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Abstract—Public transit generates a wide range of diverse data, 

which include static data and high-velocity data streams from 

sensors. Integrating and processing this big real-time data is a 

challenge in developing analytical systems for public transit. We 

here propose MOBANA (MOBility ANAlyzer), a distributed 

stream-based system, which provides real-time information to a 

wide range of users for monitoring and analyzing the performance 

of public transit. To do so, MOBANA integrates the diverse data 

sources of public transit, and converts them into standard and 

exchangeable data formats. In order to manage such diverse data, 

we propose a layered architecture, where each layer handles a 

specific kind of data. MOBANA is designed to be efficient. E.g., it 

identifies the real time position of vehicles by adjusting planned 

position with real-time data as needed, thus dropping network 

load. MOBANA is implemented by Distributed Stream Processing 

Engine (DSPE) and Distributed Messaging System (DMS), which 

pursue scalable, efficient and reliable real-time processing and 

analytics. MOBANA was deployed as pilot in Pavia, and tested 

with real data.   

Keywords-public transit; destributed stream processing; 

distributed messaging system; GTFS; real-time analytics 

I. INTRODUCTION 

Public transit is critical in cities. Thanks to the availability of 
a variety of public transit data (e.g., transit schedule, routes, and 
sensor data), cities can develop analytic systems to monitor the 
performance of public transit, by modelling, integrating and 
analyzing real data rather than by simulating [1]. The analytical 
results on these data can serve municipalities, transit agencies, 
third-party organizations (e.g., researchers) and citizens [2].  
However, designing such analytic systems requires integrating 
heterogeneous data and processing high-velocity data streams. 
Let us shortly illustrate these points. 

A. Integration of heterogeneous data  

Public transit data include several sources, namely static data 

published by transit agencies (e.g., timetables, routes, service 

alerts) and real-time data from sensors (e.g., vehicle positions 

from on-board GPS, real-time delay feeds). These data are 

typically independent and follow diverse formats (e.g., XML / 

JSON, CSV, PDF). Such diversity of data (i.e., the Variety and 

Veracity in big data) makes integration a critical task. Integration 

actually requires a great effort to understand the semantics of 

each source, and to solve semantic ambiguity, instance 

representation ambiguity, and data inconsistency [3]. 

Furthermore, because of the heterogeneity of source schemas, 

source data shall be unified and integrated into a same schema 

and be stored into a warehouse. Of course, traditional data 

integration and data warehouse techniques are insufficient to 

meet such needs. [4] From our viewpoint, a universal and 

efficient approach to integrate data into a universal standard is 

needed. General Transit Feed Specification (GTFS) [5] is the 

most widely used format for mapping static transit data. Until 

November, 2015, 965 transit agencies from more than 350 cities 

worldwide published their static data in GTFS format [6]. 25 

transit agencies published open transit feeds in GTFS-Realtime, 

i.e., the real-time extension of GTFS [7]. However, until March, 

2013, only 27% of public transit agencies in United States 

published their own open data [8]. That low percentage is 

explained by the GTFS conversion workload. Actually, mapping 

data into GTFS is time consuming, especially for the agencies in 

large cities who deal with large and complex transit networks. 

Furthermore, transit agencies have to re-map their GTFS data 

when transit schedules change.  

B. High-velocity data stream  

Public transit involves high-velocity data streams from 
sensors, e.g., GPS. The data stream can be used by numerous 
transportation services for traffic flow analysis, trip planning, 
geographical social networking, smart driving, and map 
matching [9]. However, because of the real-time nature of sensor 
data, the amount of data may grow exponentially [10]. For 
example, in Dublin, transit sensors generate 4-6 gigabytes real-
time data per day [11]. Thus, an effective, and scalable 
processing model for real-time data is needed. 

C. The MOBANA system  

To overcome the above issues, we have developed an 
information system for real-time transit performance monitoring 
and analytics with heterogeneous data, named MOBANA 
(MOBility ANAlyzer) to cover the whole lifecycle of transit 
data, namely collection, conversion, processing, analysis, 
visualization, and sharing. In order to cover such cycle, a 
complete tool chain has been developed. MOBANA is based on 
a scalable distributed stream-based publisher and subscriber 
architecture, which combines Distributed Stream Processing 
Engine (DSPE) and Distributed Messaging System (DMS) to 
provide an efficient and reliable real-time processing. A set of 
Key Performance Indicators (KPIs) are defined, and 
accordingly, a KPI dashboard is implemented to monitor KPIs 
according to various dimensions (e.g., date, daytime, stops, 
routes, transit mode). The key contribution of MOBANA 
concerns a new hybrid approach, which combines both static 
data (in GTFS) and real-time data stream (in GTFS-Realtime) to 
analyze and visualize KPIs and vehicle positions in real-time. 
This approach reduces network traffic and server load versus the 
traditional approaches, which use raw GPS record. Finally, 
MOBANA publishes public transit information and analytic 
results to stakeholders by web services.  

In this paper, section 2 illustrates the MOBANA framework 
and approach to the data lifecycle. Section 3 presents the case 
study of Pavia Mobility Analyzer. Section 4 discusses the 
performance of MOBANA. Section 5 compares similar systems, 
frameworks and approaches. Finally, section 6, “Conclusion”, 
summarizes achievements and sketches future improvements. 



 

II. MOBANA 

Public transit involves numerous stakeholder classes, which, 
consume transit data, as municipality, transit agencies, and 
citizens. In the typical usage scenario of MOBANA, 
municipalities and transit agencies analyze real-time mobility 
status through Key Performance Indicators (KPI) on a dashboard 
(Figure 6) or on a public transit map (Figure 7). These KPIs 
include the prediction of vehicle delay, the average vehicle delay 
by stop. In turn, citizens search, on the web or smart phone, open 
information about public transit (e.g., timetables, real-time bus 
delays, expected arrival time). Finally, third party organizations 
can use open information as a service to offer value added 
services or further analytics.  

 

 

Figure 1.  Components of MOBANA 

MOBANA covers by specific components for all phases of 
the data lifecycle, namely gathering, conversion, processing and 
storage, analysis, visualization and sharing (Figure 1). In the 
following sections we describe the details of these phases and 
corresponding components.  

A. Data Gathering and Conversion  

MOBANA integrates static and real-time data sources. Let 
us shortly illustrate them.  

Static transit data (time tables, routes, trips, agency, calendar, 
stops) are published by transit agencies in CSV or PDF format. 
These data can be also gathered from databases of public 
agencies. We implemented a GTFS Converter to convert these 
static data to GTFS format, which defines timetables, trips, 
routes, stops and associated geographic information for multiple 
public transit modes, e.g., bus, tramway and metro. Furthermore, 
the Static Data Monitor (SDM) listens to the changes in transit 
database. If changes are detected, SDM will trigger the GTFS 
Converter to reconstruct GTFS files. Finally, the GTFS Loader, 
the unique interface to access static data, will load these files for 
further processing and analysis.  

In order to support transit agencies which do not have their 
GTFS files nor store their timetables and shape data (i.e., 
waypoints in routes), a GTFS Editor was implemented. It is a 
WYSIWYG (What You See Is What You Get) editor for 
creating, editing, and validating static transit data. Especially, it 
enables transit agencies to visually add and edit shape 
information on the map (see Figure 2). To the best of our 
knowledge, it is the first application that supports interactive 
editing and visualization of GTFS files.  

 

 

Figure 2.  GTFS Editor 

Real-time data (JSON / XML format) are gathered from data 
dispatching APIs of public transit agencies. MOBANA also 
supports GTFS-Realtime compliant transit feeds that contains at 
least one of following properties:  

a) Trip time updates, which contains prediction of delays (in 
second) and Estimated Time of Arrival (ETA) and Estimated 
Time of Departure (ETD) of corresponding trip and stop;  

b) Vehicle position updates, the real-time geo-location of 
given vehicle. A data producer receives these real-time data, 
converts them to GTFS-Realtime feeds and sends the feeds to 
message queues. The Trip Update Consumers and Vehicle 
Update Consumers get these data for further processing. In the 
next section we describe details of data producer and consumers;  

c) Service alerts which indicate incidents in the public transit 
network. The service alerts are published by transit agencies or 
submitted by citizens from dedicated city issue management 
system (i.e., City Feed [13]) or social networks. 

B. Distributed Stream-based Processing (DSP) and 

Distributed Messaging System (DMS) 

In order to process high-velocity real-time data, we designed 
an architecture which combines Distributed Stream-based 
Processing Engine (DSPE) and Distributed Messaging System 
(DMS) (Figure 3). In such architecture a Publish / Subscribe 
model decouples synchronized data processing from 
asynchronous data sending and consuming. Apache Storm [14] 
and RocketMQ [15] were used to implement this architecture.  

 

 
Figure 3.  The DSP architecture in MOBANA 

RocketMQ is an open source DMS; it includes five modules, 
described in Table I. We implemented a group of producers that 
emit real-time data stream and we used Apache Storm, an open-
source DSPE, to implement three groups of data consumers. 
Thanks to the scalability of RocketMQ and Apache Storm, these 
producers and consumers can be easily deployed and managed 

 

 

 



 

by cloud servers. A Data Dispatch Manager (DDM) listens and 
receives real-time data, then it invokes the Real-time Data 
Producer to send messages to brokers. We defined GTFS and 
RT, respectively static and real-time, as data topics. GTFS 
brokers serves Static Data Consumer, which checks the 
consistency of RT data with GTFS files. If RT data are 
inconsistent, it will invoke GTFS Converter to check and update 
GTFS files.  

 

RT brokers serve two groups of consumers, KPI and RT 
consumers. Key Performance Indicator (KPI) Consumers 
incrementally compute and update in real time KPIs on a 
NoSQL based database, e.g., MongoDB. For each KPI, at least 
one dedicated consumer is deployed. Each message will be 
broadcasted to consumers of each KPI.  RT Consumers store and 
update real-time transit information (e.g., delays, vehicle 
positions). These data are stored in a relational database, which 
is used for data warehousing, restoring and validation.  

Data Storage Builder and Dashboard Builder are developed 
to re-build Data Warehouse and KPI dashboard if an unexpected 
crash happens.  

 
Figure 4.  Cluster monitoring 

MOBANA also supports cluster status monitoring (Figure 
4), which monitors the progress of data producing and 
consuming, and the workload of brokers in cluster. The measure 
Transactions per Second (TPS) are monitored for producers and 
consumers. TPS shows the performance of producers and 
consumers, and, additionally, it can help balance the load of 
cluster by monitoring  𝑇𝑃𝑆𝑖𝑛 , the average TPS of producers, 
and 𝑇𝑃𝑆𝑜𝑢𝑡 , the average TPS of consumers. Let us illustrate how 
we use these measures to balance system performance: 

(1) When  𝑇𝑃𝑆𝑖𝑛 > 𝑇𝑃𝑆𝑜𝑢𝑡 , consumers require more 
computing resources, and the higher Wait Time in Queue (WQ) 
of messages will cause a higher delay in message consuming. 
The possible solutions include: a) allocating more CPU cores to 
existing consumers, or b) deploying more consumers and 
brokers in server cluster; c) delete expired data, not a good 
solution for analytics because it may lose information.  

(2) When 𝑇𝑃𝑆𝑖𝑛  ˂  𝑇𝑃𝑆𝑜𝑢𝑡  , which happens after resuming 
from unexpected crash or blocking of producers, all data in 
message queue will be consumed with a longer WQ. The 
possible solution is like in the above case.  

(3) When 𝑇𝑃𝑆𝑖𝑛 = 𝑇𝑃𝑆𝑜𝑢𝑡  , consumers can process data in 
real-time / near real-time with a very short WQ and an almost 
unperceivable delay, which is the ideal status of cluster.  

C. Real-time Data Analytics 

Thanks to DSP, MOBANA supports real-time data analysis. 
Of course, it provides also historical data for trend analysis and 
reporting. Here below, we illustrate the steps of designing the 
real-time data analytics, by using the KPI “Delay of Vehicles” 
as an example.  

Step 1 - KPI identification: we use HIGO [16], a 
stakeholder oriented business performance framework, to 
identify stakeholders and related KPIs. Accordingly, KPIs for 
public transit include: (a) Cost indicators, which assess the unit 
costs of input and output and the productivity and utilization rate 
of the resources, e.g., average travel time, average cost to 
customer and fare recovery ratio; (b) Quality indicators, which 
measure the consistency of process input and output in term of 
compliance, customer satisfaction and availability, e.g., stop 
overcrowding, urban area overcrowding, quality perceived and 
network condition; (c) Service indicators, which measure the 
time aspects of the service in term of service duration, 
punctuality, flexibility and fulfillment, e.g., delay at stops, path 
reliability, delay forecasting efficiency, land and social 
inclusion, average speed of vehicles. Let us consider the KPI 
“Delay of Vehicles”, and define its measure “delay at stop” as 
follows: 

𝐷𝑖 = {
0,               𝑇𝑉 ≤ 𝑇𝑆

𝑇𝑉 − 𝑇𝑆,   𝑇𝑉 > 𝑇𝑆
                        (1) 

Here 𝐷𝑖  is the delay of a vehicle at stop i, 𝑇𝑉 is the actual arrival 
time of vehicle at stop i, and TS is scheduled arrival time of 
vehicle should at stop i.  

Step 2 - Dimensional Fact Model (DFM): after defining 
KPIs, we design the conceptual model of Data Warehouse, 
namely a dimensional Fact Model (DFM) [17], which define fact 
(delay), related dimensions (date, route, and stop), and measures 
(average delay) as in Figure 5.  

 
Figure 5.  Dimensional Fact Model of KPI: Delay of vehicles 

Step 3 - Building data warehouse: Based on DFM defined 
in step 2, ETL (Extract, Transform, Load) transformations are 
implemented. Data can be integrated in a relational database 
(e.g., PostgreSQL) or NoSQL database (e.g., MongoDB). 
Relational database is for data validation and historical data 
query; while NoSQL supports real-time data updating and query 
for transit maps and real-time KPI dashboard.   

Step 4 - Incremental updating: KPI Consumers 
incrementally update data warehouse in MongoDB. Updated 
KPIs are read by the Dashboard Publisher, a message dispatch 
component implemented by Node.js. UI components receive the 
emitted messages and update the KPI dashboard. Figure 6 is an 
example of real-time KPI dashboard, showing the delay of 
vehicles for each route and stop.  

Table I. Modules in RocketMQ  

Module Description 

Name 

server 

A stateless server cluster that registers brokers and topics. 

Producers and consumers get route information of master 

brokers which serve specific topics from name server. 

Brokers The server cluster that receives data of pre-defined topics and 

stores messages in “commit_log” and message queues, which 

are the files in which messages are stored. Brokers follow the 
master / slave model, which enables consumers to consume 

data from slave brokers when messages accumulate in a master 

broker.  

Message 

queue 

Group of lightweight message queues where only meta-data of 

messages are stored. Messages are written and consumed in 

sequence. 

Producer Producers send messages to brokers that serve the same topics. 

Consumers Consumers consume messages from brokers of topics they 

subscribe. RocketMQ supports fault-tolerant message 
consuming, when there are errors consumers will re-consume 

the data. 
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Figure 6.  KPI dashboard: vehilce elay 

D. Data Visualization: Transit Map 

MOBANA displays the status of the public transit network, 

shows real-time vehicle positions and highlights delayed 

vehicles. Figure 8 shows the public transit map, which helps 

stakeholders to monitor the current status of public transit 

network by comparing scheduled and current position. Inspired 

by [18], we do not directly display the actual positions of 

vehicles by GPS data but we use a kind of position prediction, 

because: a) the availability of data is scarce, e.g., in Italy, up to 

2015, only the city of Bari published APIs on vehicle position 

[19][20]; b) the volume of GPS data will drop network 

performance. Differently from [18], we combine static GTFS 

and real-time delay prediction from transit agencies, which can 

reduce the transmission load by filtering the real-time 

messages. Furthermore, part of position computation cost shifts 

from server to browser, which reduces the load on servers. Let 

us illustrate our approach.  

 
Figure 7.  Public transit map of Pavia 

Firstly, when the server initializes, the Map Data Generator 
gets the latest GTFS data loaded by GTFS Loader, and gets all 

the geometry information of key points in each route. Secondly, 
Path Normalizer, the module that normalizes the paths, 
computes the distances between adjacent points in each route. It 
divides the trip into identical segments and calculates the 
position of points between the segments. Finally, it builds 
lookup tables for trip progress (also called normalized paths) 
which contain progress of points with positions of each route. 
Algorithm 1 illustrates how the Path Normalizer calculates 
distances between points of a trip, and how it uses a sphere 
model given in [21] to locate a point (the key points pre-defined 
in Shape.txt by GTFS editor) onto a segment. Table II shows an 
example of normalized path. Obviously, the more segments of 
the path, the more accurate the lookup table. For instance, 1.000 
calculations can make the lookup table accurate up to 0.1%. As 
matter of fact, we define the optimal number of segments of trip 

i by 𝑠𝑖 ≥  
𝑙𝑖

𝑉
 . Here 𝑙𝑖  is the length of trip i, 𝑉  is the length of 

vehicle, and 𝑛𝑖, the amount of key points in trip i is 𝑠𝑖 + 1. E.g., 
when a trip is 11 kilometers, its minimal segments are 1.000, and 
the length of each segment is 11 meters. If we consider that the 
bus length is 11 meters, results are good enough. However, for 
longer vehicles, e.g., trains, we should choose larger 𝑠𝑖.  

Afterwards, the normalized paths are loaded, and scheduled 

positions are searched from normalized paths on client-side. 

Meanwhile, on server-side, Event Emitter periodically checks 

the updates on delays of each trip. If updates are detected, it 

selects corresponding trips at the current time, computes the real 

progress of these trips by delays, and sends the progress as 

events to the client-side. Finally, the client-side displays the 

new positions of vehicles by searching the corresponding 

coordinates of the progress sent by Event Emitter. The progress 

of a trip can be calculated by Algorithm 2. Here delayi is the 

delay prediction of trip i measured in seconds, t is the timestamp 

of now, δ is the time interval between now and the time when 

the next calculation will start. The positions of the vehicle in the 

next δ seconds will be calculated by searching points from the 

normalized paths. δ can be adjusted to leverage the timeliness 

of vehicle position prediction, network traffic and server load. 

For example, in rush hour we can set a higher δ (e.g., 10 

seconds) in order to reduce the network traffic and let client-

side compute the movements of next δ seconds. From our 

observation in Pavia, Italy, the maximal running trips at the 

same time in rush hour is 55 (8 AM). Meanwhile, the maximal 

real-time feeds received by DDM every second in rush hour is 

150. In the worst case, the maximal updates of progress to be 

transmitted in the time interval δ is equal to the number of 

running trips. Therefore, only 55 progress pairs (new progress 

and trip id) in about 1,500 feeds are sent to clients every 10 

seconds. Finally, the progress at each second of the next 10 

seconds is calculated accordingly on client-side.  
Table II. An example of normalized path for a trip 

 
Algorithm 1 Normalize paths 
Input: points 

Output: normalized points 

sum = 0 

oldPoint = point0 

 

 

Trip progress Location (latitude, longitude) 

0% 

0.1% 
0.2% 

… 

100% 

45.2107672, 9.1630315 

45.2106254, 9.1630712 
45.2106245, 9.16300692 

… 

45.2106843, 9.1630701 

 



 

For all pointi in points   
      compute sphere distances d between oldPoint and pointi //given in [21]    

      totalDistance = totalDistance + d  

      distances.push(d) 
      oldPoint = pointi 

End for 

K = points.size 
D = distances.size 

For j = 0 to K 

      targetDistance = j / K * totalDistance 
   k = 0 

      dSum = 0 

      While (dSum + disctancesk) < targetSum and k < D 
              dSum = dSum + distancesk 

                      k++ 
      k-- 

      delta = targetSum – dSum 

      compute bearing b between pointk and pointk+1   //given  in [21]    
      compute next position p from pointk by b and delta //given in [21]    

      normalizedPaths.push(p) 

End for 

return normalizedPaths 

 

Algorithm 2 Compute trip progress with delay prediction 
Input: delayi , t,  δ  

Output: nextProgress, currentProgress 

For all tripi in trips 

       nextProgressi = currentProgessi 

       if  startTimei  < t and endTimei  > t 

             currentProgessi   = (t - startTimei) / (durationi  + delayi) 

                    nextProgressi  = (t + δ – startTimei) / (durationi  + delayi) 

             if nextProgressi  > 1  

                     nextProgressi  = 1 

             if currentProgessi   > 1  

                     currentProgessi   = 1 

End for 

return nextProgress, currentProgress 

E. Data Sharing 

MOBANA provides on cloud data sharing services (i.e., 
Transit Analytic Service and Transit Information Service). It 
delivers KPI updates and reports on public transit network to 
public transit agencies and municipality officers. It enables 
citizens to query in real-time public transit information by web 
or smart phone, and shows routes and stops, timetables, real-
time positions of buses, delay and ETA (Estimated Time of 
Arrival). Figure 8.  shows the information panel of a stop, which 
displays information on routes, link of timetables, real-time 
delay, ETA and statistics of average delay on this stop in last 
five days. Furthermore, MOBANA features web services for 
third parties to access transit analytics and transit information. 

 
Figure 8.  Information panel of stops 

III. CASE STUDY: PAVIA PUBLIC TRANSIT  

This section explains how MOBANA was used on public 
transit in Pavia, Italy.  

Pavia is a university city in Northern Italy with 68,000 
inhabitants, where LINE, the public transit agency, runs 19 bus 
lines. In 2015, Mobility Analyzer was deployed as a pilot. In the 
following sections we describe each phase of data lifecycle.   

Data gathering and conversion: We mapped GTFS files by 
GTFS Editor since LINE has no GTFS files. We mapped 14 bus 
lines (totally 30 bus routes). Real-time delay prediction were 
received from the Data Dispatch Monitor (DDM) service 
provided by LINE. Additionally, accessibility data on the urban 
area [22] were integrated into OSM files and loaded by Open 
Street Map (OSM). A Static Data Monitor (SDM) and a Real-
time Data Monitor (RDM) were implemented, to receive 
updates on static data and real-time feeds. When changes are 
detected, the GTFS Converter updates GTFS files and Mobility 
Analyzer reloads such files. Generally, the SDM checks updates 
every morning before the first trip starts. RDM receives feeds of 
real-time delay, converts feeds to GTFS-Realtime Trip Update 
Feeds, and invokes data producer to emit these feeds to different 
data consumers.   

Data processing and storage: One producer and two classes 
of consumers were implemented. Producer filters feeds and 
dispatches feeds to consumers (only the feeds of the selected 14 
routes are sent to consumers). KPI Index consumers 
incrementally calculate and update KPI dashboard. The 
processed analytical data are stored in MongoDB for quick 
updating and searching (MongoDB is a scalable database on 
NoSQL and it is convenient when developing modules using 
Node.js.) Volumes are high: indeed, real-time feeds average 1.5 
million in every workday day. Real-time Delay Consumers store 
the raw trip update feeds in PostgreSQL for KPI reports and data 
validation. It also filters the feeds by checking the records in 
MongoDB, only when the delay value of one trip changes, this 
update is sent to the presentation module. Typically, only one 
instance is fast enough for each producer or consumer in Pavia 
case. In section “Performance evaluation”, the performance of 
the architecture in Pavia case will be illustrated.   

 

 
Figure 9.  Land and social inclusion  

 
(a) Land inclusion 

 

(b) Social inclusion 

 



 

Data analysis: Three KPIs were selected as a proof of 
concept, namely: delay of vehicle, land and social inclusion, and 
accessibility of stops. These KPIs cover all stakeholders and 
three different data sources: real-time data, static data and 
accessibility data. Delay of vehicle are analyzed by multiple 
dimensions, i.e., stop, route, date, time, week, month, etc. A KPI 
dashboard, which shows real-time delay and average delay of 
vehicles by above dimensions, was developed for transit 
agencies and Pavia municipality. On the public transit map, 
citizens can search delays of each stop. The KPI “land inclusion” 
(see Figure 9 (a)) is based on stop data stemming from GTFS 
files. The radius of each stop which indicates the coverage of the 
stop was set as 500 meters. Municipality and transit agency can 
evaluate coverage of the whole transit network. The KPI “social 
inclusion”, which indicates the accessibility of routes and stops, 
can help municipality to improve infrastructure for disabled 
people, let them go to bus stops with no difficulties. Figure 10 
(b) shows the accessibility of transit network in central Pavia, 
the left figure shows the accessibility of bus routes, and the right 
figure shows the accessible stops that can be easily reached by 
wheelchair users. 

Pavia transit map: The public transit map of Pavia shows 
the real-time position of each trip in Pavia. Users can search 
delay, ETA and time table of each route on this stop. 
Additionally, the measure “delay at stop” is also shown in the 
information panel when clicking a stop on the transit map (see 
Figure 9).  

Data sharing: The KPI “delay of vehicle” is deployed as 
RESTful web services and can be shared by third-party 
applications. Another application in IRMA project called “Pavia 
Public Transit”, used the web services published by MOBANA 
to provide bus information services for citizens.   

IV. PERFORMANCE EVALUATION 

In this section, we describe performance evaluation of 
MOBANA. The evaluation was performed in Pavia, Milan and 
New York with different resources, thus scalability of proposed 
system is also shown in testing results. These cases represents 
the typical data volume and TPS in different size of cities. An 
overview of datasets used for testing is given in Table III. 

Specifically, the original real-time feeds of vehicle delay are in 
JSON format, which contain timestamp, real-time delay (in 
second), ETA, corresponding stop, route, trip, etc. An example 
of a vehicle delay feed in Pavia is as follows: 
 

 
 
Typically, each feed package contains multiple feeds and the 
average size of a feed package sent by DDM is 4 KB.    

We tested two measures, namely Wait Time in Queue (WQ) 
and processing time in single server node which has only 8-core 
CPU (AMD Opteron Processor 6238) and 8GB memories. In 
Pavia case, we made a five-day test, with an average data volume 
of 2.8 million per day. Figure 10 shows the average WQ and 
processing time of consumers by hour in Pavia case. Two 
consumers (GTFS and RT) are deployed and each consumer 

uses maximal 3 CPU cores. Figure 11 plots the average WQ of 
Pavia case with different number of CPU cores. The average 
WQ and processing time for each message, especially in rush 
hour (e.g., 7 AM, 13 PM and 17-19 PM), keeps small because: 
1) the message queue decouples data consuming and producing, 
thus, the average processing time of consumers is not affected; 
2) computing resources for data consumers are automatically 
balanced when data accumulation in message queue increases. 
In test case of AVG WQ-3 in Figure 11, the minimal number of 
CPU cores is set to 1 and the maximal number is set to 3, while 
in test case AVG WQ-1, the number is set to 1. From the result 
we can see that a low configuration server is fast enough for a 
small-size city.  

Figure 10.  Performance of single server node in Pavia case 

Figure 11.  WQ with different number of CPU cores in Pavia case 

Figure 12.  Throughput of MOBANA with increasing number of server nodes 

vs. maximal TPS of real-time public transit feeds in Pavia, Milan and New 
York 

Finally, in order to test the performance, scalability and 
reusability of our system in larger cities, we did a test using 
GTFS files of Milan public transit and New York city transit, 
and simulated real-time data. Since we didn’t get real-time data 
from public transit agencies in Milan and New York, we 
estimated the data volume of rush hour instead, based on the 
maximal TPSin (i.e., 150) for 477 stops in Pavia case, i.e., TPSin 
is equivalent to 1,537 for 4,489 stops in Milan, and 5,710 for 

Table III. Datasets used for testing in Pavia and Milan 

Case #Stops #Routes #Trips #Real-time feeds 
Pavia 477 30 2,313 13,864,672 

Milan 4,889 156 138,693 102,656,885 

New York 18,159 1,338 206,112 527,816,841 
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18,159 stops in New York. We increased the simulated feed 
stream and tested the maximal TPS with increasing number of 
server node. The test result is shown in Figure 12. From this test 
we got the minimal computing resources we need, only a three-
machine low configuration cluster is fast enough to process real-
time public transit feeds for a big-size city in Europe. The result 
also shows a good scalability. 

V. RELATED WORKS  

In this section we summarize researches and systems for 
public transit performance monitoring that use open transit data. 
We reviewed not only transit analytic systems that serve transit 
agencies and municipalities, but also traveler information 
systems that provide analytical results to citizens. In Table V, 
we compare our system with similar solutions and systems. 

A. Analytic systems on public transit data 

As GTFS data become more available, new approaches for 
measuring level of service of public transit in an aggregate way 
based on GTFS data are used in many systems [23]. In [24], 
authors use GTFS and basic population count at group block 
level to measure Transit Opportunity Index (TOI). Besides 
GTFS, [25] uses Service Interface for Real-time Information 
(SIRI) format data to analyze frequent delays, journey time 
spending, traffic signal waiting times and link travel times IQR 
(Interquartile Range) variations. [26] analyses ridership in New 
York public transit network using GTFS, vehicle location data 
and fare data. [27] proposed a visual analytic system for 
intelligent transportation in metropolitan, which integrates large-
scale GPS data. However, all mentioned solutions do not support 
online analytics and visualization, even if real-time data are 
used. [28] proposed a multi-scale/multi-resolution design of the 
ITS information infrastructure and the available options at each 
distributed storage level. It integrates GTFS, social network data 
and sensor data to evaluate Service Level Agreement (SLA) of 

urban transit networks. However, even though it provides an 
architecture which processes high volume of data, analytics are 
not in real-time (based on ETL and data warehouse). [8] 
analyzes KPIs selected from the Transit Capacity and Quality of 
Service Manual (TCQSM), e.g., average headway, hours of 
service, percentage of transit-supportive areas covered. 
However, it takes more than 6 hours to get the analytic results. 
[29] presents a smart timetable services for travelers which uses 
crowd sensing data and GTFS to estimate Estimated Time of  
Arrival (ETA). Compared to the GPS data or other public transit 
data, the coverage of crowd-sensing data is low, because users 
need to install the app and open the mobile it when on vehicles. 
STAR-CITY integrates heterogeneous transportation data using 
semantic web. It provides spatio-temporal analysis and 
diagnosis of traffic status, and performs time-series prediction of 
travel times. However, the diagnosis and prediction are time-
consuming, and the results are periodically updated. In [31] 
authors use IBM InfoSphere Streams for scalable and real-time 
intelligent transportation services. The proposed platform has 
good performance and scalability in processing GPS data. 
However, it only targeting GPS data, and the data streams are 
not exchangeable format for other system / services.  

B. Real-time vehicle position visualization 

Some authors proposed vehicle position visualization based 
on GTFS data. In [30], a real-time vehicle movement 
visualization which uses GTFS, transit feeds of delay and GPS 
data are proposed. It processes data in multi-layer spatio-
temporal grids, and it periodically updates vehicle positions for 
an efficient and smooth vehicle movement visualization. 
However, it doesn’t provide further analysis on public transit 
data to users. [18] is a real-time public transportation 
visualization framework for Ulm, Germany. It is the first 
framework who simulates vehicle positions in real-time based 
on GTFS data. However, it doesn’t support real-time data

 

Table V. Comparison of existing solutions / systems 

Solutions Paradigm Data soruces Analytics 

Static Real-time Other data & format 

[24] Parallel batch processing GTFS - Basic population count by block  Transit Opportunity Index (TOI) 

[25] Batch processing GTFS SIRI OSM files Frequent delays, journey time spending, traffic 
signal waiting times before and after public 
transportation priorities, etc. 

[26] Batch processing GTFS Shape 
file 

streams 

Boarding location data from 
Automated Vehicle location 
(AVL) system 

Ridership reports 

[27] Incremental updating - - Taxi GPS data Statisitcs of taxis: e.g., trajactory, speed 

[28] Stream processing + ETL GTFS - GPS, social media, sensor data  SLA 

[29] Crowd sensing GTFS - Extensible Messaging and 
Presence Protocol (XMPP) 

Crowdedness information and ETA 

[8] Batch processing GTFS - National Transit 
Database (NTD) 

Average headway, hours of service, percentage of 
transit-supportive areas covered, etc. 

[30] Periodic updates GTFS GTFS-
Realtime 

GPS data - 

[11] Semantic web  - - Bus stream, social events, 
weather, etc. 

Spatio-temporal analysis and diagnosis of traffic 
status, prediction of travel time 

[31] IBM InfoSphere Streams - - GPS data Traffic statistics, travel times and shortest path 

MOBANA DSP (Apache Storm) + 
DMS (RocketMQ) 

GTFS GTFS-
Realtime 

OSM files based on project “Pavia 
Accessibile” 

Vehicle delay, ETA, land inclusion, social inclusion 
(Pavia case)  

 



 

VI. CONCLUSIONS AND FUTUREWORK 

We have illustrated a distributed stream-based information 
system for analyzing performance of public transit, called 
MOBANA (MOBility ANAlyzer). MOBANA integrates 
heterogeneous data sources and, hence, can serve a wide range 
of stakeholders and cover any scheduled transit (bus, metro, and 
tramway). Compared to similar systems, it integrates more data 
sources into a standard exchangeable data format, i.e., GTFS and 
GTFS-Realtime. Second, MOBANA combines static and real-
time data for vehicle position, and, thus, drops the traffic of 
network and load on server. Third, thanks to such selective 
processing and to the architecture which combines DSPE and 
DMS, MOBANA achieves a cost-effective performance. 
Actually, as we show in the Pavia case study and in a preliminary 
test for Milan and New York, a small number of low-power 
servers can process the volumes of typical cities. Finally, 
MOBANA can be easily be adopted by a community of cities, 
thanks to the exchangeable data formats and the scalable and 
easy-to-configure architecture.  

As future works, we have identified various aspects: 

 Data sources: develop an ontology-based data 
management approach for heterogeneous data 
integration, to support additional data sources, e.g., 
crowd data and social network data. Currently, we have 
already developed such approach for other services (i.e., 
City Feed).  

 Data analysis: extend KPI management, in order to 
support a wider analysis in dashboard and data 
visualization modules.  

 Data quality: develop a Lambda-like architecture 
paralleled with DSP for data validation.  
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