the size ranged examined in these modelling 

work(+0.7 - 5mm).  Comparing the modelling work(Fig. 7) with the experimental results(Fig. 3 

and Fig. 4), it is clear that the simulation method is reliable and almost got the same trend of 

particle movement in magnetic field as that in experiments. Thus, presumably, this simulation 

method could be potentially developed and used to predict the behaviour of particles in more 

complicated system 

 

3.4 Discussion 

Separation in magnetic fluids is a sink-and-float technique, which exploits differences in 

the densities and susceptibilities of materials to be separated. In this technique, a magnetic 

fluid, placed in a non-homogenous magnetic field, exhibits an apparent density difference 

from its natural density[8]. This apparent density can be controlled through a wide range of 



values[13]. The vertical balance of forces(levitation and gravity) on particles could be 

described by Fig. 8a when the particles are sitting in the  centre of magnetic field[5]. 

However, when it comes to the horizontal deflection, if the particles deviate from the 

centre of magnetic field (Fig. 8b), due to the uneven distribution of magnetic field in the 

horizontal direction characterized by high density in the middle of magnetic poles and low 

density at the outside of magnetic poles, two kinds of forces acted on particle: magnetic force 

(fx, attracting particle toward the centre of magnetic poles) and magnetic repulsion force (fR, 

repulsing particle to the outside magnetic poles). Usually fR is stronger than fx, which is the 

main factor leading to the particles’ horizontal deflection.   

As there are still vertical balance between buoyancy and gravity, the trajectory of particles 

will be a curve instead of straight line.  

 

Experimental results were in good accordance with those of simulation, both of them 

indicated the horizontal deflection of particles among magnetic fluid under strong magnetic 

field, which could be potentially developed to separate particles as per the differences in 

density and/or susceptibility. 

 

4. Conclusions 

    The concept of separation of non-magnetic particles suspended in a magnetic fluid is 

based on the Magneto-Archimedes principle whereby, in addition to the conventional force of 

gravity acting on the fluid, also a magnetically induced force acts on the fluid. This additional 

magnetic pull creates a magnetically induced buoyancy force on a particle immersed in the 

fluid. Based on this, a glass box and cylinder were designed to investigate the movement of 

particles in magnetic fluid. It was found that particles were repulsed to the inner wall of a 

cylinder to form a ring. Pyrite and glass particles were deflected and settled at certain 

positions in a specially designed container due to differences in their densities and magnetic 

susceptibilities. The density and susceptibility of particles, as well as the magnetic field 

strength were found to be the major factors influencing the movement of particles. Particle 

size (diameter) seemed to have little influence on the results, at least for the size range 

examined in these experiments (+0.106-3mm). Similar results were obtained for experiments 



and mathematical simulation. It is appreciated that extending this range, particularly to the 

finer sizes, would increase the influence of other types of forces, eg, hydrodynamic forces, on 

the separation behaviour. The horizontal deflection behaviour of the particles provides a new 

concept for the potential separation of minerals and materials. These are very early results 

and considerable more work is required to understand the basic system, not least, the 

behaviour of fluids that could potentially be used as magneto-Archimedes agents. This work 

is continuing in collaboration with physicists and is currently exploring a broader range of 

particle types and sizes as well as potential hydrodynamic forces.  
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NOMENCLATURE 

 



Variables                                                                                                Units 

a general acceleration of velocity (m.s-2) 

B the magnetic induction field strength (T) 

Br horizontal direction magnetic field strength (T) 

Bz vertical direction magnetic field strength (T) 

B’ vertical direction magnetic field gradient  (T.m-1) 

Csalt mass percentage of salt in the total mass (-) 

F magnetic force per unit mass  (N.kg-1) 

Fm the magnetic attractive force (N) 

Fr horizontal direction force (N) 

Fz vertical direction force (N) 

Fz
’  per unit mass of horizontal magnetic force  (N.kg-1) 

f general Force (N) 

g the acceleration of gravity (m.s-2) 

H the magnetic field intensity (A.m-1) 

Ha the applied field intensity (A.m-1) 

k volume magnetic susceptibility (-) 

k1 (or kp) mass susceptibility of the levitating substances (-) 

k2 (or  kl) mass susceptibility of the medium gas (or liquid) (-) 

M induced magnetization of the particle (A.m-1) 

Mm molar mass  (kg.mol-1) 

m the mass of the particle (kg) 

S displacement (m) 

t time (s) 

Umag magnetic energy (m4T2.H-1) 

V  particle volume (m3)  

Vm molar volume of the substance (m3.mol-1) 

v t velocity after time t  (m.s-1) 

v0 velocity at time is zero (m.s-1) 

W per unit volume of magnetic energy (mT2.H-1) 

X the specific magnetic susceptibility (kg-1) 

Χm molar susceptibility  (m3.mol-1) 

x mass magnetic susceptibility (m3.kg-1) 

µ0 the permeability of free space (H.m-1) 

ρ mass density (kg.m-3) 

ρ1 the density of the levitating substances (kg.m-3) 

ρa the apparent density of liquid (kg.m-3) 

ρ2  (or ρl) density of medium gas (or liquid) around it (kg.m-3) 



ρL actual density of liquid (kg.m-3) 

 

 
 

the magnetic field gradient (A.m-2) 

dz

dB
 

vertical direction magnetic field gradient  (T.m-1) 

 

horizontal direction magnetic field gradient (T.m-1) 

   

 

 

 

 

 

 

Table. 1 Physical properties of pyrite and glass spheres 

Materials Particle size Density (kg m-3) kpX10-6 xp X 10-9 m3 kg-1 
Pyrite +0.7-1.2mm 5000 338 67.5 

Glass spheres 0.7 & 1.0mm 2472 (-) (-) 
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a. MCV magnet system b. BB' Vs distance from the top of magnet 

Fig. 1 MCV magnet system used in experiments 

 

 

 

 

 

Fig. 2 Experimental setup with glass container 
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a.  glass particle with d=1mm b.  glass particle with d=0.7mm 

Fig. 3 The deflection of glass particle under different magnetic field 

 

  

a.  glass particle with d=1mm b.  glass(d=0.7mm), pyrite(+0.7-1.2mm) 

Fig. 4 The deflection of glass and pyrite particle at 16.5T 

 

  

     a. Experimental setup     b. Two rings formed in the cylinder 

Fig. 5 The deflection of sand and pyrite in cylinder(16.5T, 4M MnCl2, +0.15-0.2mm) 

 



Fig. 6 Forces acted on glass particle (d=1mm) in magnetic field (Bc=16.5 T ) 

 

Fig. 7 Simulation results of particle deflection in magnetic field 
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a. Forces balance(in the centre ) b.  Forces balance(deviate from the centre) 

Fig. 8 Forces acted on particles in magnetic field 
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