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Abstract. Subtyping in concurrency has been extensively studied since early 1990s as
one of the most interesting issues in type theory. The correctness of subtyping relations has
been usually provided as the soundness for type safety. The converse direction, the com-
pleteness, has been largely ignored in spite of its usefulness to define the largest subtyping
relation ensuring type safety. This paper formalises preciseness (i.e. both soundness and
completeness) of subtyping for mobile processes and studies it for the synchronous and the
asynchronous session calculi. We first prove that the well-known session subtyping, the
branching-selection subtyping, is sound and complete for the synchronous calculus. Next
we show that in the asynchronous calculus, this subtyping is incomplete for type-safety:
that is, there exist session types T and S such that T can safely be considered as a subtype
of S, but T 6 S is not derivable by the subtyping. We then propose an asynchronous sub-
typing system which is sound and complete for the asynchronous calculus. The method
gives a general guidance to design rigorous channel-based subtypings respecting desired
safety properties. Both the synchronous and the asynchronous calculus are first consid-
ered with linear channels only, and then they are extended with session initialisations and
communications of expressions (including shared channels).
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1. Introduction

Subtyping in concurrency. Since Milner first introduced the idea of assigning types to
channels in the π-calculus [46], the subtypings which define an ordering over usages of
channels have been recognised as one of the most useful concepts in the studies of the
π-calculus.

The earliest work is a simple subtyping between input and output capabilities (called
IO-subtyping) [57], which has been extended to and implemented in different areas of con-
currency [30, 58, 59, 61] and has been continuously studied as one of the core subjects
in concurrency [33, 34]. Later, a generic type system with subtyping was introduced by
Igarashi et al. [41], where the subtyping plays a fundamental rôle in generating a variety of
interesting type systems as its instances.

More recently, another subtyping based on session types [24] has been applied to many
aspects of software design and implementations such as web services, programming lan-
guages and distributed computing [7, 15, 27, 31, 35, 39, 40, 60, 63]. The standpoint of
session types is that communication-centred applications exhibit highly structured inter-
actions involving, for example, sequencing, branching, selection and recursion, and such a
series of interactions can be abstracted as a session type through a simple syntax. The
session subtyping specified along session structures is then used for validating a large set of
programs, giving flexibility to programmers.

As an example of session subtyping [7, 15, 39, 43], consider a simple protocol between a
Buyer and a Seller from Buyer’s viewpoint: Buyer sends a book’s title (a string), and Seller
sends a quote (an integer). If Buyer is satisfied by the quote, he then sends his address (a
string) and Seller sends back the delivery date (a date); otherwise he quits the conversation.
This can be described by the session type:

!〈string〉.?(int).{!ok〈string〉.?(date).end ⊕ !quit.end} (1.1)

The prefix !〈string〉 denotes an output of a value of type string, whereas ?(int)
denotes an input of a value of type int. Instead ok and quit are labels distinguishing
different branches. The operator ⊕ is an internal choice, meaning the process may choose
to either send the label ok with a string and receive a date, or send the label quit. The type
end represents the termination of the session. From Seller’s viewpoint the same session is
described by the dual type

?(string).!〈int〉.{?ok(string).!〈date〉.end & ?quit.end} (1.2)

in which & means that the process offers two behaviours: one where it receives ok with a
string and sends a date, and one where it receives quit.

As nat 6 real in the standard subtyping, a type representing a more confined behaviour
is smaller. A selection subtype is a type which selects among fewer options (as outputs).
The following is an example of a subtype of (1.1):

!〈string〉.?(int).!ok〈string〉.?(date).end (1.3)

Conversely, a branching subtype is a type which offers more options (as inputs). The
following is an example of a subtype of (1.2):

?(string).!〈int〉.{?ok(string).!〈date〉.end & ?quit.end & ?later.end} (1.4)

Intuitively, a type T is a subtype of a type S if T is ready to receive no fewer labels than
S, and T potentially sends no more labels than S (in other words, T represents a more
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permissive behaviour than S) [7, 15]. If we run two processes typed by (1.3) and (1.4), they
are type safe, i.e. there is no mismatch of labels or types during communication. Hence
the subtyping is sound with respect to the type safety. An important question, however, is
still remaining: is this subtyping complete? I.e. is this session subtyping the largest relation
which does not violate type safety? The proof of soundness is usually immediate as a
corollary of the subject reduction theorem. But how can we state and prove completeness?

A type system with a subsumption rule is parametric in the subtyping relation. A larger
subtyping relation will yield a type system accepting more programs. A subtyping relation
is sound if no typeable program is incorrect. It is complete if there is no strictly larger
sound subtyping relation. Following Ligatti et al. [44], we say that a subtyping relation is
precise if it is both sound and complete. The preciseness is a simple operational property
that specifies a relationship between static and dynamic semantics.

Preciseness. To formally define preciseness, we assume a multi-step reduction between
processes P →∗ P ′ (where P ′ is possibly the error process) as well as typing judgements of
the form P ⊲{a : T}, assuring that the process P has a single free channel a whose type is T .
We also use reduction contexts C in the standard way. The judgement C[a : T ] ⊲ ∅ means
that filling the hole of C with any process P typed by a : T produces a well-typed closed
process (formally C[a : T ] ⊲ ∅ ⇐⇒ X : T ⊢ C[X〈a〉] ⊲ ∅, where X is a process variable
which does not appear in C, see § 2).

Our preciseness definition is an adaptation of the preciseness definition for the call-by-
value λ-calculus with sums and product types [44].

Definition 1.1 (Preciseness). A subtyping 6 is precise when, for all session types T, S:

T 6 S ⇐⇒

(
there do not exist C and P such that:
C[a : S] ⊲ ∅ and P ⊲ {a : T} and C[P ] →∗ error

)

When the only-if direction (⇒) of this formula holds, we say that the subtyping is sound ;
when the if direction (⇐) holds, we say that the subtyping is complete.

Consider the set of contexts C such that C[a : S]⊲∅, i.e., contexts with one hole, where
the channel a is typed as S. The soundness property of Definition 1.1 says that if we take
any such C and fill it with any process with a typed as T 6 S, the result is safe. The
completeness property, instead, says that for all T 66 S, we can find some C in the set
above, and fill it with some process with a typed as T , so that their combination reduces
to error. Soundness is clearly Liskov’s Substitution Principle [45], whereas completeness
ensures that a subtyping relation cannot be safely extended. Notice that we take a “must
view” of correctness, asking that a correct process never reduces to an error.

Here we are interested in syntactically defined subtyping and an operational notion of
preciseness. Our approach is opposed to semantic subtyping as proposed by Frisch et al. [21],
which is given denotationally; in addition, the calculus introduced by Frisch et al. [21] has
a type case constructor from which completeness follows for free. See § 8 for a detailed
discussion.

Preciseness and impreciseness for the π-calculus. IO-subtyping classifies channels
according to their reading and writing capabilities [57]. It is not precise, because no op-
erational error can be detected when a read only channel is used to write, or vice versa,
by a context without type annotations. For a similar reason, the branching and selection
subtyping [15] is also imprecise for the π-calculus. The branching and selection subtyping
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is instead precise for the π-calculus with only linear channels [42], whose expressivity is
limited.

Igarashi et al. [41] only state necessary conditions for subtyping, the aim being that
of having the maximum generality. The subtyping relations in the instances of the generic
type system depend on the properties (arity-mismatch check, race detection, static garbage-
channel collection, deadlock detection) one wants to guarantee.

These results led us to consider preciseness for two representative session calculi: the
synchronous [36, 62] and the asynchronous [48, 49, 50, 51] session calculi.

Two preciseness results. Session types have sufficiently rich structure to assure com-
pleteness, hence if T 66 S, then T and S can be distinguished by suitable contexts and
processes.

The first result of this article is preciseness of the branching-selection subtyping (dubbed
also synchronous subtyping) described above for the synchronous session calculus. Our
motivation to study the first result is to gently introduce a proof method for preciseness
and justify the correctness of the synchronous subtyping, which is widely used in session-
based calculi, programming languages and implementations [7, 15, 40, 60].

The case of the asynchronous session calculus is more challenging. The original session
typed calculi [36] are based on synchronous communication primitives, assumed to be com-
piled into asynchronous interactions using queues — i.e., synchronous communications are
modelled by asynchronous ones. Later researchers [38] found that, assuming ordered asyn-
chronous communications for binary interactions, one could directly express asynchronous
non-blocking interactions. One can then assure not only the original synchronous safety, but
also the asynchronous safety, i.e. deadlock-freedom (every input process will always receive
a message) and orphan message-freedom (every message in a queue will always be received
by an input process).

Our first observation is that the branching-selection subtyping 6 is not large enough
for the asynchronous calculus, i.e. there exist session types T and S such that T can safely
be considered as a subtype of S, but T 6 S is not derivable by the subtyping. The reason is
natural: in the presence of queues, the processes typed by the following two non-dual types
can run in parallel without reducing to error:

Ta = !〈int〉.!〈char〉.?(string).?(nat).end

Tb = !〈string〉.!〈nat〉.?(int).?(char).end

since a process typed by Ta can put two messages typed by int and char in one queue and
a process typed by Tb can put two messages typed by string and nat in another queue,
and they can receive the two messages from each queue, without getting stuck. Moreover,
if we replace Ta or Tb with any of their respective subtypes under 6, we can still safely
compose the corresponding processes in parallel, without reducing to error: therefore, if
we extend 6 to also relate Ta and the dual of Tb, we would not compromise type safety.

The asynchronous subtyping proposed by Mostrous et al. [48, 49, 50, 51] permutes the
order of messages, for example:

Ta 6 ?(string).?(nat).!〈int〉.!〈char〉.end

so that a process typed by Ta can have a type which is dual of Tb by the subsumption
rule. This asynchronous permutation is often used as a means of messaging optimisation,
e.g. as “messaging overlapping”, in the parallel programming community [52, §6]. Our
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result demonstrates the preciseness of this subtyping, which was introduced for practical
motivations.

We have found that the subtyping of Mostrous’ PhD thesis [48, 50] is unsound if we
require the absence of orphan messages. If we allow orphan messages and we only have
deadlock errors, then such a subtyping is sound but not complete. All this is discussed
in § 8. The other asynchronous subtypings introduced by Mostrous et al. [49, 51], whose
targets are the higher-order π-calculus and the multiparty session types, respectively, are
sound for deadlock and orphan message errors. Hence we simplify them and we adapt them
to the binary session π-calculus.

Contributions. As far as we are aware, this is the first time that completeness of subtyp-
ings, which is solely based on (untyped) operational semantics, is formalised and proved in
the context of mobile processes. We also demonstrate its applicability to two session type
disciplines, the synchronous and the asynchronous ones. The most technical challenge is the
proof of completeness for the asynchronous subtyping, which requires some ingenuity in the
definition of its negation relation. Key in the proofs is the construction of processes which
characterise types. These processes allow us to show also the denotational preciseness of
both synchronous and asynchronous subtypings.

This article is an expanded version of a previous paper presented at PPDP 2014 [13], in-
cluding detailed definitions and full proofs, which were omitted. In addition, we provide new
results about the uniqueness of precise subtyping relations (Corollary 3.5, Theorem 5.10).
Moreover, we include a new section (§ 6) dealing with session initialisation and with com-
munication of expressions (including shared channels), which were not treated: this demon-
strates that our approach smoothly generalises to the original calculus [36], showing that
the invariance of shared channel types is precise.

Outline. § 2 defines the synchronous session calculus and its typing system, and proves
soundness of the branching-selection subtyping 6s. § 3 proposes a general scheme for show-
ing completeness, and proves that 6s is the unique complete subtyping for the synchronous
session calculus. § 4 defines the asynchronous session calculus and introduces a new asyn-
chronous subtyping relation 6a, which is shown to be sound. § 5 proves that 6a is the unique
subtyping that both extends 6s, and is complete for the asynchronous calculus. This last
completeness proof is non-trivial, since the permutations introduced by the asynchronous
subtyping rules make session types unstructured. § 6 extends both calculi with shared
channels for session initialisation and communications of expressions as in paper [36]. The
proof of operational preciseness gives us denotational preciseness of both synchronous and
asynchronous subtypings, as shown in § 7. Related work and conclusion are the contents of
§ 8 and § 9, respectively.

2. Synchronous Session Calculus

This section starts by introducing syntax and semantics of a simplification of the most
widely studied synchronous session calculus [36, 66]. Since our main focus is on subtypings
between session types, we only allow exchanges of linear channels. The obtained calculus
is similar to that presented by Vasconcelos in 2009 [62]. We then define the typing system
and prove soundness of subtyping as defined in Definition 1.1. § 6 will consider session
initialisations and communication of expressions (including shared channels).
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P ::= Process
0 (nil) | X〈ũ〉 (variable)

|
∑

i∈I u?li(xi).Pi (input) | u!l〈u′〉.P (output)
| P | P (parallel) | P ⊕ P (choice)
| def D in P (definition) | (νab)P (restriction)
| error (error)

D ::= Declaration
X(x̃) = P

u ::= Identifiers
a (linear channel)

| x (channel variable)

Table 1: Syntax of synchronous processes.

2.1. Syntax. A session is a series of interactions between two parties, possibly with branch-
ing and recursion, and serves as a unit of abstraction for describing communication protocols.
We use the following base sets: channel variables, ranged over by x, y, z . . . ; linear chan-
nels, ranged over by a, b; identifiers (channel variables and linear channels), ranged over
by u, u′ . . . ; labels, ranged over by l, l′, . . . ; process variables, ranged over by X,Y, . . . ; and
processes, ranged over by P,Q . . . . The syntax is given in Table 1.

Session communications are performed between an output process u!l〈u′〉.P and an
input process

∑
i∈I u?li(xi).Pi (the li are pairwise distinct), where the former sends a channel

choosing one of the branches offered by the latter. In
∑

i∈I u?li(xi).Pi and u!l〈u′〉.P the
identifier u is the subject of input and output, respectively. The choice P ⊕ Q internally
chooses either P or Q. In many session calculi [7, 36, 51] the conditional plays the rôle of the
choice. The process def D in P is a recursive agent and X〈ũ〉 is a recursive variable. We
postulate guarded recursion, i.e. recursive variables can occur in recursive agent declarations
only after an input/output prefix; for instance, def X(x̃) = Y 〈ũ〉 in P and def X(x̃) =
Y 〈ũ〉⊕P ′ in P are not syntactically valid, whereas def X(x̃) = u!l〈u′〉.Y 〈ũ′′〉 in P is valid.
The process (νab)P is a restriction which binds two channels, a and b in P , making them
co-channels, i.e. allowing them to communicate (see rule [r-com-sync] in Table 3). This
double-restriction is commonly used in the recent literature of session types [24, 62]. We
often omit 0 from the tail of processes.

The bindings for variables are in inputs and declarations, those for channels are in
restrictions, and those for process variables are in declarations. The derived notions of bound
and free identifiers, alpha equivalence, and substitution are standard. We use Barendregt
convention [2, §2.1.13] that no bound name can occur free or in two different bindings.

By fpv(P )/fc(P ) we denote the set of free process variables/free channels in P . By
sc(P ) we denote the set of free subject channels in P , defined by:

sc(u!l〈u′〉.P ) = fc(u) ∪ sc(P )
sc(

∑
i∈I u?li(xi).Pi) = fc(u) ∪

⋃
i∈I sc(Pi)

sc(def D in P ) = sc(P )
where:

fc(x) = ∅
fc(a) = {a}

and as expected in the other cases. Note that we need to use fc(u), since u can be either a
channel or a variable.

2.2. Operational semantics. Table 3 gives the reduction relation between synchronous
processes which do not contain free variables. It uses the following evaluation context:

C[ ] ::= [ ]
 C[ ] | P

 (νab)C[ ]
 def D in C[ ]

and the structural rules of Table 2.
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[s-par 1]

0 | P ≡ P

[s-par 2]

P |Q ≡ Q | P

[s-par 3]

P | (Q |R) ≡ (P |Q) | R

[s-ch 1]

P ⊕Q ≡ Q⊕ P

[s-ch 2]

(P ⊕Q)⊕R ≡ Q⊕ (P ⊕R)

[s-res 1]

(νab)0 ≡ 0

[s-res 2]

(νab)P |Q ≡ (νab)(P |Q)

[s-res 3]

(νab)(νcd)P ≡ (νcd)(νab)P

[s-def 1]

def D in 0 ≡ 0

[s-def 2]

def D in (νab)P ≡ (νab)(def D in P )

[s-def 3]

(def D in P ) | Q ≡ def D in (P | Q)

[s-def 4]

def D in def D′ in P ≡ def D′ in def D in P

Table 2: Structural congruence for synchronous processes.

[r-com-sync]

k ∈ I

(νab)(a!lk〈c〉.P |
∑

i∈I

b?li(xi).Qi) → (νab)(P |Qk{c/xk})

[r-def]

def X(x̃) = P in (X〈ã〉 |Q) → def X(x̃) = P in (P{ã/x̃} |Q)

[r-choice]

P ⊕Q → P

[r-context]

P → P ′

C[P ] → C[P ′]

[r-struct]

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

Table 3: Reduction of synchronous processes.

[err-mism-sync]

∀i ∈ I : l 6= li

(νab)(a!l〈c〉.P |
∑

i∈I

b?li(xi).Qi) → error

[err-new-sync]

a ∈ sc(P ) b 6∈ fc(P )

(νab)P → error

[err-context]

C[error] → error

[err-out-out-sync]

(νab)(a!l〈c〉.P | b!l′〈c′〉.Q) → error

[err-in-in-sync]

(νab)(
∑

i∈I

a?li(xi).Pi |
∑

j∈J

b?l′j(x
′
j).Qj) → error

Table 4: Error reduction for synchronous processes.

In Table 3, [r-com-sync] is the main communication rule between input and output at
two co-channels a and b, where the label lk is selected and channel c is instantiated into the
k-th input branch. Other rules are standard.

We also define error reduction, which is crucial for stating the preciseness theorem. Our
guideline in this definition (both for the synchronous and, later, for the asynchronous seman-
tics) is the following sentence from a seminal paper by Honda et al. [36]: “The typeability
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of a program ensures two possibly communicating processes always own compatible com-
munication patterns.” In our case it amounts to require the duality of the communications
offered by co-channels.

The error reduction rules are listed in Table 4. Rule [err-mism-sync] is a mismatch
between the output and input labels. Rule [err-new-sync] represents an error situation
where one of two co-channels (b) is missing. Rule [err-out-out-sync] gives an error when
two co-channels are both subjects of outputs, destroying the duality of sessions. Similarly
rule [err-in-in-sync] gives an error when two co-channels are both subjects of inputs. We
do not consider errors due to non linear use of channels, since they are statically prevented
by the typing rules and cannot be introduced by changing the definition of subtyping.
Obviously, arbitrary processes can be stuck without reducing to error: this can happen,
for instance, due to the lack of a companion process, or if a process interacts on multiple
interleaved sessions. A simple example is the process a?l(x), which is deadlocked; intriguing
examples of deadlocks caused by session interleaving can be written using process variables
with more than one parameter.

We denote by →s the reduction relation for the synchronous processes, generated by
the rules in Tables 3 and 4, and by →∗

s
the reflexive and transitive closure of →s.

Proposition 2.1, says that if a process can reduce to error in one step, then a different
reduction produces a process with the same property.

Proposition 2.1. If P →s error and P →s P
′ 6= error, then P ′ →s error.

Proof. By cases on the rule giving P →s error. The statement holds vacuously for rules
[err-mism-sync], [err-out-out-sync] and [err-in-in-sync] (Table 4): in such cases, P →s P

′

implies P ′ = error.
In the case [err-new-sync], we have P = (νab)P0 with a ∈ sc(P0) and b 6∈ fc(P0),

and P →s P ′ 6= error. Such a transition can only fire by rule [r-context], and thus
P ′ = (νab)P1 and P0 →s P1. By induction on the derivation of the latter transition, we can
verify that a ∈ sc(P1) and b 6∈ fc(P1). Hence, again by rule [err-new-sync], we conclude
(νab)P1 = P ′ →s error.

In the case [err-context] we have P = C[error]. If P →s P ′ 6= error, then the
reduction is fired inside the context C[ ]: by induction on the derivation of the transition,
we can verify that ∃C ′[ ] : P ′ = C ′[error]. Hence, again by rule [err-context], we conclude
P ′ →s error.

2.3. Typing synchronous processes. The syntax of synchronous session types, ranged
over by T and S, is:

T, S ::= &i∈I?li(Si).Ti |
⊕

i∈I !li〈Si〉.Ti | t | µt.T | end

The branching type &i∈I?li(Si).Ti describes a channel willing to branch on an incoming label
li, receive a channel of type Si, and then continue its interaction as prescribed by Ti. The
selection type

⊕
i∈I !li〈Si〉.Ti is its dual: it describes a channel willing to send a label li with

a channel of type Si, and then continue its interaction as prescribed by Ti. In branching
and in selection types:

• the labels are pairwise distinct;
• the types of the exchanged channels are closed.
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T(&1≤i≤n?li(Si).Ti) = &
l E
1

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣

l C
1

✄✄
✄✄
✄✄
✄✄
✄✄
✄✄

l C
n

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲

l E
n

❀❀
❀❀

❀❀
❀❀

❀❀
❀❀

T(S1) T(Tn)

T(T1) · · · T(Sn)

T(
⊕

1≤i≤n !li〈Si〉.Ti) = ⊕
l E
1

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣

l C
1

✄✄
✄✄
✄✄
✄✄
✄✄
✄✄

l C
n

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲

l E
n

❀❀
❀❀

❀❀
❀❀

❀❀
❀❀

T(S1) T(Tn)

T(T1) · · · T(Sn)

T(µt.T ) = T(T{µt.T/t}) T(end) = end

Table 5: Trees of session types.

⊕
l E
1

❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

l C
1

✂✂
✂✂
✂✂
✂✂
✂✂
✂

l E
2

❂❂
❂❂

❂❂
❂❂

❂❂
❂ l C

2

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

end end

⊕
l E
1

qq
qq
qq
q

l C
1

l E
2

✿✿
✿✿

✿✿
✿✿

✿✿
✿✿ l C

2

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱ end

end end

...
⊕...

end

Figure 1: The tree of µt.!l1〈end〉.t⊕ !l2〈end〉.end.

We omit & and ⊕ and labels when there is only one branch. We use t to range over type
variables. The type µt.T is a recursive type. We assume that recursive types are contractive,
i.e. µt1.µt2 . . . µtn.t1 is not a type. The type end represents the termination of a session
and it is often omitted.

We take an equi-recursive view of types [56, Chapter 20, §2], considering two types with
the same regular tree as equal. Table 5 defines coinductively [56, Chapter 21, §2.1] the tree
of a type T (notation T(T )), where each label l generates two edges l E and lC, pointing
respectively to the exchanged and the continuation sub-trees. Figure 1 shows (part of) the
infinite tree T(µt.!l1〈end〉.t ⊕ !l2〈end〉.end). We will mainly focus on continuation paths,
i.e. (possibly infinite) sequences of edges lC

1 , . . . , lC
n starting from tree roots.

In the examples we use infix notation for & and ⊕ and ground types (int, bool, . . .)
for messages. The extension to ground types is given in § 6. Unless otherwise noted, our
definitions and statements will always refer to closed types.
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As usual session duality [36] plays an important rôle for session types. The function T ,
defined below, yields the dual of the (possibly open) session type T .

&i∈I?li(Si).Ti =
⊕

i∈I !li〈Si〉.Ti

⊕
i∈I !li〈Si〉.Ti = &i∈I?li(Si).Ti

t = t µt.T = µt.T end = end

We write T1 ⊲⊳ T2 if T2 = T1. Note that T(T ) can be obtained from T(T ) by turning
branching nodes into selection nodes (and vice versa) in all continuation paths, without
altering the exchanged sub-trees.

[sub-end]

end 6 end

[sub-bra]

∀i ∈ I : Si 6 S′
i Ti 6 T ′

i

&i∈I∪J?li(Si).Ti 6 &i∈I?li(S
′
i).T

′
i

================================

[sub-sel]

∀i ∈ I : S′
i 6 Si Ti 6 T ′

i
⊕

i∈I

!li〈Si〉.Ti 6
⊕

i∈I∪J

!li〈S
′
i〉.T

′
i

============================

Table 6: Synchronous subtyping.

Table 6 defines the subtyping. Note that the double line in rules indicates that the
rules should be interpreted coinductively. We follow the ordering of the branching-selection
originally adopted by Honda et al. [7, 15, 39, 43, 49, 48, 50, 51]. Rule [sub-bra] states that
the branching which offers fewer branches is a supertype of the one with more branches;
and rule [sub-sel] is its dual (see the explanations in § 1). We write T 6s S if T 6 S is
derived by the rules in Table 6. Reflexivity of 6s is immediate and transitivity of 6s can
be shown in the standard way, see Theorem A.1 in Appendix A.

The typing judgements for synchronous processes take the following form:

Γ ⊢s P ⊲ ∆

where Γ is the shared environment which associates process variables to sequences of session
types and ∆ is the session environment which associates identifiers to session types. They
are defined by:

Γ ::= ∅ | Γ ,X : 〈T̃ 〉 ∆ ::= ∅ | ∆, u : T

We write ∆1,∆2 for ∆1 ∪ ∆2 when dom(∆1) ∩ dom(∆2) = ∅. We say that ∆ is end-only if
u : T ∈ ∆ implies T = end.

We define a pre-order between the session environments which reflects subtyping. More
precisely, ∆1 6s ∆2 if:

u ∈ dom(∆1) ∩ dom(∆2) implies ∆1(u) 6s ∆2(u)
u ∈ dom(∆1) and u 6∈ dom(∆2) imply ∆1(u) = end

u 6∈ dom(∆1) and u ∈ dom(∆2) imply ∆2(u) = end

We write ∆1 ≈s ∆2 if ∆1 6s ∆2 and ∆2 6s ∆1. It is easy to verify that ∆ is end-only iff
∆ ≈s ∅.

Table 7 gives the typing rules. They are standard in session calculi [24]. Rule [t-idle]

is the introduction rule for the nil process. To type an input process, rule [t-input] requires
the type Si of variable xi and the type Ti of channel u for the continuation Pi. In the
resulting session environment, the type u has the branching type in which u receives Si

and then continues with Ti for each label li. The rule for typing output processes is similar
and simpler. In rule [t-par], the session environment of P1 | P2 is the disjoint union of
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[t-sub]

Γ ⊢ P ⊲ ∆ ∆ 6s ∆
′

Γ ⊢ P ⊲ ∆′

[t-idle]

Γ ⊢ 0 ⊲ ∅

[t-var]

Γ ,X : 〈T̃ 〉 ⊢ X〈ũ〉 ⊲ {ũ : T̃}

[t-input]

∀i ∈ I : Γ ⊢ Pi ⊲ ∆, u : Ti, xi : Si

Γ ⊢
∑

i∈I

u?li(xi).Pi ⊲ ∆, u : &i∈I?li(Si).Ti

[t-output]

Γ ⊢ P ⊲ ∆, u : T

Γ ⊢ u!l〈u′〉.P ⊲ ∆, u : !l〈S〉.T, u′ : S

[t-par]

Γ ⊢ P1 ⊲ ∆1 Γ ⊢ P2 ⊲ ∆2

Γ ⊢ P1 | P2 ⊲ ∆1,∆2

[t-choice]

Γ ⊢ P1 ⊲ ∆ Γ ⊢ P2 ⊲ ∆

Γ ⊢ P1 ⊕ P2 ⊲ ∆

[t-def]

Γ ,X : 〈T̃ 〉 ⊢ P ⊲ {x̃ : T̃} Γ ,X : 〈T̃ 〉 ⊢ Q ⊲ ∆

Γ ⊢ def X(x̃) = P in Q ⊲ ∆

[t-new-sync]

Γ ⊢ P ⊲ ∆, a : T1, b : T2 T1 ⊲⊳ T2

Γ ⊢ (νab)P ⊲ ∆

Table 7: Typing rules for synchronous processes.

the environments ∆1 and ∆2 for the two processes, reflecting the linear nature of channels.
Contrarily, in rule [t-choice], the two processes share the same session environment, since
at most one of them will be executed. Rules [t-var] and [t-def] deal with process calls
and definitions, requiring the channel parameters have the types which are assumed in the
shared environment. Rule [t-var] gives these types to the arguments of the process variable.
In [t-def], the parameters of the process associated with the process variable must be typed
with these types. The assumption on parameter types is also used to type the body of the
definition. Rule [t-new-sync] is a standard rule for name binding, where we ensure the co-
channels have dual types. Finally, rule [t-sub] is the standard rule for subtyping: a process
P whose channels are typed according to the session environment ∆ can be used in a type
derivation requiring a less demanding environment ∆′. This is the key rule which allows, as
described in § 1, to use a process P with a channel a of type (1.3) in a derivation where a
has the supertype (1.1). As a consequence, a larger subtyping relation allows to type more
processes.

We write Γ ⊢s P ⊲ ∆ if P is typed using the rules in Table 7.

2.4. Soundness of synchronous subtyping. Our type system enjoys the standard prop-
erty of subject reduction. Notice that session environments are unchanged since only bound
channels can be reduced.

Theorem 2.2 (Subject reduction for synchronous processes). If Γ ⊢s P ⊲ ∆ and P →∗
s
Q,

then Γ ⊢s Q ⊲ ∆.

From subject reduction we can easily derive that well-typed processes cannot produce
error.

Corollary 2.3. If Γ ⊢s P ⊲ ∆, then P 6→∗
s
error.

Proof. By Theorem 2.2, P →∗
s
error implies Γ ⊢s error ⊲ ∆, which is impossible because

error has no type.
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The proof of soundness theorem follows easily.

Theorem 2.4. The synchronous subtyping relation 6s is sound for the synchronous calcu-
lus.

The proofs of Theorems 2.2 and 2.4 are given in Appendix A.

3. Completeness for Synchronous Subtyping

This section proves the first main result, completeness of synchronous subtyping, which
together with soundness shows the preciseness theorem. We shall take the following three
steps.

• [Step 1] For each type T and identifier u, we define a characteristic process P(u, T )
typed by u : T , which offers the series of interactions described by T on identifier u.

• [Step 2] We characterise the negation of the subtyping relation by inductive rules (no-
tation ⋪s).

• [Step 3] We leverage characteristic processes to prove that if T ⋪s S, then there exist
P,Q such that P ⊲ {a : T} and Q ⊲ {b : S} and (νab)(P | Q) →∗ error. Hence, by
suitably choosing P , Q, and C[ ] in the definition of preciseness (Definition 1.1), we
achieve completeness.

The same three steps will be used for the completeness proof in the asynchronous case.

Characteristic synchronous processes. The characteristic synchronous processes are
defined following the structure of types. For each type we build a process with a single
identifier offering the communications prescribed by the type. We also create auxiliary
processes for exchanged identifiers.

Definition 3.1 (Characteristic synchronous processes). The characteristic process offering
communication T on identifier u for the synchronous calculus, denoted by P(u, T ), is de-
fined by induction on (possibly open) session types:

P(u, T )
def

=





∑
i∈I P?(u, li, Si, Ti) if T = &i∈I?li(Si).Ti⊕
i∈I P!(u, li, Si, Ti) if T =

⊕
i∈I !li〈Si〉.Ti

Xt〈u〉 if T = t

def Xt(x) = P(x, S) in Xt〈u〉 if T = µt.S

0 if T = end

P?(u, l, S, T )
def
= u?l(x).(P(u, T ) | P(x, S))

P!(u, l, S, T )
def
= (νab)(u!l〈a〉.P(u, T ) | P(b, S))

A branching type is mapped to the inputs P?(u, li, Si, Ti) (i ∈ I), which uses the input
channel x in P(x, Si). A selection type is mapped to the choice between the outputs
P!(u, li, Si, Ti) (i ∈ I), where the fresh channel a carried by u will be received by the
dual input, which will interact with the process P(b, Si). A recursive type is mapped in a
definition associated to the characteristic process of the type body. The process body of
this definition is just a call to the process variable associated to the recursive type variable.
Type end is mapped to 0. Note that our characteristic processes interact sequentially on a
single session — and in case of recursion, they only have one parameter: this is sufficient to
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[n-end r]

T 6= end

end ⋪ T

[n-end l]

T 6= end

T ⋪ end

[n-brasel]

&i∈I?li(Si).Ti ⋪
⊕

j∈J !l
′
j〈S

′
j〉.T

′
j

[n-selbra-sync]⊕
j∈J !l

′
j〈S

′
j〉.T

′
j ⋪ &i∈I?li(Si).Ti

[n-label-bra]

∃j ∈ J ∀i ∈ I : li 6= l′j

&i∈I?li(Si).Ti ⋪ &j∈J?l
′
j(S

′
j).T

′
j

[n-label-sel]

∃i ∈ I ∀j ∈ J : li 6= l′j⊕
i∈I !li〈Si〉.Ti ⋪

⊕
j∈J !l

′
j〈S

′
j〉.T

′
j

[n-exch-bra]

∃i ∈ I ∃j ∈ J : li = l′j Si ⋪ S′
j

&i∈I?li(Si).Ti ⋪ &j∈J?l
′
j(S

′
j).T

′
j

[n-exch-sel]

∃i ∈ I ∃j ∈ J : li = l′j S′
j ⋪ Si⊕

i∈I !li〈Si〉.Ti ⋪
⊕

j∈J !l
′
j〈S

′
j〉.T

′
j

[n-cont-bra]

∃i ∈ I ∃j ∈ J : li = l′j Ti ⋪ T ′
j

&i∈I?li(Si).Ti ⋪ &j∈J?l
′
j(S

′
j).T

′
j

[n-cont-sel]

∃i ∈ I ∃j ∈ J : li = l′j Ti ⋪ T ′
j⊕

i∈I !li〈Si〉.Ti ⋪
⊕

j∈J !l
′
j〈S

′
j〉.T

′
j

Table 8: Negation of synchronous subtyping.

capture the errors we are interested in, since they do not depend on multiple sessions being
interleaved.

For example if T = µt.!l1〈end〉.t⊕ !l2〈!l3〈end〉.end〉.end, then

P(a, T ) = def Xt(x) = P in Xt〈a〉

where

P = P!(a, l1, end, t)⊕ P!(a, l2, !l3〈end〉.end, end)
= (νbb′)(a!l1〈b〉.P(a, t) | P(b′, end))⊕ (νcc′)(a!l2〈c〉.P(a, end) | P(c′, ?l3(end).end))
= (νbb′)(a!l1〈b〉.Xt〈a〉 | 0)⊕ (νcc′)(a!l2〈c〉.0 | c′?l3(x).(P(c′, end) | P(x, end)))
= (νbb′)(a!l1〈b〉.Xt〈a〉 | 0)⊕ (νcc′)(a!l2〈c〉.0 | c′?l3(x).(0 | 0))
≡ (νbb′)(a!l1〈b〉.Xt〈a〉)⊕ (νcc′)(a!l2〈c〉 | c

′?l3(x))

We can easily check that characteristic processes are well typed as expected.

Lemma 3.2. ⊢s P(u, T ) ⊲ {u : T}.

Rules for negation of synchronous subtyping. Table 8 defines the rules which charac-
terise when a type is not a subtype of another type. We formulate these rules inductively,
to simplify the completeness proof. Rules [n-end r] and [n-end l] say that end cannot be a
super or subtype of a type different from end. Rule [n-brasel] says that a branching type
cannot be subtype of a selection type. Rule [n-selbra-sync] is its dual. Rules [n-label-bra]
and [n-label-sel] represent the cases in which the labels do not conform to the subtyping
rules. Rules [n-exch-bra] and [n-exch-sel] represent the cases in which carried types do not
match the subtyping rules. Lastly, rules [n-cont-bra] and [n-cont-sel] represent the cases
in which continuations do not match the subtyping rules. Notice that if rule [sub-bra] holds,
then the rules [n-⋆-bra] do not hold, and if rule [sub-sel] holds, then the rules [n-⋆-sel] do
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not hold, where ⋆ ∈ {label, exch, cont}. We write T ⋪s S if T ⋪ S is derived by the rules
in Table 8.

In Lemma 3.3, we show that ⋪s is the negation of the synchronous subtyping. This
result will be used (in the “only if” direction) in the proof of Theorem 3.4.

Lemma 3.3. If T 6s S is not derivable if and only if T ⋪s S is derivable.

Proof. If T ⋪s S, then we can show T 66s S by induction on the derivation of T ⋪s S. We
develop just two cases (the others are similar):

• base case [n-brasel]. Then, T = &i∈I?li(Si).Ti and S =
⊕

j∈J !l
′
j〈S

′
j〉.T

′
j . We can verify

that T and S do not match the conclusion of [sub-end], nor [sub-bra], nor [sub-sel] —
hence, we conclude T 66s S;

• inductive case [n-cont-sel]. Then, T =
⊕

i∈I !li〈Si〉.Ti and S =
⊕

j∈J !l
′
j〈S

′
j〉.T

′
j ; more-

over, ∃i ∈ I, j ∈ J : li = l′j and Ti ⋪ T ′
j — and thus, by the induction hypothesis,

Ti 66s T
′
j. We now notice that T 6s S could only possibly hold by rule [sub-sel] — but,

since Ti 66s T ′
j , at least one of the coinductive premises of such a rule is not satisfied.

Hence, we conclude T 66s S.

Vice versa, if T 66s S we construct a derivation of T ⋪s S by looking at a “failing derivation”
of T 6s S. If we try to apply the subtyping rules to show T 6s S, there exists a derivation
branch that fails after n steps, i.e. that reaches two types T ′, S′ whose trees do not match
the conclusion of [sub-end], nor [sub-bra], nor [sub-sel]. Note that no alternative derivation
exists, because the rules in Table 6 do not overlap, hence at most one of them can be applied
at each step. We prove T ⋪s S by induction on n, turning the failing coinductive derivation
branch into a derivation of depth n+ 1 which concludes T ⋪s S:

• base case n = 0. The derivation fails immediately, i.e. T ′ = T and S′ = S. By cases
on the possible shapes of T and S, we construct a derivation which concludes T ⋪s S in
1 = n + 1 steps, by one of the axioms [n-end r], [n-end l], [n-brasel], [n-selbra-sync],
[n-label-bra], [n-label-sel];

• inductive case n = m + 1. The shapes of T, S match the conclusion of rule [sub-bra]

(resp. [sub-sel]), but there is some coinductive premise T ′ 6s S
′ whose sub-derivation has

a branch that fails after m steps. By the induction hypothesis, there exists a derivation
of depth m + 1 that concludes T ′ ⋪s S′; using this as a premise, by one of the rules
[n-exch-bra] or [n-cont-bra] (resp. [n-exch-sel] or [n-cont-sel]), we construct a deriva-
tion of depth (m+ 1) + 1 = n+ 1 which concludes T ⋪s S.

The main theorem for synchronous subtyping can now be proved.

Theorem 3.4 (Completeness for synchronous subtyping). The synchronous subtyping re-
lation 6s is complete for the synchronous calculus.

Proof. We need to produce P,Q as described in Step 3 on page 12. We let P = P(a, T )
and Q = P(b, S), and we show that

(νab)(P(a, T ) | P(b, S)) →∗
s
error

where P(a, T ), P(b, S) are characteristic synchronous processes. The proof is by induction
on the derivation of T ⋪s S.

Case [n-end r]: T = end and S 6= end.

(νab)(P(a, T ) | P(b, S)) = (νab)(0 | P(b, S)) →s error
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by rule [err-new-sync]: in fact, we have a 6∈ fc(0), and S 6= end implies that P(b, S) is a
(possibly recursive) internal or external choice, and thus b ∈ sc(P(b, S)) (by Definition 3.1).

Case [n-end l]: T 6= end and S = end. The proof is as in the previous case.

Case [n-brasel]: T = &i∈I?li(T
′
i ).Ti and S =

⊕
j∈J !l

′
j〈S

′
j〉.Sj .

(νab)(P(a, T ) | P(b, S)) = (νab)(
∑

i∈I P?(a, li, T
′
i , Ti) |

∑
j∈J P?(b, l

′
j , S

′
j , Sj)) →s error

by rule [err-in-in-sync].

Case [n-selbra-sync]: T =
⊕

i∈I !li〈T
′
i 〉.Ti and S = &j∈J?l

′
j(S

′
j).Sj .

(νab)(P(a, T ) | P(b, S)) = (νab)(
⊕

i∈I P!(a, li, T
′
i , Ti) |

⊕
j∈J P!(b, l

′
j , S

′
j , Sj)) →s error

by rule [err-out-out-sync].

Case [n-label-bra]: T = &i∈I?li(T
′
i ).Ti, S = &j∈J?l

′
j(S

′
j).Sj, and ∃k ∈ J such that

∀i ∈ I : l′k 6= li.

(νab)(P(a, T ) | P(b, S)) = (νab)(
∑

i∈I P?(a, li, T
′
i , Ti) |

⊕
j∈J P!(b, l

′
j , S

′
j, Sj)) →s

(νab)(
∑

i∈I P?(a, li, T
′
i , Ti) | P!(b, l

′
k, S

′
k, Sk)) →s error

by rule [err-mism-sync].

Case [n-label-sel]: T =
⊕

i∈I !li〈T
′
i 〉.Ti, S =

⊕
j∈J !l

′
j〈S

′
j〉.Sj and ∃k ∈ I such that

∀j ∈ J : lk 6= l′j .

(νab)(P(a, T ) | P(b, S)) = (νab)(
⊕

i∈I P!(a, li, T
′
i , Ti) |

∑
j∈J P?(b, l

′
j , S

′
j, Sj)) →s

(νab)(P!(a, lk, T
′
k, Tk) |

∑
j∈J P?(b, l

′
j , S

′
j , Sj)) →s error

by rule [err-mism-sync].

Case [n-exch-bra]: T = &i∈I?li(T
′
i ).Ti, S = &j∈J?l

′
j(S

′
j).Sj, and ∃k ∈ I ∃k′ ∈ J such

that lk = l′k′ and T ′
k ⋪s S

′
k′ .

(νab)(P(a, T ) | P(b, S)) = (νab)(
∑

i∈I P?(a, li, T
′
i , Ti) |

⊕
j∈J P!(b, l

′
j , S

′
j , Sj)) →s

(νab)(
∑

i∈I P?(a, li, T
′
i , Ti) | (νcd)(b!lk〈c〉.P(b, Sk′) | P(d, S′

k′))) →s

(νab)((νcd)(P(a, Tk) | P(c, T ′
k) | P(b, Sk′) | P(d, S′

k′))) ≡ C[(νcd)(P(c, T ′
k) | P(d, S′

k′))]

where
C[ ] = (νab)(P(a, Tk) | P(b, Sk′)) | [ ].

By induction,
(νcd)(P(c, T ′

k) | P(d, S′
k′)) →

∗
s
error

then by rule [err-context], we conclude

C[(νcd)(P(c, T ′
k) | P(d, S′

k′))] →
∗
s
error

Case [n-exch-sel]: T =
⊕

i∈I !li〈T
′
i 〉.Ti, S =

⊕
j∈J !l

′
j〈S

′
j〉.Sj , and ∃k ∈ I ∃k′ ∈ J such

that lk = l′k′ and S′
k′ ⋪s T

′
k.

(νab)(P(a, T ) | P(b, S)) →s (νab)(νcd)((a!lk〈c〉.P(a, Tk) | P(d, T ′
k)) |

∑
j∈J P?(b, l

′
j , S

′
j, Sj)) →s

(νab)(νcd)(P(a, Tk) | P(d, T ′
k) | P(b, Sk′) | P(c, S′

k′)) ≡ C[(νcd)(P(c, S′
k′) | P(d, T ′

k))]

where
C[ ] = (νab)(P(a, Tk) | P(b, Sk′)) | [ ]

By induction,
(νcd)(P(c, S′

k′ ) | P(d, T ′
k)) →

∗
s
error



16 T. CHEN, M. DEZANI-CIANCAGLINI, A. SCALAS, AND N. YOSHIDA

then by rule [err-context], we conclude

C[(νcd)(P(c, S′
k′) | P(d, T ′

k))] →
∗
s
error

Case [n-cont-bra]: T = &i∈I?li(T
′
i ).Ti, S = &j∈J?l

′
j(S

′
j).Sj , and ∃k ∈ I ∃k′ ∈ J such

that lk = l′k′ and Tk ⋪s Sk′ . As in the previous case

(νab)(P(a, T ) | P(b, S)) →∗
s
(νab)(νcd)(P(a, Tk) | P(c, T ′

k) | P(b, Sk′) | P(d, S′
k′)) ≡

C[(νab)(P(a, Tk) | P(b, Sk′))]

where
C[ ] = (νcd)(P(c, T ′

k) | P(d, S′
k′)) | [ ]

By induction,
(νab)(P(a, Tk) | P(b, Sk′)) →

∗
s
error

then by rule [err-context], we conclude

C[(νab)(P(a, Tk) | P(b, Sk′))] →
∗
s
error

Case [n-cont-sel]: T =
⊕

i∈I !li〈T
′
i 〉.Ti, S =

⊕
j∈J !l

′
j〈S

′
j〉.Sj, and ∃k ∈ I ∃k′ ∈ J such

that lk = l′k′ and Tk ⋪s Sk′ . As in the previous case

(νab)(P(a, T ) | P(b, S)) →s (νab)(νcd)(P(a, Tk) | P(b, Sk′) | P(c, S′
k′) | P(d, T ′

k)) ≡
C[(νab)(P(a, Tk) | P(b, Sk′))]

where
C = (νcd)(P(c, S′

k′) | P(d, T ′
k)) | [ ]

By induction,
(νab)(P(a, Tk) | P(b, Sk′)) →

∗
s
error

then by rule [err-context], we conclude

C[(νab)(P(a, Tk) | P(b, Sk′))] →
∗
s
error

Summing up, we proved that T 66s S implies (νab)(P(a, T ) | P(b, S)) →∗
s
error: hence, the

subtyping relation 6s is complete for the synchronous calculus, according to Definition 1.1.

Corollary 3.5 shows that 6s is the unique precise subtyping for the synchronous calculus.
Notably, this result is based on the definitions of typing system and preciseness we adopted
for our treatment; a similar result could also be shown for the Gay-Hole type system and
subtyping [24], as discussed in §8 (paragraph “Choices of typing system and subtyping”).

Corollary 3.5. 6s is the unique precise subtyping for the synchronous calculus.

Proof. Take a reflexive and transitive relation ⊑s 6⊆ 6s — i.e., ∃S, T such that S ⊑s T but
S 66s T . We prove that ⊑s is an unsound subtyping. By the proof of Theorem 3.4, T 66s S
implies (νab)(P(a, T ) | P(b, S)) →∗

s
error. Therefore, by Definition 1.1, ⊑s is not a sound

subtyping. We conclude that if ⊑s is sound, then ⊑s ⊆ 6s; hence, 6s is the largest sound
subtyping for the synchronous calculus, and therefore the unique precise one.
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4. Asynchronous Session Calculus

“Asynchrony” in communication means that message outputs are non-blocking. Given a pair
of co-channels a and b, we model asynchrony using two FIFO queues: one queue delivers
messages from a to b, and the other from b to a. This double-queue model preserves message
order, resembling communication over a TCP/IP-like network: this is the most common
formulation for asynchronous sessions, and follows recent formalisms in literature [14, 25,
39, 48, 49, 50].

4.1. Syntax and operational semantics. Table 9 shows the asynchronous session cal-
culus obtained by extending the synchronous calculus of Table 1 with queues. A queue
ab◮h is used by channel a to enqueue messages in h and by channel b to dequeue mes-
sages from h. We extend the definition of the set of free channels to queues by fc(∅) = ∅,
fc(ab◮h) = {a, b} ∪ fc(h), fc(l〈a〉) = {a}, and fc(h1 · h1) = fc(h1) ∪ fc(h2).

We use the structural congruence defined by adding the rules in Table 10 to the rules
of Table 2. Rule [s-null] represents garbage collection of empty queues.

The reduction rules for asynchronous processes are obtained from the reduction rules of
synchronous processes given in Table 3 by replacing rule [r-com-sync] with [r-send-async]

and [r-receive-async], shown in Table 11. Rule [r-send-async] enqueues messages and rule
[r-receive-async] dequeues messages.

We write P →a Q if P → Q is derived by the rules of Table 3 but rule [r-com-sync]

and by the rules of Table 11.

P ::= Process
... from Table 1

| ab◮h (queue)

h ::= Queue
∅ (empty) | l〈a〉 (message)

| h · h (composition)

Table 9: Syntax of asynchronous processes.

[s-null]

(νab)(ab◮∅ | ba◮∅) ≡ 0

[s-queue-equiv]

h ≡ h′

ab◮h ≡ ab◮h′

[s-queue 1]

∅ · h ≡ h

[s-queue 2]

h ·∅ ≡ h

[s-queue 3]

h1 · (h2 · h3) ≡ (h1 · h2) · h3

Table 10: Structural congruence for asynchronous processes.

[r-send-async]

ab◮h | a!l〈c〉.P → ab◮h · l〈c〉 | P

[r-receive-async]

k ∈ I

ab◮ lk〈c〉 · h |
∑

i∈I b?li(xi).Pi → ab◮h | Pk{c/xk}

Table 11: Reduction of asynchronous processes.
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4.2. Errors in asynchronous processes. Like in the synchronous case, also in the asyn-
chronous case the errors arise when the duality of the communications offered by co-channels
is lost. The presence of queues makes the definition of the error reductions for asynchronous
communications not trivial. In addition to the other errors, we need to identify the following
classical error situations (the terminology is adopted from works on Communicating Finite
State Machines [12, 29, 64]):

(1) deadlocks: there are inputs waiting to dequeue messages from queues which will
be forever empty.

(2) orphan message errors: there are messages in queues which will never be received
by corresponding inputs, i.e. orphan messages will remain forever in queues.

Both errors are important, since we want to ensure every input can receive a mes-
sage and every message in a queue can be read. These errors correspond to the following
processes:

(1) deadlocks: a pair of co-channels are waiting for inputs and their queues are both
empty, or one channel is waiting for an input over an empty queue and the co-channel only
occurs as a queue name. In the first case the process has the shape

(νab)(
∑

i∈I

a?li(xi).Pi |
∑

j∈J

b?l′j(x
′
j).Qj | ba◮∅ | ab◮∅)

and in the second case the process has the shape

(νab)(
∑

i∈I

a?li(xi).Pi | ba◮∅ | ab◮h)

(2) orphan message errors: a queue is not empty, but the corresponding channel
will never appear as subject of an input. I.e. the process has the shape (νab)(P | ba◮h)
where h is not empty, but P will neither reduce to a process which performs an input on
channel a, nor pass the channel a to an outer process.

To define statically the second error situation, we need to compute an over approxima-
tion (denoted by ϕ(P )) of the set of free channels which might eventually appear as subjects
of inputs by reducing a process P . The definition of ϕ(P ) requires some care. We cannot
simply modify the mapping sc(P ) (page 6), since it only takes into account the subjects
which occur free in P , without considering its unfoldings in case of recursion. Moreover,
we cannot take the whole set of channels occurring free in P , because it is too large: for
example, a recursive process which only sends messages will always contain both the chan-
nels of the subjects and of the objects of the outputs, but it will never read a message on
its queue. We also need to carefully consider the reductions of P , as shown for example by
the process:

P = b?l0(x).x?l1(y) | c!l0〈a〉 | cb◮∅ (4.1)

Notice that P does not contain inputs with subject a, but

P →a b?l0(x).x?l1(y) | cb◮ l0〈a〉 →a a?l1(y) | cb◮∅

and this last process has an input with subject a. Hence to define ϕ(P ), we need to take
care of channels carried by outputs as well as channels occurring in messages inside queues.
Another delicate case in the definition of ϕ(P ) comes from recursive definitions. For example
the process

Q = def X(x) = a!l〈x〉 in X〈c〉 | b?l(y).y?l(z) | ab◮∅ | ba◮∅
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δ(X〈ũ〉, D̃, χ) =





δ(P{ũ/x̃}, D̃,X〈ũ〉 · χ) if X〈ũ〉 6∈ χ and

X(x̃) = P ∈ D̃

∅ otherwise

δ(0, D̃, χ) = ∅

δ(
∑

i∈I u?li(xi).Pi, D̃, χ) = {u} ∪
⋃

i∈I δ(Pi, D̃, χ) \ {xi} δ(u!l〈u′〉.P, D̃) = {u′} ∪ δ(P, D̃, χ)

δ(P1 | P2, D̃, χ) = δ(P1, D̃, χ) ∪ δ(P2, D̃, χ) δ(ab◮h, D̃, χ) = γ(h)

δ(P1 ⊕ P2, D̃, χ) = δ(P1, D̃, χ) ∪ δ(P2, D̃, χ) δ((νab)P, D̃, χ) = δ(P, D̃, χ) \ {a, b}
δ(def D in P, D̃, χ) = δ(P,D · D̃, χ)

Table 12: The mapping δ.

does not contain inputs with subject c, but

Q →a def X(x) = a!l〈x〉 in a!l〈c〉 | b?l(y).y?l(z) | ab◮∅ | ba◮∅

→a def X(x) = a!l〈x〉 in b?l(y).y?l(z) | ab◮ l〈c〉 | ba◮∅

→a def X(x) = a!l〈x〉 in c?l(z) | ab◮∅ | ba◮∅ (note the input with subject c)

In Definition 4.1 below, we introduce ϕ(P ) using two auxiliary mappings: γ and δ. Let

D̃ range over sets of declarations and D · D̃ denote the addition of D to the set D̃. Let χ
range over sets of process variables and X〈ũ〉 · χ denote the addition of X〈ũ〉 to the set χ.

Definition 4.1. (Mappings γ, δ, and ϕ) The mapping γ is defined by induction on queues:

γ(∅) = ∅ γ(l〈a〉) = {a} γ(h1 · h2) = γ(h1) ∪ γ(h2)

The mapping δ is defined (by induction on processes) in Table 12, using γ. The mapping ϕ
is defined as ϕ(P ) = δ(P, ∅, ∅).

The mapping γ applied to a message queue h gives the set of channels which occur in h.
The mapping δ has three arguments: a process P , a set of declarations and a set of process
invocations. The result is the set of free channels which might occur as input subjects
along the reductions of P : the declarations can be used in these reductions, and the set of
process invocations memorises the process calls already considered. The mapping δ uses
the mapping γ for dealing with queues. The mapping ϕ is the mapping δ applied to a
process, an empty set of declarations, and an empty set of process invocations. Notably,
if P only contains recursive process definitions X(x) = P ′ (i.e., with one parameter x),
and all recursive calls to X in P ′ have the form X〈x〉 (i.e., each call to X reuses x),
then ϕ(P ) = δ(P, ∅, ∅) is well founded and each recursive call is unfolded only once (see
Example 4.2). We will see that these properties are enjoyed by characteristic asynchronous
processes, that will be introduced in Definition 5.1 for studying the preciseness of subtyping
in the asynchronous calculus.

For example, for the process P shown in (4.1), we obtain ϕ(P ) = {a, b}.

Example 4.2. Assume

P = def X(x) = a!l〈x〉.X〈x〉 in X〈c〉 | b?l(y).y?l(z) | ab◮∅ | ba◮∅
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[err-mism-async]

∀i ∈ I : l 6= li

ab◮ l〈c〉 · h |
∑

i∈I

b?li(xi).Pi → error

[err-in-in-async]

(νab)(
∑

i∈I

a?li(xi).Pi |
∑

j∈J

b?l′j(x
′
j).Qj | ba◮∅ | ab◮∅) → error

[err-in-async]

(νab)(
∑

i∈I

a?li(xi).Pi | ba◮∅ | ab◮h) → error

[err-orph-mess-async]

a 6∈ ϕ(P ) fpv(P ) = ∅ h 6= ∅

(νab)(P | ba◮h) → error

Table 13: Error reduction for asynchronous processes.

Then we get:

ϕ(P ) = δ(P, ∅, ∅)
= δ(X〈c〉 | b?l(y).y?l(z) | ab◮∅ | ba◮∅,D, ∅)
= δ(X〈c〉,D, ∅) ∪ δ(b?l(y).y?l(z),D, ∅) ∪ δ(ab◮∅,D, ∅) ∪ δ(ba◮∅,D, ∅)
= δ(a!l〈c〉.X〈c〉,D,X〈c〉) ∪ {b} ∪ (δ(y?l(z),D, ∅) \ {y})
= {c} ∪ {b} = {c, b}

where D is X(x) = a!l〈x〉.X〈x〉. The evaluation of ϕ(P ) tells that c can become the subject
of an input. We illustrate this fact also by the following reduction:

P →a def X(x) = a!l〈x〉.X〈x〉 in a!l〈c〉.X〈c〉 | b?l(y).y?l(z) | ab◮∅ | ba◮∅

→a def X(x) = a!l〈x〉.X〈x〉 in X〈c〉 | b?l(y).y?l(z) | ab◮ l〈c〉 | ba◮∅

→a def X(x) = a!l〈x〉.X〈x〉 in X〈c〉 | c?l(z) | ab◮∅ | ba◮∅

The error reduction rules for asynchronous processes are [err-context] of Table 4
and the rules of Table 13. Rule [err-mism-async] deals with a label mismatch between a
message on the top of the queue and an input. Rule [err-in-in-async] gives an error when
two processes with restricted channels are in deadlock waiting to read from empty queues.
Rule [err-in-async] deals with the case of one process waiting to read from an empty queue
which will never contain a message, since there are no occurrences of the unique channel
that can enqueue messages. Rule [err-orph-mess-async] corresponds to the orphan message
error. Clearly (νab)(P | ba◮h) could reduce in other ways, take for example P = b!l〈c〉.
In this rule the condition fpv(P ) = ∅ assures that we consider all needed declarations in
computing ϕ(P ).

Definition 4.3. We write P →a error if P → error can be derived using the rules of
Table 13 plus rule [err-context] of Table 4. The notation →∗

a
is used with the expected

meaning.

Let P(a, T ) range over characteristic asynchronous processes as in Definition 5.1. We
will use the definitions above to show that a typeable process P(a, T ) |P(b, S) |ba◮∅ |ab◮∅

does not reduce to error. Vice versa, we will also show that if the process P(a, T ) |
P(b, S) | ba◮∅ | ab◮∅ cannot be typed, then there are T ′ 6s T and S′ 6s S such that
P(a, T ′) | P(b, S′) | ba◮∅ | ab◮∅ reduces to error. As in the synchronous case, arbitrary
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processes can be stuck without reducing to error: this happens, for instance, if a process
inputs/outputs on a channel without a corresponding queue. Note that the type system we
will introduce in § 4.4 is an adaptation of those by Mostrous et al. [49, 51] to our calculus,
and they do not aim at avoiding deadlock or orphan message errors.

Similarly to Proposition 2.1, if an asynchronous process can reduce to error in one
step, then a different reduction produces a process with the same property.

Proposition 4.4. If P →a error and P →a P
′ 6= error, then P ′ →a error.

Proof. By cases on the rule giving P →a error (Definition 4.3). The statement holds
vacuously for [err-mism-async], [err-in-in-async] and [err-in-async] (Table 13): in such
cases, P →a P

′ implies P ′ = error.
In the case [err-orph-mess-async], we have P = (νab)(Q | ba◮h) →a error; moreover,

a 6∈ ϕ(Q), fpv(Q) = ∅ and h 6= ∅. If P →a P ′ 6= error, then (by [r-context]) it must be
P ′ = (νab)(Q′ | ba◮h′) with Q | ba◮h →a Q′ | ba◮h′: by induction on the derivation of
this transition, we can verify that a 6∈ ϕ(Q′), fpv(Q′) = ∅ and h′ 6= ∅. Hence, again by rule
[err-orph-mess-async], we conclude P ′ →a error.

The case [err-context] (Table 4) is proved similarly to Proposition 2.1.

4.3. Asynchronous subtyping. The asynchronous subtyping is not only essential for the
completeness result, but it is also important in practice. As observed by Yoshida, Honda et
al. [52, 67], implementing this subtyping is a key tool for maximising message-overlapping
in the high-performance computing environments. To explain the usefulness of the asyn-
chronous subtyping, consider:

P1 = a?l(y1).a!l〈5〉.Q1 P2 = b!l〈Large datum〉.b?l(y2).Q2

First P2 sends a large datum on channel b; then after receiving it, P1 sends 5 to P2. We
note that P1’s output is blocked until this large datum is received. Since the value replacing
y1 does not influence the subsequent output at a, process P1 can be optimised by sending
the small datum “5” first, so that once the large datum is put in the queue at ba, process
P2 can immediately receive the small datum. Thus a better version of P1 is P ′

1 defined by:

P ′
1 = a!l〈5〉.a?l(y1).Q1

Asynchronous subtyping specifies safe permutations of actions, by which we can refine a
local protocol to maximise asynchrony without violating session safety.

To define asynchronous subtyping, the notion of asynchronous context of types is
handy [48, 50]. An asynchronous context is a sequence of branchings containing holes
that we index in order to distinguish them.

Definition 4.5 (Asynchronous context).

A ::= [ ]n | &i∈I?li(Si).Ai

We write A[ ]n∈N to denote a context with holes indexed by elements of N and A[Tn]
n∈N

to denote the same context when the hole [ ]n has been filled with Tn.

We naturally extend the definition of type tree (page 9) to contexts, letting T([ ]n) = [ ]n.
For an example, see Figure 2. Note that each continuation path of a context tree is finite,
only connects branching nodes, and ends on a hole.
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Example 4.6. Let N = {1, 2} and

T1 = !m〈Sm〉.Tm ⊕ !p〈Sp〉.Tp, T2 = !m〈S′
m〉.T ′

m ⊕ !p〈S′
p〉.T

′
p ⊕ !q〈Sq〉.Tq.

Assume A = ?r(Sr).[ ]
1 & ?s(Ss).[ ]

2, then

A[T1]
1[T2]

2 = ?r(Sr).(!m〈Sm〉.Tm ⊕ !p〈Sp〉.Tp) & ?s(Ss).(!m〈S′
m〉.T ′

m ⊕ !p〈S′
p〉.T

′
p ⊕ !q〈Sq〉.Tq).

To define asynchronous subtyping we also need to introduce the predicate & ∈ T , which
holds if each continuation path of T(T ) contains at least one branching. The regularity of
the trees corresponding to session types assures that the branchings occur at finite levels.
More precisely & ∈ T holds if we can derive it from the following axioms and inductive
rules:

& ∈ &i∈I?li(Si).Ti

∀i ∈ I & ∈ Ti

& ∈
⊕

i∈I

!li〈Si〉.Ti

& ∈ T

& ∈ µt.T

where we consider also open session types; note that such a predicate holds up-to unfolding,
i.e. & ∈ µt.T iff & ∈ T{µt.T/t} (Proposition B.1 in Appendix B). We write & ∈ A if A is a
branching, i.e. it is not a single hole.

Example 4.7. We have:

& ∈ !l〈S〉.?l′(S′).end & ∈ µt.!l〈S〉.?l′(S′).t ¬
(
& ∈ µt.

(
!l〈S〉.?l′(S′).t⊕ !l′′〈S′′〉.t

))

In the first and second case, the tree of each type has just one continuation path, with a
selection followed by a branching, and we have corresponding (finite) derivations under the
rules above. In the third case, the recursion guarded by the l′′-labelled output generates
an infinite continuation path without branchings: this yields an infinite (and thus, invalid)
derivation under the inductive rules for & ∈ T ; since no finite derivations exist, the predicate
does not hold.

We can now define the asynchronous subtyping relation T 6a S, which holds if T 6 S
is derived by the rule:

[sub-perm-async]

∀i ∈ I ∀n ∈ N : Sn
i 6 Si Ti 6 A[T n

i ]
n∈N & ∈ A & ∈ Ti

⊕
i∈I !li〈Si〉.Ti 6 A[

⊕
i∈I∪Jn

!li〈S
n
i 〉.T

n
i ]

n∈N
===========================================================



ON THE PRECISENESS OF SUBTYPING IN SESSION TYPES 23

Sr
m 6 Sm Ss

m 6 Sm Sr
p 6 Sp Ss

p 6 Sp Tm 6 ?r(Sr).Tr & ?s(Ss).Ts Tp 6 ?r(Sr).T
′

r & ?s(Ss).T
′

s

!m〈Sm〉.Tm ⊕ !p〈Sp〉.Tp 6 ?r(Sr).(!m〈Sr
m〉.Tr ⊕ !p〈Sr

p〉.T
′

r ⊕ !q〈Sq〉.Tq) & ?s(Ss).(!m〈Ss
m〉.Ts ⊕ !p〈Ss

p〉.T
′

s)
=====================================================================================================

Figure 3: Application of [sub-perm-async], where Tm = ?r(Sr).Tr & ?s(Ss).Ts & ?u(Su).Tu

and Tp = ?r(S′
r).T

′
r & ?s(Ss).T

′
s and we assume S′

r 6 Sr.

together with the rules in Table 6.
Rule [sub-perm-async] allows the asynchronous safe permutation explained above. It

postpones a selection after an unbounded but finite number of branchings, and the selections
inside these branchings can be bigger according to rule [sub-sel] of Table 6. The conditions
& ∈ A and & ∈ Ti for all i ∈ I are crucial for the soundness of this rule. Without these
conditions we get the subtyping of Mostrous PhD thesis [48, 50] (for further discussion on
this topic, see § 8, paragraph “Subtyping of Mostrous PhD thesis”).

Reflexivity of 6a is immediate, while the proof of transitivity requires some ingenuity,
see Appendix B.

Theorem 4.8. The relation 6a is transitive.

Example 4.9. (Asynchronous subtyping)

(1) We show T1 6a S1, where T1 = µt.!l〈T ′〉.?l′(S′).t and S1 = µt.?l′(S′).!l〈T ′〉.t. If we
assume T1 6 S1, we obtain

!l〈T ′〉.?l′(S′).T1 6 ?l′(S′).!l〈T ′〉.S1

by rule [ sub-perm-async], which is T1 6 S1 by folding. In this way we coinductively
proved T1 6a S1.

(2) We show T2 6a S2, where T2 = !l〈T ′〉.T1 and S2 = ?l′(S′).S1 and T1, S1 are as in
previous example. We assume T2 6 S2. We get

!l〈T ′〉.!l〈T ′〉.?l′(S′).T1 6 ?l′(S′).!l〈T ′〉.!l〈T ′〉.T1 by rule [ sub-perm-async]

6 ?l′(S′).!l〈T ′〉.?l′(S′).S1 by the assumption T2 6 S2

6 ?l′(S′).?l′(S′).!l〈T ′〉.S1 by rule [ sub-perm-async]

which is T2 6 S2 by folding. In this way we proved T2 6a S2 using transitivity.
(3) Choosing A as in Example 4.6, Figure 3 gives an application of rule [ sub-perm-async].

The rightmost premises can be written

Tm 6 A[Tr]
1[Ts]

2 and Tp 6 A[T ′
r]
1[T ′

s]
2

and they hold by rule [ sub-bra]. The left-hand-side of the conclusion is a selection
between the outputs !m〈Sm〉.Tm and !p〈Sp〉.Tp. The right-hand-side of the conclusion
can be written

A[!m〈Sr
m〉.Tr ⊕ !p〈Sr

p〉.T
′

r ⊕ !q〈Sq〉.Tq]
1[!m〈Ss

m〉.Ts ⊕ !p〈Ss
p〉.T

′

s]
2

Notice that selections are moved inside branching (possibly making smaller the types of
the sent channels) and extra selections (in this case !q〈Sq〉.Tq) can be added.

By definition 6a is an extension of 6s, and the example at the beginning of this subsection
shows that 6s is not complete for the asynchronous calculus.
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[t-new-async]

Γ ⊢ P ⊲ ∆, a : T1, b : T2, ba : τ1, ab : τ2 T1 − τ1 ⊲⊳ T2 − τ2

Γ ⊢ (νab)P ⊲ ∆

[t-empty-q]

Γ ⊢ ba◮∅ ⊲ ba : ǫ

[t-message-q]

Γ ⊢ ba◮h ⊲ ∆, ba : τ

Γ ⊢ ba◮h · l〈c〉 ⊲ ∆, c : S, ba : τ · l〈S〉

Table 14: Typing rules for asynchronous processes and queues.

4.4. Typing asynchronous processes. Since processes now include queues, we need
queue types defined by:

τ ::= ǫ | l〈S〉 | τ · τ

where we assume associativity of · and τ ·ǫ = ǫ ·τ = τ . We also extend session environments
as follows:

∆ ::= . . . | ∆, ab : τ

The added new element ab : τ is the type of messages in the queue ab◮h.
We denote by domq(∆) the set of local queues which occur in ∆. Two session environ-

ments ∆1 and ∆2 agree if
dom(∆1) ∩ dom(∆2) = domq(∆1) ∩ domq(∆2) = ∅.

If ∆1 and ∆2 agree, their composition ∆1,∆2 is given by ∆1,∆2 = ∆1∪∆2 as in the synchro-
nous case. We also define ∆1 6a ∆2 by:

u ∈ dom(∆1) ∩ dom(∆2) implies ∆1(u) 6a ∆2(u) and
u ∈ dom(∆1) and u 6∈ dom(∆2) imply ∆1(u) = end and
u 6∈ dom(∆1) and u ∈ dom(∆2) imply ∆2(u) = end and
domq(∆1) = domq(∆2) and ab ∈ domq(∆1) implies ∆1(ab) = ∆2(ab)

We write ∆1 ≈a ∆2 if ∆1 6a ∆2 and ∆2 6a ∆1.
We need to take into account the interplay between the session type of a channel and the

queue type of the queue dequeued by this channel. Following the literature [25, 48, 49, 50]
we define the session remainder of a session type T and a queue type τ (notation T−τ). The
session type T−τ is obtained from T by erasing all branchings in T that have corresponding
selections in τ . Clearly the session remainder is defined only if T and τ agree on labels and
on types of exchanged channels. More formally we define:

[rm-empty]

T − ǫ = T

[rm-bra]

Tk − τ = T ′ Sk 6a S k ∈ I

&i∈I?li(Si).Ti − lk〈S〉 · τ = T ′

[rm-sel]

∀i ∈ I : Ti − τ = T ′
i⊕

i∈I !li〈Si〉.Ti − τ =
⊕

i∈I !li〈Si〉.T
′
i

The typing rules for asynchronous processes are obtained from the rules of Table 7
by replacing rule [t-new-sync] with rule [t-new-async] and 6s with 6a in rule [t-sub]

and adding the rules for typing the queues. Table 14 gives all the new rules. In rule
[t-new-async] we take into account not only the types of the channels, but also those of
the queues, and we require duality between their remainders. Rule [t-empty-q] types the
empty queue. Rule [t-message-q] says how the type of a queue changes when one message
is added.
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[tr-in]

Sk 6a S k ∈ I

b : &i∈I?li(Si).Ti, ab : lk〈S〉 · τ ⇒ b : Tk, ab : τ

[tr-res]

∆1 ⇒ ∆
′
1

∆1,∆2 ⇒ ∆
′
1,∆2

[tr-out]

∀n ∈ N ∃in ∈ In : lnin = l Sn
in

6a S

a : A[
⊕

i∈In
!lni 〈S

n
i 〉.T

n
i ]

n∈N , ab : τ ⇒ a : A[T n
in
]n∈N , ab : τ · l〈S〉

Table 15: Reduction of asynchronous session environments.

4.5. Soundness of asynchronous subtyping. Reduction of session environments is stan-
dard in session calculi, to take into account how communications modify the types of free
channels and queues [7, 36, 66]. In the synchronous case only restricted channels can ex-
change messages. We could reduce only restricted channels also in the asynchronous case,
but this would make the reduction rules heavier. Table 15 defines the reduction between
session environments. Rule [tr-in] simply corresponds to the dequeue of a message. Rule
[tr-out] takes into account the asynchronous subtyping: we need to choose one type out of
a selection under a context, since a typeable process might contain a selection followed by
several branches, thanks to rule [sub-perm-async]. The following example illustrates rule
[tr-out].

Example 4.10. Let T1, T2,A be defined as in Example 4.6 and assume that there is S
such that Sm, S′

m 6a S and that there is no S′ such that Sp, S
′
p 6a S′. By rule [ tr-out],

only branch m can be triggered to output, since branch q is only at hole 2, and the above
assumption forbids to choose branch p.

a : A[T1]
1[T2]

2, ab : τ ⇒ a : ?r(Sr).Tm & ?s(Ss).T
′
m, ab : τ ·m〈S〉

In order to get subject reduction we cannot start from an arbitrary session environment.
For example the process

a?l(x).a!l′〈x+ 1〉 | ba◮ l〈true〉

can be typed with the session environment

{a : ?l(int).!l′〈int〉.end, ba : l〈bool〉}

but it reduces to a!l′〈true + 1〉 which cannot be typed. As usual [7, 36, 66] we restrict to
balanced session environments according to the following definition.

Definition 4.11 (Balanced session environments). A session environment ∆ is balanced if:

(1) a : T, ba : τ ∈ ∆ imply that T − τ is defined; and
(2) a : T, ba : τ, b : T ′, ab : τ ′ ∈ ∆ imply that T − τ ⊲⊳ T ′ − τ ′.

Notice that ?l(int).!l′〈int〉.end− l〈bool〉 is undefined, if we extend in the obvious way the
definition of session remainder.

It is easy to verify that reduction preserves balancing of session environments.

Lemma 4.12. If ∆ ⇒ ∆
′ and ∆ is balanced, then ∆

′ is balanced.

We can now state subject reduction:
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Theorem 4.13 (Subject reduction for asynchronous processes). If Γ ⊢a P ⊲ ∆ and ∆ is
balanced and P →∗

a
Q, then there is ∆

′ such that ∆ ⇒∗
∆
′ and Γ ⊢a Q ⊲ ∆′.

Also the assurance that well-typed processes cannot go wrong requires balanced session
environments.

Corollary 4.14. If Γ ⊢a P ⊲ ∆ and ∆ is balanced, then P 6→∗
a
error.

Proof. By Theorem 4.13, P →∗
a
error implies Γ ⊢a error ⊲ ∆

′ for some ∆
′, which is

impossible because error has no type.

Lastly we get:

Theorem 4.15. The asynchronous subtyping relation 6a is sound for the asynchronous
calculus.

The proofs of Theorems 4.13 and 4.15 are given in Appendix B.

5. Completeness for Asynchronous Subtyping

We start this section by remarking that the synchronous subtyping is incomplete for the
asynchronous calculus. In fact the synchronous subtyping is strictly included in the asyn-
chronous subtyping. For example T ⋪s S by rule [n-selbra-sync] but T 6a S, where
T = !l〈T ′〉.?l′(S′) and S = ?l′(S′).!l〈T ′〉. Then soundness of the asynchronous subtyping
implies incompleteness of the synchronous subtyping.

We show completeness for asynchronous subtyping following the three steps described
in § 3. In the third step we need to add two queues for exchanging messages, see the
proof of Theorem 5.7. The proofs are more tricky than in the synchronous case since the
asynchronous subtyping makes the shapes of types less structured. The first difficulty is to
define the negation ⋪a inductively and prove that it implies the non-derivability of 6a. The
second difficulty is to catch the error states arising after an unbounded number of message
enqueues, since rule [sub-perm-async] can exchange a selection with an unbounded number
of branchings.

Characteristic asynchronous processes. The definition of characteristic processes for
the asynchronous case differs from that of the synchronous one only for outputs, since the
creation of a new pair of restricted channels requires also the creation of the corresponding
queues.

Definition 5.1 (Characteristic asynchronous processes). The characteristic process offering
communication T on identifier u for the asynchronous calculus, denoted by P(u, T ), is
defined as in Definition 3.1, but for the case of P!(u, l, S, T ), which is now:

P!(u, l, S, T )
def
= (νab)(u!l〈a〉.P(u, T ) | P(b, S) | ba◮∅ | ab◮∅)
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For example if T = !l1〈end〉 ⊕ !l2〈!l3〈end〉.end〉.end, then

P(a, T ) = P!(a, l1, end, end)⊕ P!(a, l2, !l3〈end〉.end, end)
= (νbb′)(a!l1〈b〉.P(a, end) | P(b′, end) | bb′ ◮∅ | b′b◮∅)⊕

(νcc′)(a!l2〈c〉.P(a, end) | P(c′, ?l3(end).end) | cc
′
◮∅ | c′c◮∅)

= (νbb′)(a!l1〈b〉.0 | 0 | bb′ ◮∅ | b′b◮∅)⊕
(νcc′)(a!l2〈c〉.0 | c′?l3(x).(P(c′, end) | P(x, end)) | cc′ ◮∅ | c′c◮∅)

= (νbb′)(a!l1〈b〉.0 | 0 | bb′ ◮∅ | b′b◮∅)⊕
(νcc′)(a!l2〈c〉.0 | c′?l3(x).(0 | 0) | cc′ ◮∅ | c′c◮∅)

≡ (νbb′)(a!l1〈b〉 | bb
′
◮∅ | b′b◮∅)⊕ (νcc′)(a!l2〈c〉 | c

′?l3(x) | cc
′
◮∅ | c′c◮∅)

Similarly to Lemma 3.2 we get:

Lemma 5.2. ⊢a P(u, T ) ⊲ {u : T}.

Rules for negation of the asynchronous subtyping. The negation rules of asynchro-
nous subtyping are obtained from the rules of Table 8 excluding rule [n-selbra-sync] plus
the rules of Table 16. Rule [n-label-async] deals with the case that the selection cannot
find a matching label inside the n0-th hole. Rule [n-exch-async] considers a mismatch
between carried types inside the n0-th hole. Rule [n-cont-async] considers a mismatch
between continuation types, again inside the n0-th hole. The asynchronous context in these
rules allows to consider selection surrounded by branchings. These three rules become the
rules [n-label-sel], [n-exch-sel] and [n-cont-sel] of Table 8, respectively, when the context
A is just one hole. Rule [n-bra-async] assures that a type without branchings cannot be a
subtype of a branching type; the predicate & 6∈ T is the negation of the predicate & ∈ T
(see page 22). More precisely & 6∈ T holds iff we can derive it from the following axioms

[n-label-async]

∃i0 ∈ I ∃n0 ∈ N ∀j ∈ Jn0
: ln0

j 6= li0⊕
i∈I !li〈Si〉.Ti ⋪ A[

⊕
j∈Jn

!lnj 〈S
n
j 〉.T

n
j ]

n∈N

[n-exch-async]

∃i0 ∈ I ∃n0 ∈ N ∃j0 ∈ Jn0
: ln0

j0
= li0 Sn0

j0
⋪ Si0⊕

i∈I !li〈Si〉.Ti ⋪ A[
⊕

j∈Jn
!lnj 〈S

n
j 〉.T

n
j ]

n∈N

[n-cont-async]

∀i ∈ I ∀n ∈ N ∃ji,n ∈ Jn : lnji,n = li ∃i0 ∈ I Ti0 ⋪ A[T n
ji0,n

]n∈N

⊕
i∈I !li〈Si〉.Ti ⋪ A[

⊕
j∈Jn

!lnj 〈S
n
j 〉.T

n
j ]

n∈N

[n-bra-async]

& 6∈ T

T ⋪ &i∈I?li(Si).Ti

[n-sel-async]

⊕ 6∈ T⊕
i∈I !li〈Si〉.Ti ⋪ T

Table 16: Negation of asynchronous subtyping.
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and inductive rules:

& 6∈ end & 6∈ t
∃i ∈ I & 6∈ Ti

& 6∈
⊕

i∈I

!li〈Si〉.Ti

& 6∈ T

& 6∈ µt.T

where we consider also open session types; such a predicate holds up-to unfolding and is the
complement of & ∈ T (Propositions C.1 and C.2 in Appendix C). Dually, rule [n-sel-async]

assures that a type without selections cannot be a subtype of a selection type. The predicate
⊕ ∈ T holds if each continuation path of T(T ) contains at least one selection and the
predicate ⊕ 6∈ T is the negation of the predicate ⊕ ∈ T . The definitions of these predicates
are analogous to those of & ∈ T and & 6∈ T . We write T ⋪a S if T ⋪ S is generated by the
rules in Table 16 and Table 8 excluding rule [n-selbra-sync].

For example, by rule [n-cont-async],

!m〈Sm〉.(?r(Sr).Tr&?s(Ss).end) ⋪a ?r(Sr).!m〈Sm〉.Tr&?s(Ss).!m〈Sm〉.!p〈Sp〉.Tp

since ?r(Sr).Tr&?s(Ss).end ⋪a ?r(Sr).Tr&?s(Ss).!p〈Sp〉.Tp.

In Lemma 5.3, we show that ⋪a is the negation of the asynchronous subtyping. This
result will be used (in the “only if” direction) in the proof of Theorem 5.7.

Lemma 5.3. T 6a S is not derivable if and only if T ⋪a S is derivable.

Proof. If T ⋪a S, then we can show T 66a S by induction on the derivation of T ⋪a S. The
proof is similar to that for “T ⋪s S implies T 66s S ” (Lemma 3.3) — removing the base
case [n-selbra-sync], and adding the cases for the rules in Table 16. We can further remove
the cases [n-label-sel], [n-exch-sel] and [n-cont-sel], since (as discussed above) they are
subsumed respectively by [n-label-async], [n-exch-async] and [n-cont-async], when A is
just one hole. We show the detailed proofs for some of the new cases (the omitted proofs
are similar):

• base case [n-bra-async]. We have T ⋪ S = &i∈I?li(Si).Ti, with & 6∈ T . Since S is
a branching, S 6a T cannot hold by [sub-end] nor [sub-sel]; moreover, it cannot hold
by [sub-bra], since T cannot be a branching (otherwise, we would have the contradiction
& ∈ T ); also [sub-perm-async] is ruled out: otherwise, we would have T =

⊕
i∈J !li〈Si〉.Ti

and ∀i ∈ J : & ∈ Ti, and thus the contradiction & ∈ T . Hence, we conclude S 66a T ;
• base case [n-sel-async]. We have

⊕
i∈I !li〈Si〉.Ti = T ⋪ S, with⊕ 6∈ S. Since T is a selec-

tion, S 6a T cannot hold by [sub-end] nor [sub-bra]; moreover, it cannot hold by [sub-sel],
since S cannot be a selection (otherwise, we would have the contradiction ⊕ ∈ S); also
[sub-perm-async] is ruled out: otherwise, we would have S = A[

⊕
i∈I∪Jn

!li〈S
n
i 〉.T

n
i ]

n∈N ,
and thus the contradiction ⊕ ∈ S. Hence, we conclude S 66a T ;

• inductive case [n-cont-async]. Then, we have:
– T =

⊕
i∈I !li〈Si〉.Ti;

– S = A[
⊕

j∈Jn
!lnj 〈S

n
j 〉.T

n
j ]

n∈N ;

– ∃i0 ∈ I, n0 ∈ N, j0 ∈ Jn0
: ln0

j0
= li0 and Ti0 ⋪ A[T n

j0
]n∈N .

From the last item, by the induction hypothesis we have Ti0 66a A[T n
j0
]n∈N . We observe

that, since T is a selection, T 6a S could only possibly hold by rule [sub-perm-async],
or [sub-sel] when A is just one hole. Since Ti0 66a A[T n

j0
]n∈N , in both cases at least one

of the coinductive premises of the candidate rule is not satisfied. Hence, we conclude
T 66a S.
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Vice versa, the proof for T 66a S implies T ⋪a S is similar to that for T 66s S implies T ⋪s S
(Lemma 3.3): we take a tentative derivation for T 6a S with a branch that fails after n
steps, and by induction on n we construct a derivation of depth n + 1 which concludes
T ⋪a S. The only differences are the following:

• in the base case n = 0, we observe that if T and S cause an immediate derivation
failure under 6s, then they also cause an immediate failure under 6a — except when
T is a selection and S is a branching. In this latter case, we must consider that rule
[sub-perm-async] might allow for a further derivation step under 6a; when this does not
happen (i.e., the shapes of T and S do not match the conclusion of [sub-perm-async]), we
construct a derivation of depth 1 = n+ 1 which concludes T ⋪a S, by one of the axioms
[n-label-async], [n-bra-async] or [n-sel-async];

• in the inductive case n = m + 1, we must also consider the case in which the shapes
of T, S match the conclusion of rule [sub-perm-async], but there is some coinductive
premise T ′ 6a S′ whose sub-derivation has a branch that fails after m steps. Then, by
the induction hypothesis there exists a derivation of depth m+1 that concludes T ′ ⋪a S

′;
using this as a premise, by [n-exch-async] or [n-cont-async] we construct a derivation
of depth (m+ 1) + 1 = n+ 1 which concludes T ⋪a S.

Before proving completeness of subtyping, we need two more intermediate results on the
predicates & ∈ T , & 6∈ T , and ⊕ ∈ T (defined on pages 22 and 28).

Proposition 5.4 can be easily proved by noticing that dualisation turns branchings in
the continuation paths of T(T ) into selections in the continuation paths of T(T ), and vice
versa, as remarked on page 10.

Proposition 5.4. & ∈ T if and only if ⊕ ∈ T .

We define duality of asynchronous contexts as expected:

[ ]n = [ ]n &i∈I?li(Si).Ai =
⊕

i∈I

!li〈Si〉.Ai

We use B to range over duals of asynchronous contexts. We extend asynchronous subtyping
to the duals of asynchronous contexts in the obvious way:

[sub-empty]

[ ]n 6 [ ]n

[sub-dual-cont]

∀i ∈ I : S′
i 6 Si Bi 6 B

′
i

⊕

i∈I

!li〈Si〉.Bi 6
⊕

i∈I∪J

!li〈S
′
i〉.B

′
i

=============================

The following lemma assures that, if there are continuation paths in the tree of a type
T which does not contain branchings, then we can find a type S which is smaller than T
(according to the synchronous subtyping, and then also according to the asynchronous one)
such that all continuation paths in the tree of S do not contain branchings. Moreover T
and S share similar structures.

Lemma 5.5. If & 6∈ T , then there is S 6s T such that the continuation paths of T(S) do

not contain branchings. Moreover T = B[Tn]
n∈N and S = B′[Tn]

n∈N ′
with B′ 6 B and

N ′ ⊆ N .

Proof. If & does not occur in the continuation paths of T(T ) we can choose S = T . Other-
wise by definition T(T ) contains some continuation paths with occurrences of & and other
continuation paths without occurrences of &. The continuation paths with occurrences of



30 T. CHEN, M. DEZANI-CIANCAGLINI, A. SCALAS, AND N. YOSHIDA

& must contain nodes labelled by selections. We can then choose S as the session type
whose tree is obtained by pruning top-down from selection nodes the continuation paths
containing & and the exchanged sub-trees with the same label in T(T ). We then get S 6s T
through a derivation only composed by instances of rule [sub-sel]. This simple construction
implies that T = B[Tn]

n∈N and S = B′[Tn]
n∈N ′

with B′ 6 B and N ′ ⊆ N .

A last lemma connects tree representations of types and occurrences of channels as
subjects in characteristic processes.

Lemma 5.6. If the continuation paths of T(T ) have no branchings, then a 6∈ ϕ(P(a, T )).

Proof. We first observe that, by Definition 5.1, the exchanged types of T do not influence
whether a belongs to ϕ(P(a, T )). Second, we naturally extend type trees to open types
(with closed exchanged types) by letting T(t) = t: this allows us to prove the statement by
structural induction on T , neglecting its exchanged types. We show that if the continuation
paths of T(T ) do not contain branchings then a 6∈ δ(P(a, T ), ∅, ∅), considering only the most
interesting cases:

• base case T = t. Then, T(T ) does not contain branchings and, by definition of δ (Ta-
ble 12), we also have a 6∈ δ(Xt〈a〉, ∅, ∅) = ∅;

• inductive case T = µt.T ′. We observe that:
(1) the tree T(T ) is obtained by recursively grafting the tree T(T ′) on its own leaf nodes

marked with t. Therefore, the continuation paths of T(T ) do not contain branchings
if and only if the continuation paths of T(T ′) do not contain branchings;

(2) assume that T(T ) does not contain branchings. From the previous item and by the
induction hypothesis, we have a 6∈ δ (P(a, T ′), ∅, ∅);

(3) by Definition 5.1, P(a, T ) = def Xt(x) = P(x, T ′) in Xt〈a〉. Therefore, we have
δ(P(a, T ), ∅, ∅) = δ (P(a, T ′), (Xt(x) = P(x, T ′)) , ∅), by definition of δ.

Now, by contradiction, assume a ∈ δ(P(a, T ), ∅, ∅). By definition of δ, this means that
a is yielded by a syntactic occurrence of either u!l〈a〉.P or

∑
i∈I a?li(xi).Pi in P(a, T ′).

The former is impossible, because by Definition 5.1, the parameter a of P(a, T ′) is never
sent as an exchanged channel. The latter, instead, by item 3 above implies:

a ∈ δ
(
P(a, T ′),

(
Xt(x) = P(x, T ′)

)
, ∅

)

and thus a ∈ δ (P(a, T ′), ∅, ∅) — which contradicts item 2 above.

Finally, assume that the continuation paths of T(T ) do not contain branchings: we have
proved that a 6∈ δ(P(a, T ), ∅, ∅); by Definition 4.1, we conclude a 6∈ ϕ(P(a, T )).

Completeness can now be shown:

Theorem 5.7 (Completeness for asynchronous subtyping). The asynchronous subtyping
relation 6a is complete for the asynchronous calculus.

Proof. We prove that T ⋪a S implies that there are T ′ 6s T and S′ 6s S, with either
T ′ = T or S′ = S, such that

(νab)(P(a, T ′) | P(b, S′) | ba◮∅ | ab◮∅) →∗
a
error (5.1)

where P(a, T ′), P(b, S′) are characteristic asynchronous processes. Note that P(a, T ′) and
P(b, S′) play respectively the rôles of P and Q in Step 3 (page 12): in fact, we have
P(a, T ′) ⊲ {a : T} and P(b, S′) ⊲ {b : S}, by using rule [t-sub] when T ′ 6= T or S′ 6= S. The
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proof is by induction on the derivation of T ⋪a S. In all inductive cases, we assume T ′ 6s T
and S′ = S as induction hypothesis; the proof assuming T ′ = T and S′ 6s S is symmetric.

We do not consider the rules [n-label-sel], [n-exch-sel] and [n-cont-sel], since they
are particular cases of the rules [n-label-async], [n-exch-async] and [n-cont-async] when
the asynchronous context is empty.

Case [n-end r]: T = end and S 6= end.

(νab)(P(a, T ) | P(b, S) | ba◮∅ | ab◮∅) = (νab)(0 | P(b, S) | ba◮∅ | ab◮∅) →a error

by rules [err-in-async] and [err-context], since a 6∈ fc(0).

Case [n-end l]: T 6= end and S = end. The proof is as in the previous case.

Case [n-brasel]: T = &i∈I?li(T
′
i ).Ti and S =

⊕
j∈J !l

′
j〈S

′
j〉.Sj .

(νab)(P(a, T ) | P(b, S) | ba◮∅ | ab◮∅) =
(νab)(

∑
i∈I P?(a, li, T

′
i , Ti) |

∑
j∈J P?(b, l

′
j , S

′
j , Sj) | ba◮∅ | ab◮∅) →a error

by rules [err-in-in-async] and [err-context].

Case [n-label-bra]: T = &i∈I?li(T
′
i ).Ti, S = &j∈J?l

′
j(S

′
j).Sj, and ∃k ∈ J such that

∀i ∈ I : l′k 6= li.

(νab)(P(a, T ) | P(b, S) | ba◮∅ | ab◮∅) →a

(νab)(
∑

i∈I P?(a, li, T
′
i , Ti) | (νcd)(b!l

′
k〈c〉.P(b, Sk) | P(d, S′

k) |
dc◮∅ | cd◮∅) | ba◮∅ | ab◮∅) →a

C[
∑

i∈I P?(a, li, T
′
i , Ti) | ba◮ l′k〈c〉)]

where C = (νab)(νcd)(P(b, Sk) | P(d, S′
k) | [ ] | ab◮∅ | dc◮∅ | cd◮∅).

By rule [err-mism-async]
∑

i∈I P?(a, li, T
′
i , Ti) | ba◮ l′k〈c〉 →a error

By rule [err-context], we conclude

C[
∑

i∈I P?(a, li, T
′
i , Ti) | ba◮ l′k〈c〉] →a error

Case [n-exch-bra]: T = &i∈I?li(T
′
i ).Ti, S = &j∈J?l

′
j(S

′
j).Sj, and ∃k ∈ I ∃k′ ∈ J such

that lk = l′k′ and T ′
k ⋪a S

′
k′ . By induction there are T ∗ 6s T

′
k and S∗ = S′

k′ such that

(νcd)(P(c, T ∗) | P(d, S∗) | dc◮∅ | cd◮∅) →∗
a
error

We can then choose

T ′ = ?lk(T
∗).Tk & &i∈I,i 6=k?li(T

′
i ).Ti and S′ = !lk′〈S∗〉.Sk′

⊕ ⊕
j∈J,j 6=k′ !l

′
j〈S

′
j〉.Sj .

By definition T ′ 6s T and S′ = S. We get

(νab)(P(a, T ′) | P(b, S′) | ba◮∅ | ab◮∅) →a

(νab)(
∑

i∈I,i 6=k P?(a, li, T
′
i , Ti) + a?lk(x).(P(a, Tk) | P(x, T ∗))|

(νcd)(b!lk〈c〉.P(b, Sk′) | P(d, S∗) | dc◮∅ | cd◮∅) | ba◮∅ | ab◮∅) →∗
a

C[(νcd)(P(c, T ∗) | P(d, S∗) | dc◮∅ | cd◮∅)]

where
C[ ] = (νab)(P(a, Tk) |P(b, Sk′) |ba◮∅ |ab◮∅) | [ ]. Then by rule [err-context] we conclude

C[(νcd)(P(c, T ∗) | P(d, S∗) | dc◮∅ | cd◮∅)] →∗
a
error
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Case [n-cont-bra]: T = &i∈I?li(T
′
i ).Ti, S = &j∈J?l

′
j(S

′
j).Sj , and ∃k ∈ I ∃k′ ∈ J such

that lk = l′k′ and Tk ⋪a Sk′ . By induction there are T ∗ 6s Tk and S∗ = Sk′ such that

(νab)(P(a, T ∗) | P(b, S∗) | ba◮∅ | ab◮∅) →∗
a
error

We can then choose

T ′ = ?lk(T
′
k).T

∗ & &i∈I,i 6=k?li(T
′
i ).Ti and S′ = !lk′〈S

′
k′〉.S

∗
⊕ ⊕

j∈J,j 6=k′ !l
′
j〈S

′
j〉.Sj .

By definition T ′ 6s T and S′ = S. We get

(νab)(P(a, T ′) | P(b, S′) | ba◮∅ | ab◮∅) →a

(νab)(
∑

i∈I,i 6=k P?(a, li, T
′
i , Ti) + a?lk(x).(P(a, T ∗) | P(x, T ′

k))|

(νcd)(b!lk〈c〉.P(b, S∗) | P(d, S′
k′) | dc◮∅ | cd◮∅) | ba◮∅ | ab◮∅) →a

(νab)(νcd)(
∑

i∈I,i 6=k P?(a, li, T
′
i , Ti) + a?lk(x).(P(a, T ∗) | P(x, T ′

k))|

P(b, S∗) | P(d, S′
k′) | ba◮ lk〈c〉 | ab◮∅ | dc◮∅ | cd◮∅) →a

C[(νab)(P(a, T ∗) | P(b, S∗) | ba◮∅ | ab◮∅)]

where
C[ ] = (νcd)(P(c, T ′

k) | P(d, S′
k′) | dc◮∅ | cd◮∅) | [ ]

Then by rule [err-context] we conclude

C[(νab)(P(a, T ∗) | P(b, S∗) | ba◮∅ | ab◮∅)] →∗
a
error

Case [n-label-async]: T =
⊕

i∈I !li〈T
′
i 〉.Ti, S = A[

⊕
j∈Jn

!l′j
n〈S′

j
n〉.Sn

j ]
n∈N and there

are i0 ∈ I, n0 ∈ N such that ∀j ∈ Jn0
we get l′j

n0 6= li0 . We show by induction on A that
T ⋪a S implies

(νab)(P(a, T ) | P(b, S) | ba◮h | ab◮∅) →∗
a
error

for an arbitrary queue h.

(1) If A=[ ], then S =
⊕

j∈J !l
′
j〈S

′
j〉.Sj , with J = Jn0

, and S = &j∈J?l
′
j(S

′
j).Sj . We get

(νab)(P(a, T ) | P(b, S) | ba◮h | ab◮∅) →a

(νab)(P!(a, li0 , T
′
i0
, Ti0) |

∑
j∈J P?(b, l

′
j , S

′
j , Sj) | ba◮h | ab◮∅) →a

C[
∑

j∈J b?l
′
j(x).(P(b, Sj) | P(x, S′

j)) | ab◮ li0〈c〉]

where

C[ ] = (νab)(νcd)(P(a, Ti0 ) | P(d, T ′
i0
) | [ ] | ba◮h | dc◮∅ | cd◮∅)

By rule [err-mism-async]
∑

j∈J

b?l′j(x).P(b, Sj) | ab◮ li0〈c〉 →a error

then by rule [err-context], we conclude

C[
∑

j∈J

b?l′j(x).P(b, Sj) | ab◮ li0〈c〉] →a error

(2) If & ∈ A, let A = &k∈K?l∗k(S
∗
k).Ak[ ]

n∈Nk , where
⋃

k∈K Nk = N . Then

S =
⊕

k∈K

!l∗k〈S
∗
k〉.Ak[&j∈Jn?l

′
j
n
(S′

j
n
).Sn

j ]
n∈Nk

Let k0 ∈ K be such that n0 ∈ Nk0 and

V = Ak0 [&j∈Jn?l
′
j
n
(S′

j
n
).Sn

j ]
n∈Nk0
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We get

(νab)(P(a, T ) | P(b, S) | ba◮h | ab◮∅) →a

(νab)(P(a, T ) | (νcd)(b!l∗k0〈c〉.P(b, V ) | P(d, S∗
k0
) | dc◮∅ | cd◮∅) | ba◮h | ab◮∅) →a

C[(νab)(P(a, T ) | P(b, V ) | ba◮h · l∗k0〈c〉 | ab◮∅)]

where
C = (νcd)(P(d, S∗

k0
) | [ ] | dc◮∅ | cd◮∅)

By induction

(νab)(P(a, T ) | P(b, V ) | ba◮h · l∗k0〈c〉 | ab◮∅) →∗
a
error

then by rule [err-context], we conclude

C[(νab)(P(a, T ) | P(b, V ) | ba◮h · l∗k0〈c〉 | ab◮∅)] →∗
a
error

Case [n-exch-async]: T =
⊕

i∈I !li〈T
′
i 〉.Ti, S = A[

⊕
j∈Jn

!l′j
n〈S′

j
n〉.Sn

j ]
n∈N , and there

are i0 ∈ I, n0 ∈ N, j0 ∈ Jn0
such that l′j0

n0 = li0 and S′
j0
n0 ⋪a T

′
i0
. We show by induction on

A that T ⋪a S implies

(νab)(P(a, T ′) | P(b, S′) | ba◮h | ab◮∅) →∗
a
error

for some T ′ = T , S′ 6s S and an arbitrary queue h.

(1) If A = [ ], then S =
⊕

j∈J !l
′
j〈S

′
j〉.Sj , where J = Jn0

, and S = &j∈J?l
′
j(S

′
j).Sj and

S′
j0

⋪a T
′
i0
. By induction there are T ∗ = T ′

i0
and S∗ 6s S

′
j0

such that

(νcd)(P(c, S∗) | P(d, T ∗) | dc◮∅ | cd◮∅) →∗
a
error

We can choose T ′ = !li0〈T
∗〉.Ti0

⊕ ⊕
i∈I,i 6=i0

!li〈T
′
i 〉.Ti (therefore, T

′ = T ) and S′ =

?li0(S
∗).Sj0 & &j∈J,j 6=j0?lj(S

′
j).Sj (therefore, S′ 6s S).We get

(νab)(P(a, T ′) | P(b, S′) | ba◮h | ab◮∅) →a

(νab)(νcd)(P(a, Ti0) | b?li0(x).(P(b, Sj) | P(x, S∗)) +
∑

j∈J,j 6=j0
b?l′j(x).(P(b, Sj) | P(x, S′

j))|
P(d, T ∗) | ba◮h | ab◮ li0〈c〉 | dc◮∅ | cd◮∅) →a

C[(νcd)(P(c, S∗) | P(d, T ∗) | dc◮∅ | cd◮∅)]

where C = (νab)(P(a, Ti0) | P(b, Sj0) | ba◮h | ab◮∅) | [ ]. Then by [err-context], we
conclude

C[(νcd)(P(c, S∗) | P(d, T ∗) | dc◮∅ | cd◮∅)] →∗
a
error

(2) If & ∈ A, then the proof is as in case (2) of rule [n-label-async].

Case [n-cont-async]: T =
⊕

i∈I !li〈T
′
i 〉.Ti, S = A[

⊕
j∈Jn

!l′j
n〈S′

j
n〉.Sn

j ]
n∈N , and for all

i ∈ I, n ∈ N : ∃ji,n ∈ Jn such that l′ji,n
n = li and ∃i0 ∈ I : Ti0 ⋪ A[Sn

ji0,n
]n∈N . By induction,

there exist T ∗ 6s Ti0 and S∗ = A[Sn
ji0,n

]n∈N such that:

(νab)(P(a, T ∗) | P(b, S∗) | ba◮∅ | ab◮∅) →∗
a
error (5.2)

By Lemma 5.5 S∗ = B[Sn
∗ ]

n∈N ′
with B 6 A, N ′ ⊆ N and Sn

∗ = Sn
ji0,n

. We observe that

(5.2) implies that in B there exists a continuation path of m outputs !l♭1〈S
♭
1〉, . . . , !l

♭
m〈S♭

m〉
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reaching a k-indexed hole, such that if P(b, S∗) fires the m outputs along such a path, we
get1:

(νab)(P(a, T ∗) | P(b, S∗) | ba◮∅ | ab◮∅)

m times︷ ︸︸ ︷
→a · · · →a (5.3)

C
[
(νab)

(
P(a, T ∗) | P(b, Sk

∗ ) | ba◮ l♭1〈c
♭
1〉 · . . . · l

♭
m〈c♭m〉 | ab◮∅

)]
→∗

a
error (5.4)

where C[ ] contains the restrictions and the characteristic processes for the exchanged chan-
nels c♭1, . . . , c

♭
m.

Now, we can choose T ′ = !li0〈T
′
i0
〉.T ∗

⊕ ⊕
i∈I,i 6=i0

!li〈T
′
i 〉.Ti (therefore, T ′ 6s T ) and

S′ = B[?li0(S
′n
ji0,n

).Sn
∗ & &j∈Jn,j 6=ji0,n

?l′j
n(S′

j
n).Sn

j ]
n∈N ′

(therefore, S′ = S). We have:

(νab)(P(a, T ′) | P(b, S′) | ba◮∅ | ab◮∅) →a (5.5)

C ′
[
(νab)(P(a, T ∗) | P(b, S′) | ba◮∅ | ab◮ li0〈ci0〉)

] m times︷ ︸︸ ︷
→a · · · →a

C ′
[
C
[
(νab)

(
P(a, T ∗) | P(b, ?li0(S

′k
ji0,k

).Sk
∗ & &j∈Jk,j 6=ji0,k

?l′j
k
(S′

j
k
).Sk

j )

| ba◮ !l♭1〈c
♭
1〉 · . . . · !l

♭
m〈c♭m〉 | ab◮ li0〈ci0〉

)]]
→a

C ′′
[
C
[
(νab)

(
P(a, T ∗) | P(b, Sk

∗ ) | ba◮ l♭1c
♭
1 · . . . · l

♭
mc♭m | ab◮∅

)]]
(5.6)

where C ′[ ] and C ′′[ ] contain the restrictions and the characteristic processes for the ex-
changed channel ci0 and its co-channel. The reductions from (5.3) and (5.5) perform the
same communications, except for the enqueuing/dequeuing of li0〈ci0〉 on ab. Moreover, the
reached configurations (5.4) and (5.6) coincide, except for the surrounding context C ′′[ ].
Thus, all errors reachable from (5.4) are also reachable from (5.6), by [err-context]. We
conclude (νab)(P(a, T ′) | P(b, S′) | ba◮∅ | ab◮∅) →∗

a
error.

Case [n-bra-async]: & 6∈ T and S = &i∈I?li(Si).Ti. Then S =
⊕

i∈I !li〈Si〉.Ti. By
Lemma 5.5 there is T ′ 6s T such that the continuation paths of T(T ′) do not contain
branchings.

(νab)(P(a, T ′) | P(b, S) | ba◮∅ | ab◮∅) →a

(νab)(P(a, T ′) | P!(b, li0 , Si0 , Ti0) | ba◮∅ | ab◮∅) →a

C[(νab)(P(a, T ′) | P(b, Ti0) | ba◮ li0〈c〉 | ab◮∅)]

where
C[ ] = (νcd)(P(d, Si0) | [ ] | dc◮∅ | cd◮∅)

By Lemma 5.6 a 6∈ ϕ(P(a, T ′) | P(b, Ti0) | ab◮∅), since the continuation paths of T(T ′)
do not contain branchings, and

fpv(P(a, T ′) | P(b, Ti0) | ab◮∅) = ∅
so by [err-orph-mess-async] we get

(νab)(P(a, T ′) | P(b, Ti0) | ba◮ li0〈c〉 | ab◮∅) →a error

Then by [err-context], we conclude

C[(νab)(P(a, T ′) | P(b, Ti0) | ba◮ li0〈c〉 | ab◮∅)]→a
∗error

1Note that, if there are errors in the exchanged types, an error transition might be enabled before the
whole continuation path is fired; in this case, by Proposition 4.4, it will remain enabled until (5.4) is reached.
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Case [n-sel-async]: T =
⊕

i∈I !li〈Si〉.Ti and ⊕ 6∈ S. By Proposition 5.4, we have & 6∈ S.

By Lemma 5.5 there is S′ 6s S such that the continuation paths of T(S′) do not contain
branchings.

(νab)(P(a, T ) | P(b, S′) | ba◮∅ | ab◮∅) →a

(νab)(P(a, li0 , Si0 , Ti0) | P!(b, S
′) | ba◮∅ | ab◮∅) →a

C[(νab)(P(a, Ti0) | P(b, S′) | ba◮ li0〈c〉 | ab◮∅)]

where C[ ] = (νcd)(P(d, Si0) | [ ] | dc◮∅ | cd◮∅).
By Lemma 5.6 b 6∈ ϕ(P(a, Ti0) | P(b, S′) | ab◮∅), since the continuation paths of T(S′) do
not contain branchings, and

fpv(P(a, Ti0) | P(b, S′) | ab◮∅) = ∅
so by [err-orph-mess-async] we get

(νab)(P(a, Ti0) | P(b, S′) | ba◮ li0〈c〉 | ab◮∅) →a error

Then by [err-context], we conclude

C[(νab)(P(a, Ti0) | P(b, S′) | ba◮ li0〈c〉 | ab◮∅)]→a
∗error

Summing up, we proved that T 66a S implies that there are T ′ 6s T and S′ 6s S, with
either T ′ = T or S′ = S, such that

(νab)(P(a, T ′) | P(b, S′) | ba◮∅ | ab◮∅) →∗
a
error

Hence, the subtyping relation 6a is complete for the asynchronous calculus, according to
Definition 1.1.

We end this section with two examples showing why, in the proof for Theorem 5.7, for
rules [n-bra-async] and [n-sel-async] we need to build characteristic processes of subtypes
of the current types T and S. By highlighting these two cases, we will then discuss the
existence of other sound asynchronous subtypings and a further result on 6a (Theorem 5.10).

Example 5.8. If we take:

T = µt.
(
!l1〈S1〉.t⊕ !l2〈S2〉.?l3(S3).end

)
and S = ?l3(S3).

(
µt.!l1〈S1〉.t⊕ !l2〈S2〉.end

)

then T ⋪a S (by rule [ n-bra-async]), but (νab)(P(a, T ) | P(b, S) | ba◮∅ | ab◮∅) does
not reduce to error. In fact, the process P(a, T ) either sends an l1-labelled message and
becomes P(a, T ) again, or it sends an l2-labelled message, receives an l3-labelled message
and stops. The process P(b, S) sends one l3-labelled message, and then can receive either
an l1-labelled message and become P(b, S) again, or an l2-labelled message and stop. Hence,
the l3-labelled message can always be potentially dequeued from ba (after P(a, T ) chooses to
output l2), and this ensures that [ err-orph-mess-async] never holds.

Instead taking T ′ = µt.!l1〈S1〉.t we get T ′ 6a T , and

(νab)
(
P(a, T ′) | P(b, S) | ba◮∅ | ab◮∅

)
→∗

a
error

since a 6∈ ϕ(P(a, T ′)), i.e. P(a, T ′) cannot read the l3-message sent by P(b, S).

Example 5.9. This example is the “dual” of Example 5.8. If we take:

T = µt.!l1〈S1〉.
(
?l2(S2).t & ?l3(S3).t

)
and S = µt.

(
?l2(S2).t & ?l3(S3).!l1〈S1〉.t

)

then T ⋪a S (by rule [ n-sel-async]), but (νab)(P(a, T ) | P(b, S) | ba◮∅ | ab◮∅) does not
reduce to error. Instead taking S′ = µt.?l2(S2).t we get S′ 6a S, and

(νab)
(
P(a, T ) | P(b, S′) | ba◮∅ | ab◮∅

)
→∗

a
error
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Examples 5.8 and 5.9 show that there exist sound asynchronous subtyping relations
that are not sub-relations of 6a. For instance, take T and S from Example 5.8, and let
⊑ be the smallest reflexive relation between session types such that T ⊑ S. We can verify
that ⊑ is a sound subtyping, by Definition 1.1: if we take any T ′ ⊑ S′ and we compose two
processes typed by T ′ and S′, they will not reduce to error. Note, however, that ⊑ is not
a sub-relation of 6a, because T ⊑ S but T 66a S: this is unlike the synchronous calculus,
where all sound subtypings are sub-relations of 6s (see proof of Corollary 3.5). However,
6a has an important property: if we only consider the asynchronous subtypings that extend
6s, then 6a is the unique precise one.

Theorem 5.10. 6a is the unique precise subtyping for the asynchronous calculus that ex-
tends 6s.

Proof. Take a reflexive and transitive relation ⊑a such that 6s ⊆ ⊑a 6⊆ 6a — i.e., there
exist T, S such that T ⊑a S but T 66a S. We prove that ⊑a is an unsound subtyping, by
showing that there exist T ′ ⊑a T and S′ ⊑a S such that

(νab)(P(a, T ′) | P(b, S′) | ba◮∅ | ab◮∅) →∗
a
error

Since (by Lemma 5.3) T 66a S implies T ⋪a S, we proceed by induction on the derivation
of T ⋪a S, similarly to the proof of Theorem 5.7.

From such a proof, we can see that in all cases we can get the error reduction above
for some T ′, S′ such that either T ′ 6s T and S′ = S, or T ′ = T and S′ 6s S. In the first
case, we also have T ′ ⊑a T and S′ ⊑a S (because 6s ⊆ ⊑a): hence, we conclude that ⊑a is
an unsound subtyping according to Definition 1.1. The proof for the second case (T ′ = T
and S′ 6s S) is dual.

We conclude that if ⊑a is sound and 6s ⊆ ⊑a, then ⊑a ⊆ 6a; hence, among all
subtypings that extend 6s, the subtyping 6a is the largest sound one for the asynchronous
calculus, and therefore the unique precise one.

6. Extensions

In the original calculus [36] sessions are initialised using shared channels by request/accept
prefixes and also expressions (including shared channels) can be communicated. In this
section we show that preciseness is preserved when we augment the calculus, the types
(adding sorts, following Honda et al. [36]) and the subtyping (following Demangeon and
Honda [15]), both for the synchronous and for the asynchronous cases. The most challenging
issue in this extension is the definition of characteristic processes. For the communication
of expressions, taking inspiration from Ligatti et al. [44], we add expression constructors
distinguishing values of different sorts. To correctly deal with communication of shared
channels the characteristic processes must contain both accepts and requests. If a shared
channel carries a linear channel of type S, an accept can be typed with a linear channel of
type T 6 S, while a request can be typed with a linear channel of type T 6 S, see Table 22.
Since T 6 S is equivalent to S 6 T , typing the parallel composition of accept and request
is invariant, as defined by Demangeon and Honda [15].
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P ::= Process
... from Table 1 | u!l〈e〉.P (expression output)

| u(x).P (session accept) | u(x).P (session request)
| (νs)P (shared channel restriction) | if e then P else P (conditional)
| X〈ẽũ〉 (variable with expressions)

u ::= Identifiers
... from Table 1

| v (value)

v ::= Value
s (shared channel)

| true | false

| 0 | 1
| −1 | . . .

e ::= Expression
v | x

| ¬e | succ(e)
| neg(e) | e > e

Table 17: Syntax of extended synchronous processes.

¬true ↓ false ¬false ↓ true succ(n) ↓ (n+ 1) neg(i) ↓ (−i)

(i1 > i2) ↓

{
true if i1 > i2,

false otherwise

e ↓ v E(v) ↓ v′

E(e) ↓ v′
v ↓ v

Table 18: Expression evaluation.

6.1. Synchronous Communication.

Syntax and operational semantics. Table 17 shows the extended synchronous session
calculus obtained by adding session initialisations and communications of expressions (in-
cluding shared channels) to the synchronous calculus of Table 1. We also add conditionals
in order to get evaluation of expressions in reducing characteristic processes.

The value v of expression e (notation e ↓ v) is computed according to the rules of
Table 18. We use n to range over natural and i to range over integer numbers. Evaluation
contexts E for expressions are defined by:

E ::= [ ] | ¬(E) | neg(E) | succ(E) | E > e | v > E

An expression e is stuck (notation e 6↓ ) if it does not evaluate to a value according to the
rules of Table 18. Note that succ reduces only if the argument is a natural number. We
use ẽ ↓ ṽ and ẽ 6↓ with the obvious meanings.

We extend the structural congruence of synchronous processes (Table 2) and the eval-
uation contexts (see page 6) in the obvious way. To reduce extended processes we add the
rules of Table 19 to the rules of Table 3. Table 19 takes into account session initialisations,
communication of expressions, conditionals and expressions in definitions.

A process containing a stuck expression reduces to error, as well as a process with a
value in a channel position, or with a shared channel in a linear channel position, or vice
versa. This is prescribed by the rules of Table 20, which are added to the rules of Table 4.
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[r-init-sync]

a, b fresh

s(x).P | s(y).Q → (νab)(P{a/x} |Q{b/y})

[r-com-sync-ext]

k ∈ I e ↓ v

(νab)(a!lk〈e〉.P |
∑

i∈I

b?li(xi).Qi) → (νab)(P |Qk{v/xk})

[r-t-cond]

e ↓ true

if e then P else Q → P

[r-f-cond]

e ↓ false

if e then P else Q → Q

[r-def-ext]

ẽ ↓ ṽ

def X(x̃ỹ) = P in (X〈ẽã〉 |Q) → def X(x̃ỹ) = P in (P{ṽ/x̃}{ã/ỹ} |Q)

Table 19: Reduction of extended synchronous processes.

[err-def]

ẽ 6↓

X〈ẽã〉 → error

[err-com-ext]

e 6↓

a!l〈e〉.P → error

[err-cond]

e 6↓

if e then P else Q → error

[err-chan-in]∑

i∈I

v?li(xi).Pi → error
[err-chan-out]

v!l〈u′〉.P → error

[err-acc]

u = v or u = a

u(x).P → error

[err-req]

u = v or u = a

u(x).P → error

Table 20: Error reduction of extended synchronous processes.

Type system. Sorts (ranged over by B) and extended session types (ranged over by T ) are
defined by:

B ::= bool | nat | int |<T >
T ::= &i∈I?li(Ui).Ti |

⊕
i∈I !li〈Ui〉.Ti | t | µt.T | end

U ::= B | T

where <T > is the sort of shared channels binding linear channels of extended session type
T .

Subsorting ≤: on sorts is the minimal reflexive and transitive closure of the relation
induced by the rule: nat ≤: int. Table 21 gives the (expected) typing rules for expressions.

The synchronous subtyping rules for extended session types are obtained from the rules
of Table 6 by replacing S with U , and by defining:

U 6 U ′ =





T 6 T ′ if U = T and U ′ = T ′,

B′ ≤: B if U = B and U ′ = B′,

true if U = B and U ′ = end,

false otherwise.
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Γ ⊢ true : bool Γ ⊢ false : bool Γ ⊢ n : nat Γ ⊢ i : int Γ, u : B ⊢ u : B

Γ ⊢ e : bool

Γ ⊢ ¬e : bool

Γ ⊢ e : nat

Γ ⊢ succ(e) : nat

Γ ⊢ e : int

Γ ⊢ neg(e) : int

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 > e2 : bool

Γ ⊢ e : B B ≤: B′

Γ ⊢ e : B′

Table 21: Typing rules for expressions.

[t-acc]

Γ, u :<T >⊢ P ⊲ ∆, x : T

Γ, u :<T >⊢ u(x).P ⊲ ∆

[t-req]

Γ, u :<T >⊢ P ⊲ ∆, x : T

Γ, u :<T >⊢ u(x).P ⊲ ∆

[t-res]

Γ, s :<T >⊢ P ⊲ ∆

Γ ⊢ (νs)P ⊲ ∆

[t-out-ext]

Γ ⊢ e : B Γ ⊢ P ⊲ ∆, u : T

Γ ⊢ u!l〈e〉.P ⊲ ∆, u : !l〈B〉.T

[t-cond]

Γ ⊢ e : bool Γ ⊢ P1 ⊲ ∆ Γ ⊢ P2 ⊲ ∆

Γ ⊢ if e then P1 else P2 ⊲ ∆

[t-var-ext]

Γ ⊢ ẽ : B̃

Γ , X : 〈B̃T̃ 〉 ⊢ X〈ẽũ〉 ⊲ {ũ : T̃}

[t-def-ext]

Γ , x̃ : B̃,X : 〈B̃T̃ 〉 ⊢ P ⊲ {ỹ : T̃} Γ , X : 〈B̃T̃ 〉 ⊢ Q ⊲ ∆

Γ ⊢ def X(x̃ỹ) = P in Q ⊲ ∆

Table 22: Typing rules for extended synchronous processes.

Notice that processes do not contain occurrences of linear channels typed by end, so any
value can be sent to a process waiting for a linear channel typed by end. This justifies the
value true in the definition of U 6 U ′. Notice also that the extended session types and the
sorts behave in opposite ways for inputs and outputs.

Shared environments associate identifiers to sorts and process variables to sequences of
sorts and extended session types

Γ ::= ∅ | Γ , u : B | Γ ,X : 〈B̃T̃ 〉

The typing rules for extended synchronous processes are given in Tables 7 and 22.

Preciseness. The characteristic processes are the processes of Definitions 3.1 and 6.1. For
bool, nat and int we use conditionals and the constructors ¬, succ and neg in order to
test values. For the sorts of shared channels both input and output characteristic processes
contain accept and request constructors. If S is different from T , then either S is not a
subtype of T or vice versa. Therefore at least one of the session initialised by a shared
channel of type <S> and a shared channel of type <T > will reduce to error, see the last
case of the proof of Theorem 6.4.
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Definition 6.1 (Characteristic extended synchronous processes).

P?(u, l, bool, T )
def
= u?l(x).if ¬x then P(u, T ) else P(u, T )

P?(u, l, nat, T )
def
= u?l(x).if succ(x) > 0 then P(u, T ) else P(u, T )

P?(u, l, int, T )
def
= u?l(x).if neg(x) > 0 then P(u, T ) else P(u, T )

P?(u, l,<S>, T )
def
= u?l(x).(P(u, T ) | x(y).P(y, S) | x(z).P(z, S))

P!(u, l, bool, T )
def
= u!l〈true〉.P(u, T )

P!(u, l, nat, T )
def
= u!l〈5〉.P(u, T )

P!(u, l, int, T )
def
= u!l〈−5〉.P(u, T )

P!(u, l,<S>, T )
def
= (νs)(u!l〈s〉.(P(u, T ) | s(y).P(y, S) | s(z).P(z, S)))

As for subtyping, the negation of extended synchronous subtyping is obtained from the
rules of Table 8 by replacing S with U , and by defining:

U ⋪ U ′ =





T ⋪ T ′ if U = T and U ′ = T ′,

B′ 6≤: B if U = B and U ′ = B′,

false if U = B and U ′ = end,

true otherwise.

Lemmas 3.2 and 3.3 easily extend to these definitions, i.e. we get ⊢s P(u, T ) ⊲ {u : T} and
if S 6s T is not derivable, then S ⋪s T is derivable. We are now ready to show preciseness.

Theorem 6.2 (Preciseness for extended synchronous subtyping). The extended synchro-
nous subtyping relation is precise for the extended synchronous calculus.

Proof. As in previous cases soundness follows from subject reduction, which can be easily
proved. For completeness the only new cases are applications of rules [n-exch-bra] and
[n-exch-sel] with sorts. We consider two paradigmatic cases here and other two paradig-
matic cases in the proof of preciseness for the extended asynchronous calculus (Theorem 6.4).

Case [n-exch-bra]: T = &i∈I?li(Ui).Ti, S = &j∈J?l
′
j(U

′
j).Sj , and ∃k ∈ I ∃k′ ∈ J such

that lk = l′k′ and Uk ⋪s U
′
k′ . We only consider the case Uk = nat and U ′

k′ = int.

(νab)(P(a, T ) | P(b, S)) →s

(νab)(
∑

i∈I\{k} P?(a, li, T
′
i , Ti) + a?lk(x).if succ(x) > 0 then P(a, Tk) else P(a, Tk)|

b!lk〈−5〉.P(b, Sk′)) →s

C[if succ(−5) > 0 then P(a, Tk) else P(a, Tk)]

where C[ ] = (νab)(P(b, Sk′) | [ ]). Being succ(−5) > 0 stuck, by rule [err-cond]

if succ(−5) > 0 then P(a, Tk) else P(a, Tk) →s error

then by rule [err-context], we conclude

C[if succ(−5) > 0 then P(a, Tk) else P(a, Tk)] →s error
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[r-init-async]

a, b fresh

s(x).P | s(y).Q → (νab)(P{a/x} |Q{b/y} | ba◮∅ | ab◮∅)

[r-send-async-ext]

e ↓ v

ab◮h | a!l〈e〉.P → ab◮h · l〈v〉 | P

[r-receive-async-ext]

k ∈ I

ab◮ lk〈v〉 · h |
∑

i∈I b?li(xi).Pi → ab◮h | Pk{v/xk}

Table 23: Reduction of asynchronous processes.

Case [n-exch-sel]: T =
⊕

i∈I !li〈Ui〉.Ti, S =
⊕

j∈J !l
′
j〈U

′
j〉.Sj , and ∃k ∈ I ∃k′ ∈ J such

that lk = l′k′ and U ′
k′ ⋪s Uk. We only consider the case Uk = bool and U ′

k′ = T ′ 6= end.

(νab)(P(a, T ) | P(b, S)) →s

(νab)(a!lk〈true〉.P(a, Tk) |
∑

j∈J\{k′} P?(b, l
′
j , U

′
j , Sj) + b?lk(x).(P(b, Sk′) | P(x, T ′))) →s

C[P(true, T ′)]

where C[ ] = (νab)(P(a, Tk) | P(b, Sk′) | [ ]). By definition of characteristic process, being
T ′ 6= end, the value true is used as a channel in P(true, T ′), and this implies by rule
[err-chan-in] or [err-chan-out]

P(true, T ′) →s error

then by rule [err-context], we conclude

C[P(true, T ′)] →s error

6.2. Asynchronous Communication.

Syntax and operational semantics. The processes of the extended asynchronous session
calculus are generated by the rules of Table 9, where messages can be of the form l〈v〉, and
by the rules of Table 17.

The rules for evaluating expressions remain those of Table 18. Structural congruence
and evaluation contexts are generalised in the obvious way. The reduction rules for the
extended asynchronous processes are obtained from the reduction rules of asynchronous
processes of § 4 by adding the rules [r-t-cond], [r-f-cond], [r-def-ext] of Table 19 and
the rules of Table 23. The mapping δ is extended in the obvious way wrt. Table 12 — i.e.,
adding the cases:

δ(X〈ẽũ〉, D̃, χ) =





δ(P{ẽũ/x̃ỹ}, D̃, χ ·X〈ẽũ〉) if X〈ẽ0ũ〉 6∈ χ and

X〈x̃ỹ〉 = P ∈ D̃

∅ otherwise

δ(u(x).P, D̃, χ) = δ(u(x).P, D̃, χ) = δ(P, D̃, χ) \ {x}
δ(u!l〈e〉.P, D̃, χ) = δ((νs)P, D̃, χ) = δ(P, D̃, χ)

δ(if e then P1 else P2, D̃, χ) = δ(P1, D̃, χ) ∪ δ(P2, D̃, χ)

Notice that δ(X〈ẽũ〉, D̃, χ) = ∅ if χ contains X〈ẽ0ũ〉 for some ẽ0, which can be different
from ẽ.
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The error reduction rules for extended asynchronous processes are obtained from the
error reduction rules of asynchronous processes of § 4 by adding the rules of Table 20 and
the rule

[err-mism-async-ext]

∀i ∈ I : l 6= li

ab◮ l〈u〉 · h |
∑

i∈I

b?li(xi).Pi → error

Type system. We define sorts, extended session types and shared environments as in § 6.1.
The typing rules for expressions remain those of Table 21. The queue types are those of
§ 4.4 by replacing S with U , thus allowing l〈B〉. Also the definition of session remainder is
obtained from that of § 4.4 by replacing S with U .

The asynchronous subtyping for extended session types is obtained by defining U 6 U ′

as in § 6.1 and replacing S with U in the subtyping of § 4.3. The typing rules for extended
asynchronous processes are obtained from the typing rules of asynchronous processes of
§ 4.4 by adding the rules of Table 22 and the following rule:

[t-message-q-v]

Γ ⊢ v : B Γ ⊢ ba◮h ⊲ ∆, ba : τ

Γ ⊢ ba◮h · l〈v〉 ⊲ ∆, ba : τ · l〈B〉

The reduction of extended asynchronous session environments is given by the rules of
Table 15 after the replacement of S with U .

Preciseness. The characteristic processes are the processes of Definition 5.1 plus the pro-
cesses of Definition 6.1. The negation of asynchronous subtyping is obtained from the
negation of Section 5 by replacing S with U and by defining U ⋪ U ′ as in 6.1.

Lemmas 5.2 and 5.3 easily extend to these definitions, i.e. we get ⊢a P(u, T ) ⊲ {u : T}
and if S 6a T is not derivable, then S ⋪a T is derivable. The invariance of the types of
shared channels is intriguing in the proof of completeness. We need an auxiliary lemma.

Lemma 6.3. (1) If T ⋪a S and S ⋪a T , then one of the two statements is derivable
without using rules [n-bra-async] and [n-sel-async].

(2) If T 6a S and T 6= S, then S ⋪a T is derivable without using rules [n-bra-async] and
[n-sel-async].

Proof. (1). Let assume we use [n-bra-async] in the proof of T ⋪a S. Then there is a
subderivation of T ⋪a S such that [n-bra-async] is used to prove T ′ ⋪a S

′ or S′ ⋪a T
′. Let

T ′ ⋪a S
′ be consequence of an application of rule [n-bra-async]. We have two cases:

• an application of rule [n-cont-async] with a non-empty asynchronous context occurs in
the derivation branch from T ′ ⋪a S′ to T ⋪a S. Let T ′′ ⋪a S′′ be the conclusion of
the application of rule [n-cont-async] (with a non-empty asynchronous context) that
is closest to T ⋪a S. Notice that the trees of T ′′, S′′ are subtrees of those of T, S,
respectively. We can then prove S ⋪a T with a subderivation which shows S′′ ⋪a T ′′

using rule [n-brasel];
• otherwise, the derivation branch from T ′ ⋪a S

′ to T ⋪a S does not contain any application
of [n-cont-async] with a non-empty asynchronous context. In this case, the trees of T ′, S′

are subtrees of those of T, S, respectively. Let & 6∈ T ′ and S′ = &i∈I?li(Si).Ti. Then
T ′ is either end or a selection. We can prove S ⋪a T with a subderivation which shows
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S′ ⋪a T ′. Taking into account the shapes of T ′, S′ the only applicable rules are either
[n-end r] or [n-brasel].

The proof when we use [n-sel-async] in the derivation of T ⋪a S is similar.
(2). The assumption T 6a S assures that T ,S have corresponding branchings and

selections. Hence, rules [n-bra-async] and [n-sel-async] cannot be used in showing S ⋪a T .

Theorem 6.4 (Preciseness for extended asynchronous subtyping). The extended asynchro-
nous subtyping relation is precise for the extended asynchronous calculus.

Proof. As in previous cases soundness follows from subject reduction, which can be easily
proved. For completeness let T ⋪a S. We show by induction on ⋪a:

(1) if T ⋪a S is derivable without using rules [n-bra-async] and [n-sel-async], then

(νab)(P(a, T ) | P(b, S) | ba◮∅ | ab◮∅) →∗
a
error

(2) otherwise there are T ′ 6s T , S
′ 6s S with either T ′ = T or S′ = S, such that

(νab)(P(a, T ′) | P(b, S′) | ba◮∅ | ab◮∅) →∗
a
error

It is easy to check that the proof of Theorem 5.7 shows this stronger statement, since we
need to consider subtypes of the current types only dealing with rules [n-bra-async] and
[n-sel-async].

We consider here only two cases of applications of rules [n-exch-bra] and [n-exch-sel].

Case [n-exch-bra]: T = &i∈I?li(Ui).Ti, S = &j∈J?l
′
j(U

′
j).Sj, and ∃k ∈ I ∃k′ ∈ J : lk =

l′k′ such that Uk ⋪a U
′
k′ . We only consider the case U ′

k = T ′ 6= end and U ′
k′ =<S′>.

(νab)(P(a, T ) | P(b, S) | ba◮∅ | ab◮∅) →a

(νab)(P(a, T ) | (νs)(b!lk〈s〉.(P(b, Sk′) | s(y).P(y, S′) | s(z).P(z, S′))) | ba◮∅ | ab◮∅) →a

(νab)(νs)(
∑

i∈I P?(a, li, T
′
i , Ti) | P(b, Sk′) | s(y).P(y, S′) | s(z).P(z, S′) | ba◮ lk〈s〉 | ab◮∅) →a

C[P(s, T ′)]

where C[ ] = (νab)(νs)(P(a, Tk) | P(b, Sk′) | s(y).P(y, S′) | s(z).P(z, S′) | [ ] | ba◮∅ | ab◮∅).
By definition of characteristic process, being T ′ 6= end, the shared channel s is used as a
linear channel in P(s, T ′), and this implies by rule [err-chan-in] or [err-chan-out]

P(s, T ′) →a error

then by rule [err-context], we conclude

C[P(s, T ′)] →a error

Case [n-exch-sel]: T =
⊕

i∈I !li〈Ui〉.Ti, S =
⊕

j∈J !l
′
j〈U

′
j〉.Sj , and ∃k ∈ I ∃k′ ∈ J such that

lk = l′k′ and U ′
k′ ⋪a Uk. We only consider the case Uk =<T ′> and U ′

k′ =<S′>.

(νab)(P(a, T ) | P(b, S) | ba◮∅ | ab◮∅) →a

(νab)((νs)(a!lk〈s〉.(P(a, Tk) | s(y).P(y, T ′) | s(z).P(z, T ′))) | P(b, S) | ba◮∅ | ab◮∅) →a

(νab)(νs)(P(a, Tk) | s(y).P(y, T ′) | s(z).P(z, T ′) |
∑

j∈J\{k′} P?(b, l
′
j , U

′
i , Sj)

+ b?lk(x).(P(b, Sk′) | x(y
′).P(y′, S′) | x(z′).P(z′, S′)) | ba◮∅ | ab◮ lk〈s〉) →a

(νab)(νs)(P(a, Tk) | s(y).P(y, T ′) | s(z).P(z, T ′)|
P(b, Sk′) | s(y

′).P(y′, S′) | s(z′).P(z′, S′)) | ba◮∅ | ab◮∅)
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Since T ′ and S′ cannot be equal, then we can derive either S′ ⋪a T ′ or T ′ ⋪a S′ with a
proof which does not use rules [n-bra-async] and [n-sel-async] by Lemma 6.3. In the first
case the obtained process can be written as C[s(z).P(z, T ′) | s(y′).P(y′, S′)] and

C[s(z).P(z, T ′) | s(y′).P(y′, S′)] →a C[(νcd)(P(c, T ′) | P(d, S′) | dc◮∅ | cd◮∅)]

By above we are in case (1) of induction, therefore we get

(νcd)(P(c, T ′) | P(d, S′) | dc◮∅ | cd◮∅) →∗
a
error

then by rule [err-context]

C[(νcd)(P(c, T ′) | P(d, S′) | dc◮∅ | cd◮∅)] →∗
a
error

In the second case the obtained process can be written as C ′[s(y).P(y, T ′) | s(z′).P(z′, S′)]
and we conclude similarly.

7. Denotational Preciseness

In λ-calculus types are usually interpreted as subsets of the domains of λ-models [3, 32].
Denotational preciseness of subtyping is then:

T 6 S if and only if [[T ]] ⊆ [[S]]

using [[ ]] to denote type interpretation.
In the present context let us interpret a session type T as the set of processes with only

one free channel typed by T , i.e.

[[T ]]∗ = {P | ⊢∗ P ⊲ {a : T}}

where ∗ ∈ {s, a}. We can then show that both the synchronous and the asynchronous subtyp-
ings are denotationally precise. Rule [t-sub] gives the denotational soundness. Denotational
completeness follows from the following key property of characteristic processes:

⊢∗ P∗(a, T ) ⊲ {a : S} implies T 6∗ S (7.1)

where P∗(a, T ) is the synchronous characteristic process if ∗ = s and the asynchronous
characteristic process if ∗ = a. The property (7.1) can be shown by induction on T using
Inversion Lemmas for synchronous and asynchronous processes (Lemma A.2 in Appendix A
and Lemma B.4 in Appendix B).

If T 66∗ S, then P∗(a, T ) ∈ [[T ]]∗, but P∗(a, T ) 6∈ [[S]]∗, which implies [[T ]]∗ 6⊆ [[S]]∗.
Therefore we get denotational completeness.

Theorem 7.1 (Denotational preciseness). The synchronous and the asynchronous subtyp-
ing relations are denotationally precise for the synchronous calculus and the asynchronous
calculus, respectively.

To sum up, the existence of characteristic processes implies denotational preciseness
when each session type T is interpreted as the set of processes having only one channel of
type T .
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8. Related Work

Preciseness. To the best of our knowledge, operational preciseness was first defined by
Ligatti et al. [44], for a call-by-value λ-calculus with recursive functions, pairs and sums. In
that paper the authors show that the iso-recursive subtyping induced by the Amber rules [8]
is incomplete. They propose a new iso-recursive subtyping which they prove to be opera-
tionally precise. Denotational preciseness of this subtyping has been recently proved [20].

Both operational and denotational preciseness are shown by Dezani-Ciancaglini and
Ghilezan [18] for the concurrent λ-calculus with intersection and union types introduced
by Dezani-Ciancaglini et al. [17]. In that paper divergence plays the rôle of reduction to
error.

Preciseness in concurrency is more useful and challenging than in the functional setting,
since there are many interesting choices for the syntax, semantics, type errors of the calculi
and for the typing systems. A similar situation appears in the study of bisimulations, where
many labelled transition relations can be defined. It is now common that researchers justify
the correctness of labelled transition systems by proving that the bisimulation coincides
with the contextual congruence [37, 47]. Our claim is that preciseness should become a
sanity check for subtypings.

Recently preciseness has been shown for a synchronous multiparty session calculus
without delegation [19].

Choices of typing system and subtyping. The first branching-selection subtyping for
session types was proposed by Gay and Hole [23, 24] and has been used in other works by
various authors [9, 11, 10, 26, 53, 54, 62]. Their approach corresponds to safe substitutability
of channels (rather than processes): as a consequence, their subtyping is the opposite of 6s,
since branching is covariant and selection is controvariant in the set of labels; coherently,
such a co/contra-variance is also embodied in their typing system and judgements.
A subtyping relation with the opposite direction has been used by Honda, Yoshida, Mostrous
and other authors [7, 15, 48, 49, 50, 51]: their approach corresponds to safe substitutability
of processes. An insightful comparison between these subtypings is the argument of a recent
paper [22].

In this work, we have adopted the subtyping direction and typing system of Honda et
al., since they directly match a definition of preciseness based on process substitution (Def-
inition 1.1), and thus allow for direct reasoning on characteristic processes. Establishing
the preciseness of the Gay and Hole subtyping with respect to their typing system is less
immediate, since the notion of characteristic process (and their substitution) needs to be
adapted to their setting. However, since their typing rules “mirror” ours, and their subtyp-
ing “mirrors” 6s, similar preciseness results can be proved by reversing the ordering both
in the preciseness definition and in the extension of subtyping to session environments.

Other completeness results. Subtyping of recursive types requires algorithms for check-
ing subtype relations, as discussed by Pierce [56, § 21]. These algorithms need to be proved
sound and complete with respect to the definition of the corresponding subtyping, as done
in several works [10, 24, 57]. Synchronous subtyping can be easily decided, see for exam-
ple [24]. We leave the development of an algorithm for asynchronous subtyping, and the
proof of its soundness and completeness, as future work.
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Several works on subtyping formulate the errors using typed reductions or type environ-
ments [30, 57], and they prove soundness with respect to the typed reductions and their
erasure theorems. In contrast with these approaches, our error definitions in Tables 4 and
13 do not rely on any type-case construct or explicit type information, but are defined
syntactically over untyped terms. Note that once the calculus is annotated by type infor-
mation or equipped with type case, completeness becomes trivial, since any two processes
of incomparable types can be operationally distinguished.

Semantic subtyping. In the semantic subtyping approach by Frisch et al. [21], each type
is interpreted as the set of values having that type and subtyping is subset inclusion be-
tween type interpretations. This gives a precise subtyping as soon as the calculus allows
to distinguish operationally values of different types. Semantic subtyping has been studied
by Castagna, De Nicola et al. [9] for a π-calculus with a patterned input, and by Castagna,
Dezani-Ciancaglini et al. [10] for a session calculus with internal and external choices and
typed input. Types are built using a rich set of type constructors including union, intersec-
tion and negation: they extend IO-types in Castagna, De Nicola et al. [9], and session types
in Castagna, Dezani-Ciancaglini et al. [10]. Semantic subtyping is precise for the calculi of
all such works, thanks to the type case constructor in the work by Frisch et al. [21], and to
the blocking of inputs for values of “wrong” types in the works by Castagna et al. [9, 10].

Subtyping of Mostrous PhD thesis. Our subtyping relation differs from that defined in
Mostrous thesis [48, 50] for the premises & ∈ A and & ∈ Ti in rule [sub-perm-async].
As a consequence in that thesis T is a subtype of S when T = µt.!l〈T ′〉.t and S =
µt.!l〈T ′〉.?l′(S′).t (see p. 116 of Mostrous thesis). This subtyping is not sound in our sys-
tem: intuitively T accumulates infinite orphan messages in a queue, while S ensures that
the messages are eventually received. The subtyping relation in Mostrous thesis unexpect-
edly allows an unsound process (typed by T ) to act as if it were a sound process (typed by
S). Let C = (νab)([ ] | Q | ab◮∅ | ba◮∅) where

Q = def Y (x) = b!l〈x〉.b?l′(y).Y 〈x〉 in (νcc′)(Y 〈c〉)

Then we can derive C[a : S] ⊲ ∅. Let

P = def Z(z) = a!l〈z〉.Z〈z〉 in (νdd′)(Z〈d〉)

Then P ⊲ {a : T}. We get

C[P ] →∗
a
(νab)(νcc′)(P | Q | ab◮∅ | ba◮ l〈c〉) →a error

by rule [err-orph-mess-async], since a 6∈ ϕ(P | Q | ab◮∅) and fpv(P | Q | ab◮∅) = ∅.
The subtyping of Mostrous thesis is sound for the session calculus defined there, which

does not consider orphan messages as errors. However, the subtyping of Mostrous thesis
is not complete, an example being µt.!l〈T 〉.t 66 µt.?l′(S).t. There is no context C which
is safe for all processes with one channel typed by µt.?l′(S).t and no process P with one
channel typed by µt.!l〈T 〉.t such that C[P ] deadlocks.
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9. Conclusion

This article gives, as far as we know, the first formulation and proof techniques for the
preciseness of subtyping in mobile processes. We consider the synchronous and asynchronous
session calculi to investigate the preciseness of the existing subtypings. While the well-
known branching-selection subtyping [7, 15, 24] is precise for the synchronous calculus,
the subtyping in Mostrous thesis [48, 50] turns out to be not sound for the asynchronous
calculus. We propose a simplification of previous asynchronous subtypings [49, 51] and prove
its preciseness. As a matter of fact only soundness is a consequence of subject reduction,
while completeness can fail also when subject reduction holds.

The formulation of preciseness along with the proof methods and techniques could be
useful to examine other subtypings and calculi. Our future work includes the applications
to higher-order processes [48, 49, 50], polymorphic types [5, 26, 28], fair subtypings [53, 54]
and contract subtyping [1]. We plan to use the characteristic processes in typecheckers for
session types. More precisely the error messages can show processes of given types when
type checking fails. One interesting problem is to find the necessary and sufficient conditions
to obtain completeness of the generic subtyping by Igarashi and Kobayashi [41]. Such a
characterisation would give preciseness for the many type systems which are instances of
generic subtyping [41]. The notion of subtyping is clearly connected with that of type
duality. Various definitions of dualities are compared by Bernardi et al. [4], and we plan to
investigate if completeness of subtyping can be used in finding the largest safe duality.

The recent study on the Curry-Howard isomorphism between session types and Linear
Logic [5, 6, 55, 65] gives a logic basis to session type duality. Also the one-to-one correspon-
dence between session types and a class of deadlock-free communicating automata [29] has
shown that session types have solid roots [16, 64].

The preciseness result for the synchronous calculus in § 2 and § 3 shows a rigorousness
of the branching-selection subtyping, which is implemented (as a default) in most of session-
based programming languages and tools [7, 15, 31, 35, 39, 40, 60] for enlarging typeability.
For the asynchronous calculus, preciseness is more debatable since it depends on the choice
of type safety properties, see § 4 and § 5. But in this case preciseness plays a more important
rôle, since a programmer can adjust a subtyping relation to loosen or tighten subtypings
with respect to the type safety properties which she wishes to guarantee. Once preciseness
has been proved, she can be sure that her safety specifications and the subtyping have an
exact match with respect to both static and dynamic semantics.

Acknowledgments. We are grateful to the anonymous reviewers for their useful sugges-
tions, which led to substantial improvements. We are indebted to Jovanka Pantović for
pointing out a subtle mistake in a previous version of the completeness proof.
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lation framework for multicore programming. In FMCO, volume 5751 of LNCS, pages 226–246. Springer,
2009.

Appendix A. Proofs of Section 2

Theorem A.1. The relation 6s is transitive.

Proof. Let T 6+
s

S if there exists V such that T 6s V and V 6s S. It suffices to show
6+

s
⊆6s, i.e. that 6+

s
satisfies all the rules of Table 6. We consider all the possible shapes

of T , V , and S based on the rules of Table 6:

(1) T = end and V = end and S = end. Then T 6+
s
S agrees with rule [sub-end].

(2) T = &i∈I∪J∪H?li(Si).Ti and V = &i∈I∪J?li(S
′
i).T

′
i and S = &i∈I?li(S

′′
i ).T

′′
i and Si 6s S

′
i

and Ti 6s T
′
i for all i ∈ I ∪J , and S′

i 6s S
′′
i and T ′

i 6s T
′′
i for all i ∈ I. By the definition

of 6+
s
, we get Si 6

+
s

S′′
i and Ti 6

+
s

T ′′
i for all i ∈ I. Then T 6+

s
S agrees with rule

[sub-bra].
(3) T =

⊕
i∈I !li〈Si〉.Ti and V =

⊕
i∈I∪J !li〈S

′
i〉.T

′
i and S =

⊕
i∈I∪J∪H !li〈S

′′
i 〉.T

′′
i and S′

i 6s

Si and Ti 6s T ′
i for all i ∈ I, and S′′

i 6s S′
i and T ′

i 6s T ′′
i for all i ∈ I ∪ J . By the

definition of 6+
s
, we get S′′

i 6+
s

Si and Ti 6
+
s

T ′′
i for all i ∈ I. Then T 6+

s
S agrees

with rule [sub-sel].

The remainder of this section is devoted to the proof of the subject reduction theorem and
of the soundness of the synchronous subtyping.

Lemma A.2 (Inversion lemma for synchronous processes).

(1) If Γ ⊢s 0 ⊲ ∆, then ∆ is end-only.

(2) If Γ ⊢s X〈ũ〉 ⊲ ∆, then Γ = Γ
′,X : 〈T̃ 〉 and {ũ : T̃} 6s ∆.

(3) If Γ ⊢s

∑
i∈I u?li(xi).Pi ⊲ ∆, then ∆ = ∆

′, u : &j∈J?lj(Sj).Tj and J ⊆ I and
∀j ∈ J : Γ ⊢s Pj ⊲ ∆

′, u : Tj , xj : Sj.
(4) If Γ ⊢s u!l〈u

′〉.P ⊲∆, then ∆ = ∆
′, u : T, u′ : S and !l〈S〉.T ′ 6s T , and Γ ⊢s P ⊲ ∆′, u : T ′.

(5) If Γ ⊢s P1 | P2 ⊲ ∆, then ∆ = ∆1,∆2 and Γ ⊢s P1 ⊲ ∆1 and Γ ⊢s P2 ⊲ ∆2.
(6) If Γ ⊢s P1 ⊕ P2 ⊲ ∆, then Γ ⊢s P1 ⊲ ∆ and Γ ⊢s P2 ⊲ ∆.

http://scribble.github.io/


ON THE PRECISENESS OF SUBTYPING IN SESSION TYPES 51

(7) If Γ ⊢s def X(ỹ) = P in Q ⊲ ∆, then Γ ,X : 〈T̃ 〉 ⊢s P ⊲ {ỹ : T̃} and Γ ,X : 〈T̃ 〉 ⊢s Q ⊲ ∆.
(8) If Γ ⊢s (νab)P ⊲ ∆, then Γ ⊢s P ⊲ ∆, a : T, b : T .

Proof. By induction on derivations.

Lemma A.3 (Substitution lemma for synchronous processes). If Γ ⊢s P ⊲ ∆, y : T and
a 6∈ dom(∆), then Γ ⊢s P{a/y} ⊲ ∆, a : T .

Proof. Standard.

Lemma A.4. If Γ ⊢s P ⊲ ∆ and P ≡ P ′, then Γ ⊢s P
′ ⊲ ∆.

Proof. The proof by induction on ≡ is easy.

Theorem 2.2. (Subject reduction for synchronous processes) If Γ ⊢s P ⊲ ∆ and P →∗
s
Q,

then Γ ⊢s Q ⊲ ∆.

Proof. We first prove that if Γ ⊢s P ⊲ ∆ and P →s Q, then Γ ⊢s Q ⊲ ∆. The proof is by
induction on the derivation of P →s Q. We consider some interesting rules of Table 3.

(1) Case [r-com-sync]:

Γ ⊢s (νab)(a!lk〈c〉.P |
∑

i∈I

b?li(xi).Qi) ⊲ ∆ (A.1)

where k ∈ I. By applying Lemma A.2.8 to (A.1), we have

Γ ⊢s a!lk〈c〉.P |
∑

i∈I

b?li(xi).Qi ⊲ ∆, a : T, b : T (A.2)

By applying Lemma A.2.5 to (A.2), we get

Γ ⊢s a!lk〈c〉.P ⊲ ∆1 (A.3)

Γ ⊢s

∑

i∈I

b?li(xi).Qi ⊲ ∆2 (A.4)

where ∆1,∆2 = ∆, a : T, b : T . By applying Lemma A.2.4 to (A.3), we have

∆1 = ∆
′
1, a : T, c : S

!lk〈S〉.T
′
6s T (A.5)

Γ ⊢s P ⊲ ∆′
1, a : T ′ (A.6)

By applying Lemma A.2.3 to (A.4), we have

∆2 = ∆
′
2, b : T

T = &j∈J?lj(Sj).Tj , J ⊆ I (A.7)

∀j ∈ J : Γ ⊢s Qj ⊲ ∆
′
2, b : Tj , xj : Sj (A.8)

By (A.7) and duality,

T = &j∈J?lj(Sj).Tj =
⊕

j∈J

!lj〈Sj〉.Tj (A.9)
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Then by (A.5) k ∈ J and

S = Sk (A.10)

which together with (A.8) imply

Γ ⊢s Qk ⊲ ∆
′
2, b : Tk, xk : Sk (A.11)

By (A.10) and by applying Lemma A.3 to (A.11), we have

Γ ⊢s Qk{c/xk} ⊲ ∆
′
2, b : Tk, c : S (A.12)

From (A.5) and (A.9), we get

T ′
6s T k (A.13)

Applying [t-sub] to (A.6) and (A.13), we derive

Γ ⊢s P ⊲ ∆′
1, a : T k (A.14)

By applying [t-par] to (A.12) and (A.14), we derive

Γ ⊢s P |Qk{c/xk} ⊲ ∆
′
1,∆

′
2, a : T k, b : Tk, c : S (A.15)

By applying [t-new-sync] to (A.15), we derive Γ ⊢s (νab)(P | Qk{c/xk}) ⊲ ∆′
1,∆

′
2, c : S.

Since ∆
′
1,∆

′
2, c : S = ∆, we conclude

Γ ⊢s (νab)(P |Qk{c/xk}) ⊲ ∆

(2) Case [r-def]:

Γ ⊢s def X(ỹ) = P in (X〈ã〉 |Q) ⊲ ∆ (A.16)

Applying Lemma A.2.7 to (A.16), we have

Γ ,X : 〈T̃ 〉 ⊢s P ⊲ {ỹ : T̃} (A.17)

Γ ,X : 〈T̃ 〉 ⊢s X〈ã〉 |Q ⊲ ∆ (A.18)

Applying Lemma A.2.5 to (A.18), we have

Γ ,X : 〈T̃ 〉 ⊢s X〈ã〉 ⊲ ∆1 (A.19)

Γ ,X : 〈T̃ 〉 ⊢s Q ⊲ ∆2 (A.20)

where ∆ = ∆1,∆2. By Lemma A.2.2 and (A.19), we have

{ã : T̃} 6s ∆1 (A.21)

Applying Lemma A.3 to (A.17), we get

Γ ,X : 〈T̃ 〉 ⊢s P{ã/ỹ} ⊲ {ã : T̃} (A.22)

By applying [t-sub] to (A.21) and (A.22), we derive

Γ ,X : 〈T̃ 〉 ⊢s P{ã/ỹ} ⊲ ∆1 (A.23)

By applying [t-par] to (A.20) and (A.23), we derive

Γ ,X : 〈T̃ 〉 ⊢s P{ã/ỹ} |Q ⊲ ∆1,∆2 (A.24)

By applying [t-def] to (A.24), we conclude

Γ ⊢s def X(ỹ) = P in (P{ã/ỹ} |Q) ⊲ ∆1,∆2

where ∆1,∆2 = ∆.
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(3) Case [r-context]: We consider the context (νab)C. The proofs for other cases are
similar and simpler. Let

Γ ⊢s (νab)C[P ] ⊲ ∆ (A.25)

By applying A.2.8 to (A.25), we have

Γ ⊢s C[P ] ⊲ ∆, a : T, b : T

By induction, we derive

Γ ⊢s C[Q] ⊲ ∆, a : T, b : T (A.26)

By applying [t-new-sync] to (A.26), we conclude

Γ ⊢s (νab)C[Q] ⊲ ∆

We have proved that if Γ ⊢s P ⊲ ∆ and P →s Q, then Γ ⊢s Q ⊲ ∆. Now, the main statement
of the theorem can be easily proved by induction on the length of the sequence of transitions
P →∗

s
Q.

As a consequence of subject reduction we get a substitution lemma for process variables,
which can be also proved independently by induction on reduction contexts.

Lemma A.5. If Γ ,X : 〈T 〉 ⊢s C[X〈a〉] ⊲ ∆ and Γ ⊢s P ⊲ {a : T} and X does not occur free
in C, then Γ ⊢s C[P ] ⊲ ∆.

Proof. The proof is by structural induction on reduction contexts.

(1) If C is empty, i.e. C = [ ], by Lemma A.2.2, {a : T} 6s ∆. By [t-sub], we derive
Γ ⊢s P ⊲ ∆.

(2) If C = (νcd)C ′, let

Γ ,X : 〈T 〉 ⊢s (νcd)C
′[X〈a〉] ⊲ ∆ (A.27)

Γ ⊢s P ⊲ {a : T} (A.28)

By applying Lemma A.2.8 to (A.27), we have

Γ ,X : 〈T 〉 ⊢s C
′[X〈a〉] ⊲ ∆, c : T, d : T (A.29)

By induction, (A.28) and (A.29) together imply

Γ ⊢s C
′[P ] ⊲ ∆, c : T, d : T (A.30)

By applying [t-new-sync] to (A.30), we derive

Γ ⊢s (νcd)C
′[P ] ⊲ ∆

Notice that this proof holds also if a = c or a = d.
(3) If C = C ′ |Q, let

Γ ,X : 〈T 〉 ⊢s C
′[X〈a〉] |Q ⊲ ∆ (A.31)

and (A.28). By applying Lemma A.2.5 to (A.31) and by the assumption that X does
not occur free in Q, we have

Γ ,X : 〈T 〉 ⊢s C
′[X〈a〉] ⊲ ∆1 (A.32)

Γ ⊢s Q ⊲ ∆2 (A.33)
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where ∆1,∆2 = ∆. By induction, (A.28) and (A.32) together imply

Γ ⊢s C
′[P ] ⊲ ∆1 (A.34)

By applying [t-par] to (A.33) and (A.34), we derive

Γ ⊢s C
′[P ] |Q ⊲ ∆

(4) If C = def D in C ′, let

Γ ,X : 〈T̃ 〉 ⊢s def D in C ′[X〈ã〉] ⊲ ∆ (A.35)

where D = (Y (ỹ) = P ′) and Y 6= X, and (A.28). By applying Lemma A.2.7 to (A.35)
and by the assumption that X does not occur free in D, we have

Γ , Y : 〈T̃ ′〉 ⊢s P
′ ⊲ {ỹ : T̃ ′} (A.36)

Γ ,X : 〈T 〉, Y : 〈T̃ ′〉 ⊢s C
′[X〈ã〉] ⊲ ∆ (A.37)

By induction, (A.28) and (A.37) imply

Γ , Y : 〈T̃ ′〉 ⊢s C
′[P ] ⊲ ∆ (A.38)

By applying [t-def] to (A.36) and (A.38), we derive

Γ ⊢s def Y (ỹ) = P ′ in C ′[P ] ⊲ ∆

Theorem 2.4. The synchronous subtyping relation is sound for the synchronous calculus.

Proof. Suppose T 6s S and Γ ⊢s P ⊲ {a : T}. By applying [t-sub] we have Γ ⊢s P ⊲ {a : S}.
By definition of C[a : S], we have Γ ,X : 〈S〉 ⊢s C[X〈a〉] ⊲ ∆. By Lemma A.5, we can get
Γ ⊢s C[P ] ⊲ ∆. By Corollary 2.3, we have C[P ] 6→∗

s
error.

Appendix B. Proofs of Section 4

Proposition B.1. & ∈ µt.T if and only if & ∈ T{µt.T/t}.

Proof. ( =⇒ ). Assume & ∈ µt.T , for some derivation D. We observe that D can only
conclude by the rule for recursion on page 22, and from its premise we have a derivation
D′ proving & ∈ T . We observe that D′ cannot reach t in T , where no rule is defined:
hence, if we inductively rewrite D′ substituting each occurrence of t with µt.T , we obtain
a derivation proving & ∈ T{µt.T/t}.

( ⇐= ). Assuming & ∈ T{µt.T/t}, for some derivation D, we have two cases. If D
traverses a substitution of t in T with µt.T , then we have a corresponding sub-derivation D′

proving & ∈ µt.T , which is the thesis2. Otherwise, D reaches its axioms without traversing
any substitution of t in T with µt.T : hence, by inductively rewriting D removing such a
substitution and restoring t in all terms, we obtain a derivation D′ proving & ∈ T . By
using D′ as a premise for the rule for recursion on page 22, we obtain a derivation proving
& ∈ µt.T .

2We could also prove that this case is actually absurd, but this detail is not relevant for the main proof.
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To show the transitivity of asynchronous subtyping (Theorem 4.8) we extend the asyn-
chronous subtyping to asynchronous contexts (Table 24). It is easy to verify that if A 6a A

′,
and N and N ′ are the set of hole indices of A and A′, respectively, then N ′ ⊆ N . If previous
conditions hold and Tn 6a T ′

n for all n ∈ N ′, then A[Tn]
n∈N 6a A′[T ′

n]
n∈N ′

. Two more

[sub-empty]

[ ]n 6 [ ]n

[sub-cont]

∀i ∈ I : Si 6 S′
i Ai 6 A

′
i

&i∈I∪J?li(Si).Ai 6 &i∈I?li(S
′
i).A

′
i

================================

Table 24: Subtyping for asynchronous contexts.

lemmas on properties of 6a are handy.

Lemma B.2. If T 6a S and & ∈ S, then & ∈ T .

Proof. By cases on the rules defining 6a.

Lemma B.3. If A[
⊕

i∈In
!lni 〈S

n
i 〉.T

n
i ]

n∈N 6a T , then there exists A′[ ]n∈N
′
such that:

(1) A 6a A
′ and N ′ ⊆ N

(2) for all n ∈ N ′, there exists An[ ]
m∈Mn such that

• for all i ∈ In and m ∈ Mn, there exist Hn,m, Sn,m
i and T n,m

i such that:
(a) Sn,m

i 6a S
n
i

(b) T n
i 6a An[T

n,m
i ]m∈Mn

(c) T = A′[An[
⊕

i∈In∪Hn,m
!lni 〈S

n,m
i 〉.T n,m

i ]m∈Mn ]n∈N
′

Proof. By structural induction on A.
In the base case where A is just one hole (i.e., N is a singleton), then we choose A′ to

be just one hole, too; hence, we get A 6a A
′ (by rule [sub-empty]) and N ′ = N = {1}, thus

satisfying item 1 of the statement. Then, according to the rules of Table 6, we have either:

• by rule [sub-sel], T =
⊕

i∈I1∪J
!li〈S

1
i 〉.T

1
i and S1

i 6a Si and Ti 6a T 1
i for all i ∈ I1.

Then we let:
– A1 be just one hole (i.e., M1 = {1} is a singleton);

– H1,1 = J , and for all i ∈ I1, S1,1
i = S1

i and T 1,1
i = T 1

i ;

• otherwise, by rule [sub-perm-async], there exists A′′[ ]m∈M such that & ∈ A′′ and
T = A′′[

⊕
i∈I∪Jm

!li〈S
m
i 〉.Tm

i ]m∈M , and for all i ∈ I1, Ti 6a A′′[Tm
i ]m∈M and for all

m ∈ M , Sm
i 6a Si. Then we let:

– A1 = A′′ (and thus, M1 = M);

– for all m ∈ M1, H1,m = Jm, and for all i ∈ I1, S1,m
i = Sm

i and T 1,m
i = Tm

i .

In both cases, we satisfy items 2a, 2b and 2c of the statement.
For the induction step, let A = &j∈J?lj(Sj).Aj with Nj being the set of hole indices

occurring in Aj and N =
⋃

j∈J Nj . Since by assumption

&j∈J?lj(Sj).Aj [
⊕

i∈In
!lni 〈S

n
i 〉.T

n
i ]

n∈Nj 6a T

and since such a relation can only hold by rule [sub-bra], the shape of T must be

T = &j∈J ′?lj(S
′
j).T

′
j (B.1)
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where J ′ ⊆ J and, for all j ∈ J ′, Sj 6a S′
j and Aj[

⊕
i∈In

!lni 〈S
n
i 〉.T

n
i ]

n∈Nj 6a T ′
j . By the

induction hypothesis, for all j ∈ J ′, there exists A′
j [ ]

n∈N ′
j such that (by item 2c):

T ′
j = A

′
j[An[

⊕
i∈In∪Hn,m

!lni 〈S
n,m
i 〉.T n,m

i ]m∈Mn ]n∈N
′
j (B.2)

where:

• Aj 6a A
′
j and N ′

j ⊆ Nj (from item 1 of the statement);

• for all n ∈ N ′
j , i ∈ In and m ∈ Mn, we have:

(1) Sn,m
i 6a S

n
i (from item 2a), and

(2) T n
i 6a An[T

n,m
i ]m∈Mn (from item 2b).

Now, let A′ = &j∈J ′?lj(S
′
j).A

′
j and N ′ =

⋃
j∈J ′ N ′

j. Since for all j ∈ J ′ ⊆ J we have

N ′
j ⊆ Nj , we also get N ′ ⊆ N ; moreover, since for all j ∈ J ′ we have Sj 6a S′

j and

Aj 6a A
′
j , by [sub-cont] we also get A 6a A′: hence, we satisfy item 1 of the statement.

Furthermore, from items 1 and 2 above we satisfy respectively items 2a and 2b of the
statement. Finally, from (B.1) and (B.2) we obtain:

T = &j∈J ′?lj(S
′
j).A

′
j [An[

⊕
i∈In∪Hn,m

!lni 〈S
n,m
i 〉.T n,m

i ]m∈Mn ]n∈N
′
j

from which we get:

T = A′[An[
⊕

i∈In∪Hn,m
!lni 〈S

n,m
i 〉.T n,m

i ]m∈Mn ]n∈N
′

thus satisfying item 2c of the statement.

Theorem 4.8. The relation 6a is transitive.

Proof. It suffices to show 6+
a
⊆6a, where T 6+

a
S if there exists V such that T 6a V and

V 6a S. We proceed by cases on the rules concluding T 6a V and V 6a S.
If T 6a V by rule [sub-sel] (respectively [sub-bra]), and V 6a S by rule [sub-sel]

(respectively [sub-bra]), then the proof is straightforward, and T 6a S holds again by rule
[sub-sel] (respectively [sub-bra]).

If T 6a V by rule [sub-sel] (respectively [sub-perm-async]), and V 6a S by rule
[sub-perm-async] (respectively [sub-bra]), then we have T =

⊕
i∈I !li〈Si〉.Ti and V =

A[
⊕

i∈I∪Jn
!li〈S

n
i 〉.T

n
i ]

n∈N (where A is just one hole when T 6a V holds by [sub-sel]).
From V 6a S, by Lemma B.3 (item 2c) we have:

S = A
′[An[

⊕
i∈I∪Jn∪Hn,m

!li〈S
n,m
i 〉.T n,m

i ]m∈Mn ]n∈N
′

where:

(1) A 6a A
′ and N ′ ⊆ N (by item 1 of Lemma B.3);

(2) for all n ∈ N ′, m ∈ Mn and i ∈ I∪Jn, we have Sn,m
i 6a S

n
i and T n

i 6a An[T
n,m
i ]m∈Mn

(resp. from items 2a and 2b of Lemma B.3).

Moreover, from T 6a V , we also have:

(3) for all n ∈ N , Sn
i 6a Si;

(4) for all i ∈ I, Ti 6a A[T n
i ]

n∈N .

By the definition of 6+
a
, from items 2 and 3 above, we have Sn,m

i 6+
a

Si for all i ∈ I,
m ∈ Mn and n ∈ N ′. Furthermore, from A 6a A′ (item 1) and T n

i 6a An[T
n,m
i ]m∈Mn

(item 2), for all i ∈ I ∪ Jn and n ∈ N ′ we have:

A[T n
i ]

n∈N
6a A

′[An[T
n,m
i ]m∈Mn ]n∈N

′

(B.3)
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Now, according to the definition of 6+
a
, (B.3) and Ti 6a A[T n

i ]
n∈N (from item 4) imply

Ti 6
+
a
A′[An[T

n,m
i ]m∈Mn ]n∈N

′
, for all i ∈ I. Moreover, we observe that since V 6a S holds

by rule [sub-perm-async] (resp. [sub-bra]), then we have & ∈ S; and since V 6a S and
T 6a V , by applying Lemma B.2 twice we obtain & ∈ V and & ∈ T , i.e. & ∈ Ti for all
i ∈ I. Thus T 6+

a
S agrees with rule [sub-perm-async].

The remaining of this section is devoted to the proof of the subject reduction theorem
and of the soundness of the asynchronous subtyping.

Lemma B.4 (Inversion lemma for asynchronous processes).

(1) If Γ ⊢a 0 ⊲ ∆, then ∆ is end-only.

(2) If Γ ⊢a X〈ũ〉 ⊲ ∆, then Γ = Γ
′,X : 〈T̃ 〉 and {ũ : T̃} 6a ∆.

(3) If Γ ⊢a

∑
i∈I u?li(xi).Pi ⊲ ∆, then ∆ = ∆

′, u : &j∈J?lj(Sj).Tj and J ⊆ I and
∀j ∈ J : Γ ⊢a Pj ⊲ ∆

′, u : Tj, xj : Sj.
(4) If Γ ⊢a u!l〈u

′〉.P ⊲∆, then ∆ = ∆
′, u : T, u′ : S and !l〈S〉.T ′ 6a T and Γ ⊢a P ⊲ ∆′, u : T ′.

(5) If Γ ⊢a P1 | P2 ⊲ ∆, then ∆ = ∆1,∆2 and Γ ⊢a P1 ⊲ ∆1 and Γ ⊢a P2 ⊲ ∆2.
(6) If Γ ⊢a P1 ⊕ P2 ⊲ ∆, then Γ ⊢a P1 ⊲ ∆ and Γ ⊢a P2 ⊲ ∆.

(7) If Γ ⊢a def X(ỹ) = P in Q ⊲ ∆, then Γ ,X : 〈T̃ 〉 ⊢a P ⊲ {ỹ : T̃} and Γ ,X : 〈T̃ 〉 ⊢a Q ⊲ ∆.
(8) If Γ ⊢a (νab)P ⊲ ∆, then Γ ⊢a P ⊲ ∆, a : T1, b : T2, ba : τ1, ab : τ2 and T1 − τ1 ⊲⊳ T2 − τ2.
(9) If Γ ⊢a ba◮∅ ⊲ ∆, then {ba : ǫ} 6a ∆.

(10) If Γ ⊢a ba◮h · l〈c〉 ⊲ ∆, then ∆ = ∆
′, c : S, ba : τ · l〈S′〉 and S′ 6a S and

Γ ⊢a ba◮h ⊲ ∆′, ba : τ .

Proof. By induction on derivations.

Lemma B.5 (Substitution lemma for asynchronous processes). If Γ ⊢a P ⊲ ∆, y : T and
a 6∈ dom(∆), then Γ ⊢a P{a/y} ⊲ ∆, a : T .

Proof. The proof is by induction on the derivation of Γ ⊢a P ⊲∆, y : T. The only interesting
case is:

Γ ⊢a P ⊲ ∆, y : T, b : T1, c : T2, cb : τ1, bc : τ2 T1 − τ1 ⊲⊳ T2 − τ2

Γ ⊢a (νbc)P ⊲ ∆, y : T

By induction Γ ⊢a P{a/y} ⊲ ∆, a : T, b : T1, c : T2, cb : τ1, bc : τ2. Thus by [t-new-async], we
conclude Γ ⊢a (νbc)P{a/y} ⊲ ∆, a : T.

Lemma B.6 (Types of queues). If Γ ⊢a ba◮ l〈c〉 · h ⊲ ∆, then ∆ = ∆
′, c : S, ba : l〈S′〉 · τ ,

and S′ 6a S and Γ ⊢a ba◮h ⊲ ∆′, ba : τ .

Proof. By induction on n we show:
If Γ ⊢a ba◮ l1〈c1〉 · . . . · ln〈cn〉 ⊲ ∆, then ∆ = ∆

′, c1 : S1, . . . , cn : Sn, ba : l1〈S
′
1〉 · . . . · ln〈S

′
n〉,

where ∆
′ is end-only and S′

i 6a Si for 1 ≤ i ≤ n. The first step follows from Lemma B.4.9.
The induction step follows from Lemma B.4.10.

Theorem B.7. If Γ ⊢a P ⊲ ∆ and P ≡ P ′, then Γ ⊢a P
′ ⊲ ∆.

Proof. The proof is by induction on ≡. The most interesting case is rule [s-queue-equiv].
Let h ≡ h′ and Γ ⊢a ab◮h⊲∆. The equivalence h ≡ h′ should come from one of the following
cases: h ≡ ∅ · h = h′, or h ≡ h · ∅ = h′, or h = h1 · (h2 · h3) ≡ (h1 · h2) · h3 = h′. For all
cases, the messages in h and h′ are the same and they are in the same order. Therefore, by
Lemma B.6, if Γ ⊢a ab◮h′ ⊲ ∆′, then ∆

′ = ∆.
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We extend the session remainder to type contexts in the expected way.

Lemma B.8.

A[Tn]
n∈N − τ =

{
A′[Tn]

n∈N ′
if A[ ]n∈N − τ = A′[ ]n∈N

′
,

Tn0
− τ0 if A[ ]n∈N − τ = [ ]n0 − τ0.

Proof. The proof by cases is easy.

• If A[ ]n∈N − τ = A′[ ]n∈N
′
, we have A[Tn]

n∈N − τ = A′[Tn]
n∈N ′

.
• If A[ ]n∈N − τ = [ ]n0 − τ0, we have A[Tn]

n∈N − τ = Tn0
− τ0.

Lemma 4.12. If ∆ ⇒ ∆
′ and ∆ is balanced, then ∆

′ is balanced.

Proof. By cases on the definition of ⇒.

(1) Let ∆, a : T, ba : τ ⇒ ∆
′, a : T ′, ba : τ ′ and T − τ be defined.

(a) If the applied rule is [tr-out]: T = A[
⊕

i∈In
!lni 〈S

n
i 〉.T

n
i ]

n∈N and

∀n ∈ N ∃in ∈ In : lnin = l and Sn
in

6a S, then we get T ′ = A[T n
in
]n∈N and τ ′ = τ .

By Lemma B.8 we have the following subcases:
(i) If A[ ]n∈N − τ = A′[ ]n∈N

′
, then T ′ − τ ′ = A[T n

in
]n∈N − τ = A′[T n

in
]n∈N

′
,

which is defined.
(ii) If A[ ]n∈N − τ = [ ]n0 − τ0, then T ′ − τ ′ = A[T n

in
]n∈N − τ = T n0

in0

− τ0, which

is defined because we know that
⊕

i∈In0

!ln0

i 〈Sn0

i 〉.T n0

i − τ0 is defined and,

therefore, ∀i ∈ In0
: T n0

i − τ0 is defined.
(b) If the applied rule is [tr-in]: T = &i∈I?li(Si).Ti and τ = lk〈S〉·τ

′ and Sk 6a S, and
T ′ = Tk and k ∈ I. We get &i∈I?li(Si).Ti − lk〈S〉 · τ

′ = Tk − τ ′. Therefore Tk − τ ′

is defined because it is equal to T − lk〈S〉 · τ
′, which is defined by assumption.

(2) Let ∆, a : T1, b : T2, ba : τ1, ab : τ2 ⇒ ∆
′, a : T ′

1, b : T
′
2, ba : τ ′1, ab : τ

′
2 and T1−τ1 ⊲⊳ T2−τ2.

(a) If the applied rule is [tr-out]: T1 = A[
⊕

i∈In
!lni 〈S

n
i 〉.T

n
i ]

n∈N and ∀n ∈ N ∃kn ∈

In : lnkn = l and Sn
kn

6a S and T ′
1 = A[T n

kn
]n∈N , T ′

2 = T2, τ
′
1 = τ1, τ

′
2 = τ2 · l〈S〉. By

Lemma B.8 we have the following subcases:
(i) If A[ ]n∈N −τ1 = A′[ ]n∈N

′
, then we have T1−τ1 = A′[

⊕
i∈In

!lni 〈S
n
i 〉.Ti

n]n∈N
′

and T ′
1 − τ ′1 = T ′

1 − τ1 = A′[T n
kn
]n∈N

′
. By T1 − τ1 ⊲⊳ T2 − τ2, we get

T2 − τ2 = A′[
⊕

i∈In
!lni 〈S

n
i 〉.Ti

n]n∈N
′
= A′[&i∈In?l

n
i (S

n
i ).Ti

n
]n∈N

′

which implies

T ′
2−τ ′2 = T2−τ2 ·l〈S〉 = A′[&i∈In?l

n
i (S

n
i ).Ti

n
]n∈N

′
− l〈S〉 = A′[Tkn

n
]n∈N

′
.

We conclude T ′
1 − τ ′1 ⊲⊳ T ′

2 − τ ′2.
(ii) If A[ ]n∈N − τ1 = [ ]n0 − τ0, then we have T1 − τ1 =

⊕
i∈In0

!ln0

i 〈Sn0

i 〉.T n0

i − τ0

and T ′
1 − τ ′1 = T n0

kn0

− τ0. By T1 − τ1 ⊲⊳ T2 − τ2, we get

T2 − τ2 =
⊕

i∈In0

!ln0

i 〈Sn0

i 〉.T n0

i − τ0 = &i∈In0
?ln0

i (Sn0

i ).T n0

i − τ0

which implies

T ′
2 − τ ′2 = &i∈In0

?ln0

i (Sn0

i ).T n0

i − τ0 − l〈S〉 = T n0

kn0

− τ0.

We conclude T ′
1 − τ ′1 ⊲⊳ T ′

2 − τ ′2.
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(b) If the applied rule is [tr-in]: T2 = &i∈I?li(Si).Ti and τ2 = lk〈S〉 · τ and Sk 6a S,
and k ∈ I. As in the proof of case (1b), we can shown that T2− τ2 = T ′

2− τ ′2. Since
T ′
1 − τ ′1 = T1 − τ1 we conclude T ′

1 − τ ′1 ⊲⊳ T ′
2 − τ ′2.

Theorem 4.13. (Subject reduction for asynchronous processes) If Γ ⊢a P ⊲ ∆ and ∆ is
balanced and P →∗

a
Q, then there is ∆′ such that ∆ ⇒∗

∆
′ and Γ ⊢a Q ⊲ ∆′.

Proof. We first prove that if Γ ⊢a P ⊲ ∆ and ∆ is balanced and P →a Q, then there is ∆′

such that ∆ ⇒ ∆
′ and Γ ⊢a Q ⊲ ∆. The proof is by induction on the derivation of P →a Q.

We only consider some interesting rules of Table 11.

(1) Case [r-send-async]:

Γ ⊢a ab◮h | a!l〈c〉.P ⊲ ∆ (B.4)

By applying Lemma B.4.5 to (B.4), we get

Γ ⊢a ab◮h ⊲ ∆1 (B.5)

Γ ⊢a a!l〈c〉.P ⊲ ∆2 (B.6)

where ∆ = ∆1,∆2. By applying Lemma B.4.4 to (B.6), we have

∆2 = ∆
′
2, a : T, c : S !l〈S〉.T ′

6a T

Γ ⊢a P ⊲ ∆′
2, a : T ′ (B.7)

By applying Lemma B.4.9 and B.4.10 and rule [t-message-q] to (B.5), we get

∆1 = ∆
′
1, ab : τ

Γ ⊢a ab◮h · l〈c〉 ⊲ ∆′
1, ab : τ · l〈S〉, c : S (B.8)

By rule [sub-sel] if A is just one hole and by rule [sub-perm-async] if & ∈ A,

T = A[
⊕

i∈In
!lni 〈S

n
i 〉.T

n
i ]

n∈N

and for all n ∈ N there is in ∈ In such that lnin = l, Sn
in

6a S, and T ′ 6a A[T n
in
]n∈N . By

applying [t-sub] to (B.7), we derive

Γ ⊢a P ⊲ ∆′
2, a : A[T n

in ]
n∈N (B.9)

By applying [t-par] to (B.8) and (B.9), we derive

Γ ⊢a ab◮h · l〈c〉 | P ⊲ ∆′

where ∆
′ = ∆

′
1,∆

′
2, ab : τ · l〈S〉, c : S, a : A[T n

in
]n∈N . By [tr-out], we have

a : T, ab : τ ⇒ a : A[T n
in ]

n∈N , ab : τ · l〈S〉

which implies ∆ ⇒ ∆
′
1,∆

′
2, ab : τ · l〈S〉, c : S, a : A[T n

in
]n∈N .

(2) Case [r-receive-async]:

Γ ⊢a ab◮ lk〈c〉 · h |
∑

i∈I

b?li(xi).Pi ⊲ ∆ (B.10)

By applying Lemma B.4.5 to (B.10), we derive

Γ ⊢a ab◮ lk〈c〉 · h ⊲ ∆1 (B.11)

Γ ⊢a

∑

i∈I

b?li(xi).Pi ⊲ ∆2 (B.12)
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where ∆ = ∆1,∆2. By applying Lemma B.6 to (B.11), we have

∆1 = ∆
′
1, ab : lk〈S

′〉 · τ, c : S

S′
6a S (B.13)

Γ ⊢a ab◮h ⊲ ∆′
1, ab : τ (B.14)

By applying Lemma B.4.3 to (B.12), we have

∆2 = ∆
′
2, b : T T = &j∈J?lj(Sj).Tj J ⊆ I

∀j ∈ J : Γ ⊢a Pj ⊲ ∆
′
2, b : Tj , xj : Sj (B.15)

Since ∆ is balanced, T − lk〈S
′〉 · τ is defined, and this implies k ∈ J and

Sk 6a S
′ (B.16)

By applying Lemma B.5 to (B.15), we have

Γ ⊢a Pk{c/xk} ⊲ ∆
′
2, b : Tk, c : Sk (B.17)

By (B.13) and (B.16), we have Sk 6a S
′ 6a S. Hence by applying rule [t-sub] to (B.17),

we derive

Γ ⊢a Pk{c/xk} ⊲ ∆
′
2, b : Tk, c : S (B.18)

By applying rule [t-par] to (B.14) and (B.18) we derive

Γ ⊢a ab◮h | Pk{c/xk} ⊲ ∆
′
1,∆

′
2, ab : τ, b : Tk, c : S

By rule [tr-in], we derive ab : lk〈S
′〉 · τ, b : T ⇒ ab : τ, b : Tk which implies

∆ ⇒ ∆
′
1,∆

′
2, ab : τ, b : Tk, c : S

(3) Case [r-context]: We only illustrate the case when the context is a channel restriction.
Let Γ ⊢a (νab)P ⊲ ∆, then

Γ ⊢a P ⊲ ∆, a : T1, b : T2, ba : τ1, ab : τ2

and T1 − τ1 ⊲⊳ T2 − τ2 by Lemma B.4.8. If P →∗
a
P ′, then by induction there is ∆′ such

that Γ ⊢a P ⊲ ∆′ and

∆, a : T1, b : T2, ba : τ1, ab : τ2 ⇒
∗
∆
′

where ∆
′ is balanced. This implies ∆

′ = ∆
′′, a : T ′

1, b : T ′
2, ba : τ ′1, ab : τ ′2 and T ′

1 − τ ′1 ⊲⊳
T ′
2 − τ ′2 by Lemma 4.12. By rule [t-new-async] we derive

Γ ⊢a (νab)P ⊲ ∆′′

We have proved that if Γ ⊢a P ⊲ ∆ and ∆ is balanced and P →a Q, then there is ∆
′ such

that ∆ ⇒ ∆
′ and Γ ⊢a Q ⊲ ∆. Now, the main statement of the theorem can be easily proved

by induction on the length of the sequence of transitions P →∗
a
Q.

As in the case of synchronous subtyping we can show:

Lemma B.9. If Γ ,X : 〈T 〉 ⊢a C[X〈a〉] ⊲ ∆, Γ ⊢a P ⊲ {a : T}, and X does not occur free in
C, then Γ ⊢a C[P ] ⊲ ∆.
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Proof. The proof is similar to the proof of Lemma A.5. The only case in which the proof
differs is C = (νcd)C ′. Let

Γ ,X : 〈T 〉 ⊢a (νcd)C
′[X〈a〉] ⊲ ∆ (B.19)

Γ ⊢a P ⊲ {a : T} (B.20)

By applying Lemma B.4.8 to (B.19), we have

Γ ,X : 〈T 〉 ⊢a C
′[X〈a〉] ⊲ ∆, c : T, d : T ′, cd : τ, dc : τ ′ and T − τ ⊲⊳ T ′ − τ ′ (B.21)

By induction, (B.20) and (B.21) together imply Γ ⊢a C ′[P ] ⊲ ∆, c : T, d : T ′, cd : τ, dc : τ ′

and T − τ ⊲⊳ T ′ − τ ′. By applying [t-new-async], we derive

Γ ⊢a (νcd)C
′[P ] ⊲ ∆

Theorem 4.15. The asynchronous subtyping relation is sound for the asynchronous calcu-
lus.
Proof. The proof is similar to that of Theorem 2.4, using Lemma B.9 and Corollary 4.14.

Appendix C. Proofs of Section 5

Proposition C.1. & 6∈ µt.T if and only if & 6∈ T{µt.T/t}.

Proof. ( =⇒ ) Assume & 6∈ µt.T , for some derivation D. We observe that D can only
conclude by the rule for recursion on page 28, and from its premise we have a derivation
D′ proving & 6∈ T . We can inductively rewrite D′ into a derivation proving & 6∈ T{µt.T/t},
by replacing (i) each occurrence of t with µt.T , and (ii) each instance of the axiom & 6∈ t
(which, after the replacement (i), has become & 6∈ µt.T ) with D above. We conclude
& 6∈ T{µt.T/t}.

( ⇐= ). The proof for this case is similar to the proof of Proposition B.1, in the ⇐=
direction, using & 6∈ T and its rules defined on page 28. 3

Proposition C.2. & ∈ T holds if and only if & 6∈ T does not hold.

Proof. ( =⇒ ). By induction on the derivation of & ∈ T . The base case, with T =
&i∈I?li(Si).Ti, is immediate: no rule yields & 6∈ T . In the inductive case with T =⊕

i∈I !li〈Si〉.Ti, for all i ∈ I we have a premise & ∈ Ti, and thus (by the induction hy-
pothesis) & 6∈ Ti does not hold: hence, 6 ∃i ∈ I such that & 6∈ Ti holds, and we conclude
that & 6∈ T does not hold by any rule. In the inductive case with T = µt.T ′, we have the
premise & ∈ T ′, and thus (by the induction hypothesis) & 6∈ T ′ does not hold: we conclude
that & 6∈ T does not hold by any rule.

( ⇐= ). We prove & ∈ T by induction on T , examining the cases where & 6∈ T does not
hold. If T = &i∈I?li(Si).Ti, we conclude by the axiom on page 22. If T =

⊕
i∈I !li〈Si〉.Ti

and ∀i ∈ I : & 6∈ Ti does not hold, by the induction hypothesis we have ∀i ∈ I : & ∈ Ti;
therefore, we conclude & ∈ T (By the rule for selection on page 22). If T = µt.T ′ and
& 6∈ T ′ does not hold, by the induction hypothesis we have & ∈ T ′: therefore, we conclude
& ∈ T (by the rule for recursion on page 22).

3Notably, the case discussed in footnote 2 is now not absurd.
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