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ABSTRACT 

Motivation: T-cell epitope identification is a critical immunoinfor-

matic problem within vaccine design. To be an epitope, a peptide 

must bind an MHC protein.  

Results: Here we present EpiTOP, the first server predicting MHC 

class II binding based on proteochemometrics, a QSAR approach 

for ligands binding to several related proteins. EpiTOP uses a quan-

titative matrix to predict binding to 12 HLA-DRB1 alleles. It identifies 

89% of known epitopes within the top 20% of predicted binders, 

reducing laboratory labour, materials, and time by 80%. EpiTOP is 

easy to use, gives comprehensive quantitative predictions, and will 

be expanded and updated with new quantitative matrices over time. 

Availability: EpiTOP is freely accessible at 

http://www.pharmfac.net/EpiTOP. 

Contact: idoytchinova@pharmfac.net 

Supplementary information: Supplementary data are available at 

Bioinformatics online. 

1 INTRODUCTION  

T-cell epitope identification is a challenging immunoinformatic 

problem within vaccine design. To be an epitope, a peptide should 

bind an MHC protein. For MHC class I, epitopes typically com-

prise 8-10 residues. The MHC class II binding site is open-ended, 

allowing much longer peptides to bind, although only 9 amino 

acids occupy the site. Many computational methods have been 

developed for T-cell epitopes: see Flower (2008). Many work well 

and are widely used by immunologists and vaccinologists. 

Most available epitope prediction methods separately address 

peptides binding particular MHC proteins, developing models for a 

single target allele. For MHC class II, only the generalized ANN-

based server NetMHCIIpan uses both peptide and HLA sequence 

information (Nielsen et al., 2008). Recently, we developed a pro-

teochemometrics-based approach to MHC class II prediction (Di-

mitrov et al., 2010). Proteochemometrics, a QSAR approach origi-

nally developed by Wikberg (Lapinsh et al., 2001), deals with 

ligands binding to several related proteins. In conventional QSAR, 

the X matrix of descriptors includes only information from ligands. 

In proteochemometrics, the X matrix contains information from 

  
*To whom correspondence should be addressed.  

proteins and ligands. A single proteochemometric model could 

potentially predict peptide binding to many MHC proteins. 

We have developed and validated several models for binding to 

several HLA-DRB1 alleles, and now make the best model avail-

able in the server EpiTOP. It uses a quantitative matrix (QM) to 

predict peptide affinity to 12 HLA-DRB1 proteins: DRB1*0101, 

DRB1*0301, DRB1*0401, DRB1*0404, DRB1*0405, DRB1* 

0701, DRB1*0802, DRB1*0901, DRB1*1101, DRB1*1201, 

DRB1*1301 and DRB1*1501. 

2 ALGORITHM  

The EpiTOP algorithm was described in detail elsewhere (Dimi-
trov et al., 2010). Briefly, the QM was derived from 2666 known 
binders of different length, binding to 12 HLA-DRB1 alleles, and 
which were extracted from the Immune Epitope database (Septem-
ber 2008) (Peters et al., 2005). Peptides are described using three 
z-scales per residue broadly corresponding to volume, hydropho-
bicity, and polarizability (Hellberg et al., 1987). Nonamers are 
encoded by a sequence of 27 z-descriptors (9 positions x 3 z-
scales), forming the L block. HLA-DRB1 alleles are encoded by 
54 descriptors (18 positions x 3 z-scales), forming the P block. We 
use only polymorphic residues within the binding site that interact 
with the peptide. The model also contains cross-terms for adjacent 
peptide positions (L12 block) and peptide-protein cross-terms (LP 
block). The LP block contains cross-terms for peptide-protein ami-
no acid interactions in pockets 1, 4, 6, 7 and 9. The affinities of 
binders were assessed as pIC50 values.  

The QM was derived using the iterative-self consistent (ISC) al-
gorithm (Doytchinova and Flower, 2003). Briefly, the initial train-
ing set included all nonamers with anchors (Tyr, Phe, Trp, Leu, Ile, 
Met, and Val) at position 1 (n = 10670). This was used to extract 
the first model. The optimum number of principal components 
(PC) was derived by cross-validation in 7 groups. The first model 
was used to predict pIC50s of the initial set and the best predicted 
nonamers from each parent peptide formed a second training set. 
This second set was used to produce the second model, which pre-
dicts pIC50s of the initial training set. The best predicted nonamers 
from each parent peptide were selected and placed in a third train-
ing set. The selection procedure was repeated until the peptides in 
consecutive derived training sets were the same at the 99% level.  

Protein sequences are submitted to EpiTOP in one letter format. 
A protein is divided into overlapping nonamers. Only nonamers 
bearing anchor residues at position 1 are assessed, the rest being 
omitted as non-binders. The binding affinities of the nonamers are 
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predicted using the derived proteochemometric QM. In the results 
page nonamers are arranged in descending order according to 
pIC50. Results can be expressed using six different cutoffs: top 5%, 
10%, 15%, 20%, 25% and All binders. 

3 IMPLEMENTATION 

EpiTOP 1.0 is a web-based application written in PHP and HTML, 

and integrating the MySQL database environment. It is freely ac-

cessible via http://www.pharmfac.net/EpiTOP. EpiTOP identifies 

peptides binding to HLA-DRB1 alleles within protein sequences, 

with options to vary HLA allele and cutoff. 

4 PERFORMANCE 

Three test sets were used to benchmark EpiTOP performance: 

AntiJen, IEDB and Lin’s data sets. The evaluation based on Anti-

Jen and IEDB data sets was performed under conditions similar to 

those an experimental immunologist might use: the complete pro-

tein sequences were submitted to a server and the results recorded. 

Five thresholds were used: top 5%, 10%, 15%, 20%, and 25% of 

predicted binding nonamers. Identified binders are shown as a 

percentage of all binders (sensitivity). The predictive ability of 

EpiTOP was compared to eight other servers: SVMHC  (Dönnes 

and Elofsson, 2002), ProPred (Singh and Raghava, 2001), 

RANKPEP (Reche et al., 2004), IEDB-ARB (Bui et al., 2005), 

IEDB-SMM_align (Nielsen et al., 2007), MHC2Pred (http://www. 

imtech.res.in/raghava/mhc2pred/), NetMHCII (http://www.cbs.dtu. 

dk/services/NetMHCII), and NetMHCIIpan (Nielsen et al., 2008). 

SVMHC, ProPred, RANKPEP, IEDB-ARB, IEDB-SMM_align 

and EpiTOP are QM-based methods, MHC2Pred uses SVM, 

NetMHCII and NetMHCIIpan are ANN-based. Some of the serv-

ers do not predict binding to all DRB1 alleles used in the test sets. 

Only servers IEDB, NetMHCIIpan and EpiTOP make predictions 

for all 12 DRB1 alleles. Although many methods give quantitative 

predictions, in our evaluation they were used as classification me-

thods. Each server was evaluated only on the alleles it predicts. 

The evaluation using Lin’s data set was performed in terms of 

Receiver Operating Characterictic (ROC) statistics (Bradley, 

1997). Two variables sensitivity and 1-specificity were calculated 

at different thresholds. The area under curve (AUC) is a quantita-

tive measure of predictive ability and varies from 0.5 for random 

prediction to 1.0 for a perfect prediction. The performance of Epi-

TOP was compared to that of four other servers: SVMHC, Pro-

Pred, IEDB-SMM and NetMHCIIpan (Nielsen and Lund, 2009).  

AntiJen and IEDB datasets used for benchmark are given as 

Supplementary material I.  Lin’s data set is freely accessible at 

http://bio.dfci.harvard.edu/DFRMLI. The detailed results are given 

as Supplementary material II.  

  

AntiJen benchmark data set 

The AntiJen data set consisted of 116 epitopes belonging to 29 

proteins and binding to 6 HLA-DRB1 alleles (Supplemetary mate-

rial I). It was extracted from the AntiJen database (Toseland et al., 

2005). These epitopes bind to DRB1*0101 (22 binders), 

DRB1*0301 (7 binders), DRB1*0401 (62 binders), DRB1*0404 (1 

binder), DRB1*1101 (2 binders), and DRB1*1501 (22 binders). 

 The results from the evaluation based on AntiJen test set are 

shown in Table 1. For the top 5% cutoff, EpiTOP is sixth in sensi-

tivity, for the top 10% - fifth, and for the top 15% to 25% - third 

after NetMHCIIpan and NetMHCII.  

 

Table 1. Sensitivity at different cutoffs for AntiJen data set. The total num-

ber of binders is 116. Time of evaluation: September 2009. Allele specific 

performance is given in Supplementary Material II. 

top  

5% 

top 

10% 

top 

15% 

top 

20% 

top 

25% Server 

% % % % % 

SVMHC 38 40 40 40 40 

ProPred 58 69 69 69 69 

RANKPEP 51 53 53 53 53 

IEDB-ARB 44 58 64 65 66 

IEDB-SMM 12 16 16 19 20 

MHC2Pred 56 66 77 82 87 

NetMHCII 55 75 87 91 97 

NetMHCIIpan 65 80 90 96 97 

EpiTOP 44 71 85 89 95 

 

IEDB benchmark data set 

The data set extracted from the Immune Epitope database (Decem-

ber 2009) consisted of 4540 epitopes, originating from 167 pro-

teins (Supplemetary material I). The peptides from this set bind to 

12 DRB1 alleles: DRB1*0101 (2051 binders), DRB1*0301 (190 

binders), DRB1*0401 (392 binders), DRB1 *0404 (159 binders), 

DRB1*0405 (244 binders), DRB1*0701 (336 binders), 

DRB1*0802 (153 binders), DRB1*0901 (160 binders), 

DRB1*1101 (275 binders), DRB1*1201 (24 binders), DRB1*1302 

(243 binders) and DRB1*1501 (313 binders).  

The results from the evaluation based on IEDB are given in Ta-

ble 2. At the time of the evaluation (January 2010) SVMHC was 

not accessible and it was excluded from the study. For the top 5% 

cutoff, EpiTOP is third in sensitivity; for the top 10% it is fourth; 

for the top 15%, third together with RANKPEP; and for the top 

20% and 25%, it is second after NetMHCIIpan.  

 

Table 2. Sensitivity at different cutoffs for IEDB data set. The total number 

of binders is 4540. Time of evaluation: January 2010. Allele specific per-

formance is given in Supplementary Material II. 

top  

5% 

top 

10% 

top 

15% 

top 

20% 

top 

25% Server 

% % % % % 

ProPred 46 55 55 55 55 

RANKPEP 44 67 80 88 88 

IEDB-ARB 15 25 34 41 47 

IEDB-SMM 22 35 45 53 59 

MHC2Pred 19 29 38 46 52 

NetMHCII 55 73 83 89 92 

NetMHCIIpan 55 75 86 92 95 

EpiTOP 45 66 80 89 93 

 

Lin’s benchmark data set 

Lin’s data set (http://bio.dfci.harvard.edu/DFRMLI/) consists of 

103 overlapping peptides derived from four protein antigens – bee 

venom phospholipase A2, dog lipocalin, tumor antigen LAGE-1 

and viral antigen HIV NEF (Lin et al., 2008). The binding affini-

ties to seven HLA-DR molecules (DRB1*0101, *0301, *0401, 
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*0701, *1101, *1301 and *1501) were measured using a competi-

tion assay. We excluded allele DRB1*1301 as several servers did 

not predict binding to it.  

Results from this evaluation are shown in Table 3. AUC values for 

SVMHC, ProPred, IEDB-SMM and NetMHCIIpan are taken from 

a previous study (Nielsen and Lund, 2009). EpiTOP has the second 

best result after NetMHCIIpan.    

 

Table 3. AUC values for Lin’s data set. The total number of peptides is 

103. Results for SVMHC, ProPred, IEDB-SMM and NetMHCIIpan are 

taken from Nielsen and Lund, 2009. Time of evaluation: April 2010. Pro-

tein specific performance is given in Supplementary Material II. 

DRB1 

allele 

SVMHC ProPred IEDB-

SMM 

Net   

MHCII 

EpiTOP 

*0101 0.86 0.89 0.81 0.90 0.72 

*0301 0.69 0.70 0.71 0.78 0.89 

*0401 0.75 0.75 0.79 0.84 0.84 

*0701 0.74 0.74 0.67 0.75 0.73 

*1101 0.83 0.83 0.84 0.85 0.79 

*1501 0.66 0.66 0.67 0.79 0.74 

average 0.76 0.76 0.75 0.82 0.79 

 

Identification of the peptide binding core 

EpiTOP was tested to identify the peptide binding core on a set of 

X-ray data for peptide-DRB1 allele complexes (Nielsen et al., 

2008). EpiTOP performance was compared to those of TEPITOPE, 

IEDB-SMM, NetMHCIIpan and NetMHCII, published by Nielsen 

and Lund, 2009 (Table 4). 

EpiTOP identified 8 out of 11 binding cores correctly (73%). 

Two of the misaligned cores (MRMATPLLM and 

MRADAAAGG) are second best binders with predicted pIC50 

values very close to the best binders (Supplementary material II).  

 

Table 4. Identification of peptide binding core. Binding core is given in 

bold. Results for TEPITOPE, IEDB-SMM, NetMHCIIpan and NetMHCII 

are taken from Nielsen and Lund, 2009. Time of evaluation: April 2010. 

Detailed scores for EpiTOP are given in Supplementary Material II. 

DRB1 

allele 

pdb 

code 

peptide 
TE 

PI 

TO 

PE 

IE 

DB-

SM

M 

Net

MH

CII-

pan 

Net

MH

CII 

Epi

TOP 

*0101 2fse AGFKGEQGPKGEPG √ √ √ √ √ 

*0101 2iam GELIGILNAAKVPAD √ √ √ √ √ 

*0101 1sje PEVIPMFSALSEGATP √ √ √ √ X 

*0101 1dlh PKYVKQNTLKLAT √ √ √ √ √ 

*0101 1aqd VGSDWRFLRGYHQYA √ √ √ √ √ 

*0101 1pyw AFVKQNAAALA √ X √ √ √ 

*0101 1t5w AAYSDQATPLLLSPR √ √ √ √ √ 

*0301 1a6a PVSKMRMATPLLMQA √ √ √ √ X 

*0401 2seb AYMRADAAAGGA √ √ X X X 

*0401 1j8h PKYVKQNTLKLAT √ √ √ √ √ 

*1501 1bx2 ENPVVHFFKNIVTPR √ √ √ √ √ 

5 DISCUSSION 

We undertook a rigorous evaluation of the performance of EpiTOP 

across three datasets, comparing it to that of either four or eight 

other servers, using either recall statistics or ROC analysis. Over-

all, EpiTOP compares very favourably with other more specialized 

models. For the AntiJen and IEDB datasets, EpiTOP performs sub-

optimally only at the highest specificity; since it is strongly inclu-

sive and much broader in its predictive potential, other much more 

highly-focused, allele-specific models outperform it at this highly 

stringent level. At more permissive thresholds, and within statisti-

cal error, EpiTOP performs identically to best-in-class servers. 

 For Lin’s dataset, the five tested binders were much close in 

performance: within the limits of error, EpiTOP performs sub-

optimally only for DRB1*0101. It is interesting to note that Epi-

TOP is very much the best model for DRB1*0301.  

For the identification of binding cores, EpiTOP again performs 

well, but interestingly core identification correlates inversely with 

overall statistical perform, perhaps suggesting that much remains 

to be understood regarding class MHC-peptide interaction.  

Taken together, results from these various benchmarking exer-

cises both validate EpiTOP and indicate that development of a 

synergistic meta-server, which integrates results from several serv-

ers should prove a useful exercise, hopefully yielding significant 

overall enhancements. 

6 CONCLUSION 

EpiTOP is the first proteochemometrics-based server for T-cell 

epitope prediction. It is a tool for performing preliminary computa-

tional analyses of large datasets for accelerated epitope-based vac-

cine design. It is easy to use, gives comprehensive quantitative 

predictions and will be expanded and updated with new QMs. 
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