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Rose hips are popular in health promoting products as the fruits contain high content of bioactive compounds. The aim of this
study was to investigate whether health benefits are attributable to ascorbic acid, phenols, or other rose-hip-derived compounds.
Freeze-dried powder of rose hips was preextracted with metaphosphoric acid and the sample was then sequentially eluted on a
C18 column. The degree of amelioration of oxidative damage was determined in an erythrocyte in vitro bioassay by comparing
the effects of a reducing agent on erythrocytes alone or on erythrocytes pretreated with berry extracts. The maximum protection
against oxidative stress, 59.4 ± 4.0% (mean ± standard deviation), was achieved when incubating the cells with the first eluted
meta-phosphoric extract. Removal of ascorbic acid from this extract increased the protection against oxidative stress to 67.9±1.9%.
The protection from the 20% and 100% methanol extracts was 20.8± 8.2% and 5.0± 3.2%, respectively. Antioxidant uptake was
confirmed by measurement of catechin by HPLC-ESI-MS in the 20% methanol extract. The fact that all sequentially eluted extracts
studied contributed to protective effects on the erythrocytes indicates that rose hips contain a promising level of clinically relevant
antioxidant protection.

1. Introduction

Oxidative stress is associated with many different diseases
such as heart- and cardiovascular disease, diabetes, obesity,
and cancer. Epidemiological studies show that diets rich
in fruits promote good health, at least partly through
delaying the onset of diseases associated with oxidative
stress [1]. These beneficial effects may be mediated by
different phytochemicals with high antioxidant capacity, of
which the polyphenols is a large group abundantly found
in berries [2, 3]. Measurement of antioxidant capacity can
be performed with many different methods. The relevance
of general, chemical methods and their relationship to
actual human health benefits is, however, controversial [4–
6]. Human cell-based systems may provide more biological
relevance than simple chemical assessments and they also
allow the opportunity to consider interactions between
added nutrients and functionally complete cellular enzyme
systems, as well as with the intact membranes of living cells.

Erythrocytes can serve as a relevant human cell model
in the investigation of bioavailability and antioxidant pro-
tection by natural products against oxidative stress. The
antioxidant potential of plant phytochemicals against oxida-
tive stress has previously been assessed using different
erythrocyte methods. The degree of lipid peroxidation
of the cell membrane has been investigated, using either
intact erythrocytes or erythrocyte membranes for measuring
malondialdehyde, an indicator of lipid peroxidation [7, 8].
Coleman [9] used methaemoglobin generation as a model
for oxidative stress. Other laboratories have focused on
the levels of redox enzymes [10–13] as well as the use
of free radical generators to induce erythrocyte lysis [12,
14, 15]. Strategies for the study of dietary antioxidant
protection using erythrocytes have also been published [16–
19]. Erythrocytes have been used to test for oxidative stress
in several different diseases [20–22] and for in vitro testing
of cell-permeating therapeutic antioxidants. Honzel et al.
[23] and Blasa et al. [24] have developed erythrocyte models
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in order to identify natural products, which may provide
sustained intracellular protection from oxidative damage.

The suitability of the erythrocyte as an assay for oxidative
stress measurements lies in its adaptation to the prevention
of oxidative stress-mediated perturbation of the structure
and therefore the function of haemoglobin. Erythrocytes
contain over 90% of their weight as haemoglobin, and
the cells stabilize this protein with the second highest
intracellular GSH level (after the liver) in the body [9].
The high GSH concentration quenches reactive oxygen
species-mediated structural haemoglobin damage, which
can occur as a result of superoxide formation, which in
turn arises from normal oxygen carriage [9]. The GSH
maintenance system also provides the reducing power to
maintain other cellular antioxidants in their reduced states.
Various phytochemicals with different chemical properties
may combat oxidative stress within the erythrocyte and
potentially preserve intracellular thiols [9].

There is a growing interest in fruits and berries as rich
sources of many bioactive compounds that may promote
health. Many studies have investigated artificial substances
and/or pure compounds in high concentrations rather than
the joint effect of phytochemicals in complex foods. During
the last decade, rose hips have gained increased interest
since they contain compounds that are known to possess
several antioxidant, antimutagenic, and anticarcinogenic
effects [25, 26]. Rose hips have been used to treat conditions
such as arthritis [27–29], rheumatism, and diabetes. The
major bioactive compounds within rose hips are phenols,
ascorbic acid, tocopherols, β-carotene, lycopene, tannins,
pectins, sugars, organic acids, amino acids and essential
fatty acids [30, 31]. Other rose-hip-derived compounds
reported include galactolipids [31] and triterpenic acids [32].
Interestingly, the antioxidant effects of these compounds
cannot fully account for the clinical effects of rose hip powder
[33] and the efficacy of the phenolic compounds in the
rose hips has yet to be evaluated in controlled clinical trials
[30]. Indeed, it still remains unclear whether the protective
effects of polyphenols to human health are attributable
to the phenols or other agents in the diet [30], such as
phytochemicals, that may enhance total oxidant-scavenging
capacities by binding to erythrocytes [34]. The main purpose
of this study was to investigate different aspects of the
antioxidant protection of rose hips on oxidative stress in an
erythrocyte in vitro test system.

2. Materials and Methods

2.1. Chemicals and Cells. Methanol, formic acid, acetoni-
trile, 85% orthophosphoric acid, and meta-phosphoric
were obtained from Merck (Darmstadt, Germany). Ascor-
bic acid, ascorbate oxidase, dimethyl sulfoxide (DMSO),
KH2PO4, Na2PO4, EDTA, and H2O2 were purchased from
Sigma-Aldrich (Seelze, Germany). Phosphate-buffered saline
(PBS), without calcium or magnesium, and dichlorofluo-
rescein diacetate (DCF-DA) were obtained from Invitrogen
(Lidingo, Sweden). The standards used for HPLC-ESI-MS

analysis (catechin, proanthocyanidin, rutin, quercetin galac-
toside, cyanidin glucoside) were purchased from Extrasyn-
these (Genay, France).

2.2. Plant Materials. To evaluate the antioxidant uptake
in erythrocytes rose hips from three advanced selections
(“BRo30173,” “BRo30289,” and “BRo05035”) were sampled
at full maturity. The seeds were removed and the remaining
flesh with skin was lyophilized and ground to a fine powder
in a laboratory mill (Yellow line, A10, IKA-Werke, Staufen,
Germany) before extraction.

2.3. Preparation of Polyphenol Rich Extracts. The freeze-dried
powders of rose hips from the three selections were blended
in equal proportions and 2.5 g of the powder was added
to 50 mM metaphosphoric acid (50 mL) for preextraction.
The rose hip preextract (PE) was kept in an ultrasonic bath
for 15 min before centrifugation at 4500 rpm for 10 min.
The supernatant was applied to a C18 (EC) column (Isolute
SPE Columns, Biotage, Sorbent AB) that had been pre-
equilibrated with 100% methanol and washed with dH2O.
A sequential elution was performed and the first obtained
extract (E1A) consisted of the metaphosphoric acid eluent of
the pre-extract. Extract two (E2A) and three (E3A) consisted
of the eluents with 50 mL 20% aqueous methanol and 50 mL
100% methanol, respectively. Metaphosphoric acid and
methanol were used as they preferentially extract different
bioactive compounds according to their physicochemical
properties. The solvents of the extracts were removed using
a rotary evaporator at 45◦C. The concentrated extracts were
then dissolved in 50 mM metaphosphoric acid.

2.4. Enzymatic Removal of Ascorbic Acid. Ascorbate oxidase
(AO, Sigma Aldrich) was used for enzymatic removal of
ascorbic acid by reducing ascorbic acid to dehydroascorbic
acid. Ascorbate oxidase was dissolved in a phosphate buffer
consisting of 100 mM KH2PO4, 4 mM Na2PO4, and 5 mM
EDTA, and pH was set to 5.6. Aliquots of the extracts (E1A–
E3A) were taken, and pH adjusted to 5.6. These extracts were
then treated with ascorbate oxidase to provide ascorbate-
depleted extracts (E1B—E3B). For this purpose 100 units
of ascorbate oxidase was added to the test tubes containing
the samples and left in the dark at room temperature for 24
hours.

2.5. Analysis of Ascorbic Acid Content in the Extracts. The
ascorbic acid content of the extract was determined on
a Shimadzu HPLC system (SIL-10A autosampler, SCL-
10AVP control unit, LC-10AD pump, SPD-10AV VP UV-
Vis detector unit, BergmanLabora, Sweden). The pre-extract
(PE) and the metaphosphoric acid extract (E1A) were diluted
with 2% meta-phosphoric acid, 20 and 30, times respectively,
before analysis. No dilution was performed with the other
extracts. The isocratic eluent consisted of 0.05M NaH2PO4

and orthophosphoric acid (8.5%), pH of the eluent was
adjusted to 2.8. The separation was performed using a
Restek, 150× 4.6 mm, column kept at 30◦C (Column Chiller,
Sorbent AB) and a guard column. Detection was carried
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out at 254 nm. Evaluation of data was done with Shimadzu
Class-VP software (version 6.13 SP2) using retention times
and spectral data as compared with an external standard of
ascorbic acid. Each sample was analyzed in triplicate.

2.6. Analysis of Phenols by HPLC-ESI-MS. The content of
major single phenols in the different extracts was measured
on a Perkin Elmer Sciex API 150EX Single Quadrupole mass
spectrometer (with a Turbo Ion Spray interface) according
to a modified method from that described by Salminen et al.
[35]. The HPLC system consisted of two Perkin Elmer pumps
connected to a Perkin Elmer autosampler (Serie 200). The
compounds were separated using a Phenomenex Synergi 4μ
Hydro-RP 80A, 250× 4.6 mm column, and a C18 precolumn.
The mobile phase consisted of 0.4% formic acid (Buffer
A) and acetonitrile (Buffer B). The eluent was run at a
flow rate of 1.0 mL min−1 and the gradient elution was as
follows: 0% B (0–3 min), 30% B (3–30 min), 40% B (30–
35 min), 40% B (35–38 min), and 0% B (38–42.5 min). The
injection volume was for all samples 8 μL. The eluent was
split to 0.3 mL min−1 before being introduced to the ESI-MS
system. The electrospray chamber was operated at 4.0 kV in
the negative ion mode and mass ions obtained by acquiring
data in peak jump and scan mode. Catechin was detected at
m/z 289.3 (M-H)−, proanthocyanidin monomer 577.5 (M-
H)−, proanthocyanidin dimer 577.5 (M-H)−, rutin 609.5
(M-H)−, quercetin galactoside 463.4 (M-H)−, quercetin
glucoside 463.4 (M-H)−, and cyanidin glucoside 477.1 (M-
H)−. The general conditions for the quantitative HPLC-ESI-
MS analyses were the following: nebulizer gas 9.0 L min−1,
curtain gas 12.0 L min−1, and dry gas temperature 300◦C.

2.7. Determination of Total Phenols. The content of total
phenols was measured using the Folin-Ciocalteu method
[36]. In brief, five μL of the different extracts were mixed
with 100 μL 5% ethanol, 200 μL Folin-Ciocalteu reagent,
2 mL of 15% Na2CO3, and 1 mL of dH2O. The absorbance
was measured at 765 nm after 2 h incubation at room
temperature. Gallic acid was used as a standard and the
total content of phenols was expressed as mg gallic acid
equivalents (GAE)/g dry weight (dw).

2.8. Ferric Reducing Ability of Plasma. The ferric reducing
ability of plasma (FRAP) of the extracts was measured
according to the method developed by Benzie and Strain
[37], but modified to fit a 96-well format [38]. The different
extracts were diluted 100-fold. Ten μL of these preparations
were incubated at 37◦C and then mixed with 260 μL of ferric-
TPTZ reagent (prepared by mixing 300 mM acetate buffer,
pH 3.6; 10 mM of 2,4,6-tripyridyl-s-triazine in 40 mM HCl;
and 20 mM FeCI3 in the ratio of 4 : 1 : 1; the solution was
kept at 37◦C). The absorbance was measured at 595 nm after
4 min on a plate reader (Sunrise, Tecan Nordic AB, Sweden).
Fe2+ was used as a standard and L-ascorbic acid was used
as a control where one mole of ascorbic acid corresponds
approximately to two moles of FRAP (we obtained and used
the value 2.02).

2.9. Preparation of Erythrocytes. The preparation of erythro-
cytes was performed as described by Honzel et al. [23].
Briefly, a healthy human volunteer served as blood donor.
Peripheral venous blood samples were drawn into sodium
K2-EDTA vials (BD Vacutainer, UK). The vials were cen-
trifuged for 5 min at 2400 rpm. Plasma and leukocytes were
removed and the erythrocytes were harvested by pipettes and
transferred into new vials. The erythrocytes were washed
three times with PBS in a centrifuge at 2400 rpm for 5 min.

2.10. Analysis of Antioxidant Protection in the Erythrocyte
Model. The protocol for the erythrocyte bioassay was based
on the cellular antioxidant protection assay using erythro-
cytes (CAP-e) [23] modified to a microplate-based assay,
but using H2O2, as the free radical generator. Briefly, from
the remaining packed erythrocytes, 0.12 mL was added to
12 mL of PBS. The erythrocytes were then treated with serial
dilutions of the previously obtained extracts (PE, E1A–E3A
and E1B–E3B). The erythrocyte suspension was incubated
in the dark on a rocker at room temperature for 120 min.
The erythrocytes were then washed twice in PBS and any
extracellular potential antioxidants were thereby removed.
The cell pellet was then lysed through the addition of
dH2O and the lysed sample treated with the fluorescent
dye 5-(and-6)-carboxy-2′,7′-dichlorofluorescein (DCF-DA),
which becomes fluorescent as a result of oxidative damage.
After this the sample was exposed to free radicals by
addition of 167 mM hydrogen peroxide (hydroxyl free radical
generator). The degree of antioxidant damage was recorded
after 10 min by measuring the fluorescence intensity of
each sample. The mean DCF-DA fluorescence intensity
was compared between untreated erythrocytes (negative
controls), hydrogen-peroxide-treated erythrocytes (positive
controls), and erythrocytes pretreated with extracts from
rose hips on three separate plates.

2.11. Analysis of Erythrocyte Uptake of Phenols. From the
remaining packed erythrocytes, pure erythrocytes were
treated with extract E2A. All measurements were performed
with three true replicates. For this purpose, the erythrocyte
cell suspension (1/3 sample and 2/3 purified erythrocytes)
was incubated in the dark on a rocker at room temperature
for 60 min. The erythrocytes were washed twice in PBS to
remove the antioxidants not able to enter the cells after
the 60 min incubation. The supernatants following the wash
were retained for analysis. The cell pellet was lysed with
absolute ethanol, vortexed and placed in an ultrasonic bath
for 5 min, and then centrifuged at 13000 rpm for 5 min. The
supernatant was then kept for analysis using HPLC-ESI-MS
as described in Section 2.6.

2.12. Statistical Analysis. The results of the oxidative stress
experiments were expressed as the mean ± standard devia-
tion.Each observation was repeated in triplicate in different
96-well plates. Statistical analyses were carried out using
the Minitab 16 software (Minitab, State College, PA, USA).
Paired t-test analyses were performed to reveal any signifi-
cant difference between treatments (extracts).
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Table 1: Content of ascorbic acid and its contribution to antioxidant capacity of different extracts (E1–E3, without (A) or with (B) ascorbate
oxidase treatment) obtained from sequential elution of a metaphosphoric preextract (PE) of rose hips. Data are presented as mg ascorbic
acid/g dw rose hip powder, mg ascorbic acid/mL extract, and FRAP antioxidant capacity mmol Fe2+/L extract (mean ± standard deviation).

Fraction
Ascorbic acid (mg/g dw) Ascorbic acid (mg/mL) FRAP ascorbic acid (mmol Fe2+/L)

A B A B A B

PE (HPO3) 80.18± 1.02 2.74± 0.05 31.40± 0.62

E1 (Eluent of PE) 42.03± 1.60 0.03± 0.06 5.97± 0.23 0.00± 0.01 68.41± 2.60 0.06± 0.09

E2 (20% MeOH) 1.41± 1.72 0.00± 0.00 0.59± 0.72 0.00± 0.00 6.72± 8.23 0.00± 0.00

E3 (100% MeOH) 0.04± 0.01 0.00± 0.00 0.02± 0.00 0.00± 0.00 0.21± 0.05 0.00± 0.00

3. Results

In this study, the protection against oxidative stress of human
erythrocytes was measured in vitro. Experiments were per-
formed with a rose hip metaphosphoric acid preextract
and three extracts of different polarity obtained through
sequential elution of the pre-extract on a C18 solid phase
column.

The content of ascorbic acid in the extracts and in
the different dilutions before and after enzymatic treatment
is presented in Table 1. From these data, it is clear that
treatment with ascorbate oxidase efficiently reduced the con-
tent of ascorbate in all samples, although minute quantities
remained in extract E1B.

The Folin-Ciocalteu assay was used for measurement of
the content of total phenols. A high content of phenols was
found in the metaphosphoric acid extracts (PE and E1A).
Although this value decreased after enzyme treatment (E1B),
it was still higher than in extracts two (E2A) and three (E3A)
(Table 2).

The extracts were also analysed for content of sin-
gle phenolic compounds using mass spectrometry. We
found significant amounts of catechin, a proanthocyani-
din monomer, a proanthocyanidin dimer, rutin, quercetin
galactoside, quercetin glucoside, and cyanidin-glucoside
(Table 3). The metaphosphoric acid extract (E1A) contained
only low levels of different phenols, whereas the second
(20% methanol) extract (E2A) in particular, but also the
third (100% methanol) extract (E3A) contained considerably
more phenols. Of the quantified single phenolic compounds
catechin and proanthocyanidins were present in highest
amounts.

Using the chemical FRAP assay to measure antioxidant
capacity, the metaphosphoric extract (E1A) showed the
highest antioxidant capacity, 464.4 ± 84.2 μmol Fe2+/g dry
weight (dw). This value decreased four-fold after enzymatic
treatment to 98.0 ± 10.6 μmol Fe2+/g dw (E1B) and was
then lower than in the second (20% methanol) extract (E2A)
(Table 4).

This is in contrast to the biological model using erythro-
cytes. In Figure 1, the protection against oxidative stress on
erythrocytes is shown for all extracts, both with ascorbic acid
(a) and without ascorbic acid (b). Interestingly, there was a
significant (P = 0.023) increase in protection after removal
of ascorbic acid, with a protection of 59.4% and 67.9% for
E1A and E1B, respectively, at an extract concentration of

Table 2: Content of total phenols in different extracts (E1–E3,
without (A) or with (B) ascorbate oxidase treatment) obtained from
sequential elution of a metaphosphoric acid pre-extract (PE) of
rose hips, measured by the Folin-Ciocalteu method. The bias from
the ascorbic acid content in the extracts to the phenol estimates is
obvious. Data are presented as mg GAE/g dw rose hip powder and
mg GAE/mL extract (mean ± standard deviation).

Extract

Total phenols Total phenols

(mg GAE/mL) (mg GAE/g dw)

A B A B

PE (HPO3) 3.0± 0.3 86.4± 8.9

E1 (Eluent of PE) 3.4± 0.1 2.1± 0.2 24.2± 1.4 15.0± 1.3

E2 (20% MeOH) 5.2± 0.8 4.2± 0.9 12.4± 1.8 10.0± 2.0

E3 (100% MeOH) 2.0± 0.1 1.8± 0.4 4.8± 0.9 4.4± 0.8

3 mg rose hip powder per mL. E2A with the highest contents
of polyphenols was the most protective of the polyphenol
rich extracts with 20.8% inhibition of oxidative damage. The
corresponding protection from the third extract (E3A) was
5.0%.

To confirm uptake of antioxidants by the erythrocytes,
the content of polyphenols was measured in erythrocytes
treated with the polyphenol rich (20% methanol) extract
(E2A) using HPLC-MS. Of the studied polyphenols only
catechin and proanthocyanidins entered the erythrocytes in
detectable amounts (Figure 2). The uptake in the erythro-
cytes was very low, 3.1% of the total amount of catechin
supplied (Table 5). The supernatant contained 50.7%, thus
46.2% of the added catechin remained in the pellet consisting
of the erythrocyte membranes.

4. Discussion

Human erythrocytes are carriers of oxygen and may be
exposed to reactive oxygen species which could lead to
oxidative damage. Several micronutrients may protect ery-
throcytes against oxidative stress. In this study, we used
human erythrocytes to investigate cellular protection and
uptake of bioactive compounds in sequential extracts eluted
from an acid water extract of rose hips. The fact that all
extracts studied contributed to protective effects on the
erythrocytes indicate that rose hips contain a variety of
effective antioxidant compounds.
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Table 3: Content of major single phenols in different extracts (E1A–E3A) obtained from sequential elution of a metaphosphoric acid pre-
extract of rose hips. Data are presented as μg/mL extract (mean ± standard deviation).

Polyphenol (μg/mL) PE (HPO3) E1A (Eluent of PE) E2A (20% MeOH) E3A (100% MeOH)

Catechin 436.1± 77.7 7.6± 1.2 335.4± 22.8 33.8± 10.7

Proanthocyanidin monomer 774.4± 87.2 5.6± 2.4 625.1± 38.5 40.8± 10.4

Proanthocyanidin dimer 379.0± 53.8 0.0± 0.0 296.4± 26.8 10.9± 2.2

Rutin 44.6± 11.6 0.0± 0.0 0.0± 0.0 35.9± 1.1

Q-galactoside + Q-glucoside 158.5± 29.4 0.0± 0.0 0.0± 0.0 116.3± 1.9

Cyanidin-glucoside 44.1± 5.1 0.0± 0.0 32.0± 6.4 23.9± 3.7

Table 4: Antioxidant capacity of different extracts (E1–E3, without (A) or with (B) ascorbate oxidase treatment) obtained from elution of
a metaphosphoric pre-extract (PE) of rose hips, measured by ferric reducing ability (FRAP). Data are presented as mmol Fe2+/L extract and
μmol Fe2+/g dw rose hip powder (mean ± standard deviation).

Fraction
FRAP (mmol Fe2+/L) FRAP (μmol Fe2+/g dw)

A B A B

PE (HPO3) 58.51± 2.47 1712.18± 80.60

E1 (Eluent of PE) 65.97± 11.97 13.91± 1.50 464.40± 84.25 97.95± 10.56

E2 (20% MeOH) 74.91± 12.20 59.25± 12.24 179.78± 29.28 142.20± 29.37

E3 (100% MeOH) 13.12± 2.30 9.36± 3.12 31.49± 5.51 22.47± 7.49

The content of ascorbic acid was highest in the pre-
extract and the eluted metaphosphoric acid extract (PE
and E1A). In this study, the metaphosphoric acid aqueous
extracts showed superior protection against oxidative dam-
age. In a previous study [40], we showed that the protective
effect (∼75%) of rose hips could not be due to the ascorbic
acid content alone as the rose hips extract only contained
0.4 mg ascorbic acid/mL in 5.0 mg dry weight rose hip
powder/mL compared with a control that contained 5.0 mg
ascorbic acid/mL and offered ∼65% protection. This implies
protective capacity of notably the ascorbic acid but also of
other novel compounds.

The Folin-Ciocalteu assay for measurement of total
phenols has previously been found to be biased due to
the interference of nonphenolic reducing compounds such
as ascorbic acid and sugars [41, 42] which results in an
overestimation. The contribution of ascorbic acid to total
antioxidant activity can be determined, since one mole of
ascorbic acid corresponds approximately to two moles of
FRAP (in our assay we obtained and used the value 2.02).
The contribution to the FRAP value of the ascorbic acid
content of the rose hip metaphosphoric acid pre-extract
was thus calculated to be 31 mmol Fe2+/L (Table 1), which
should be compared with the obtained total FRAP value of
the same extract which was 59 mmol Fe2+/L (Table 4). In
extract E1A, the FRAP value of the ascorbic acid content was
similar to the total FRAP value, indicating the contribution
of ascorbic acid, but in extract E2A, the FRAP contribution of
the ascorbic acid was only 6 mmol Fe2+/L compared with the
total FRAP value of 75 mmol Fe2+/L. The remaining extracts
made almost no contribution of FRAP ascorbic acid; hence,
there were significant amounts of other compounds that
contributed to the antioxidant capacity of these extracts.
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Figure 1: The protective effect against oxidative stress of different
rose hip extracts (PE = pre-extract, E1 = HPO3 eluent, E2 = 20%
MeOH eluent, E3 = 100% MeOH eluent; without (A) or with (B)
ascorbate oxidase treatment) as measured on erythrocytes in vitro.
Vertical bars represent standard deviation.

In the FRAP assay, the metaphosphoric acid extract
(E1A) showed the highest ferric reducing ability, but this
value decreased four-fold after enzyme treatment. The
activity of the enzyme-treated extract (E1B) was lower than
the secondly eluted (20% methanol) extract (E2A).

Pandey and Rizvi [13] investigated the protective effect
of resveratrol on markers of oxidative stress in human
erythrocytes. Human erythrocytes are able to take up
resveratrol and quercetin, and once inside the cell, these
compounds can donate electrons to extracellular electron
acceptors through the erythrocyte plasma membrane redox
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Figure 2: Chromatograms of erythrocytes incubated with a polyphenol rich extract (E2A) eluted from a rose hip extract (a) showing
presence of catechin and control sample consisting of pure erythrocytes (b).

system. Fiorani and Accorsi [11] showed uptake of a variety
of flavonoids such as quercetin, luteolin, kaempferol, fisetin,
isorhamnetin, acacetin, chrysin, apigenin, galangin, and
tamarixetin. Most of these agents accumulate within the
cells because of their ability to bind to hemoglobin. In
another study, Fiorani et al. [43] investigated flavonoids in
aqueous and ether extracts and showed that polyphenols in
ether extracts elicited their antioxidant effects by activation
of plasma membrane oxidoreductase but that flavonoids
in aqueous extracts were ineffective in the cell-based assay.
The authors accounted for these observations through the
inability of aqueous components to cross the erythrocyte
membrane [43]. In our study, the protective capacity was
most obvious in the aqueous extracts. The highest degree of
protection was obtained with the first eluted metaphosphoric
acid extract (E1A), and, interestingly, there was an increase
in protection of erythrocytes after removal of ascorbic
acid from this eluent (E1B). Ascorbate oxidase efficiently
reduced the content of ascorbate in this extract, E1B, with
only minute quantities remaining. However, extract E1B
most likely contained DHA, which has equivalent biological
activity to ascorbic acid as erythrocytes have a high capacity
to regenerate ascorbic acid. Erythrocytes lack an active
transporter for ascorbate, whereas DHA is rapidly taken
up by facilitated diffusion by a glucose transport protein,
GLUT1. Intracellular DHA is rapidly reduced to ascorbate
by GSH in a direct chemical reaction and trapped within
the cell [44]. Enzyme-dependent mechanisms involving
both glutaredoxin and thioredoxin reductase have also been
demonstrated [44]. The increased protection obtained with
the enzyme-treated extract (E1B) may thus be explained by
reactivated ascorbate and GSH. Haemoglobin is a reactive
protein, and erythrocytes stabilize and protect it with

intracellular GSH levels. The GSH maintenance system
provides the reducing power to maintain other cellular
antioxidants in their reduced states. The uptake of DHA into
the cells may have temporarily depleted intracellular thiol
levels, although any significant reduction in GSH levels and
subsequent rise in GSSG will immediately stimulate NADPH
formation by the hexose monophosphate shunt (HMP) [9].
The HMP activity will then restore GSH levels, and the
cells will have reactivated ascorbate and GSH, which might
account for the increased protection of the enzyme-treated
extract. It may also be that the major contribution to total
antioxidant activity could have come from a combination of
phytochemicals, not from ascorbic acid alone, as previously
shown by Sun et al. [45].

To confirm antioxidant uptake, the content of catechin
was measured by HPLC-MS. The uptake was only 3.1% of
the total amount of catechin supplied. The supernatant con-
tained 50.7%, thus 46.2%, of the added catechin remained in
the pellet consisting of the erythrocyte membranes. This is in
agreement with Koren et al. [34], who showed that human
erythrocytes not only carry oxygen but also have the ability
to bind polyphenol antioxidants.

5. Conclusions

The fact that all sequentially eluted extracts studied con-
tributed to protective effects on the erythrocytes indicate that
rose hips contain many different antioxidant compounds.
The aqueous metaphosphoric acid extracts showed the
highest protection against oxidative damage, this implies
protective capacity of the ascorbic acid as well as other
unidentified compounds.
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Table 5: Mean content of major polyphenols μg/mL (mean ±
standard deviation) in erythrocytes incubated with the polyphenol
rich rose hip extract E2A (eluted with 20% methanol).

Polyphenol Polyphenols (μg/mL)

Catechin 0.321± 0.011

Proanthocyanidin monomer 0.002± 0.003

Proanthocyanidin dimer 0.125± 0.190
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