

MOBANA: a Distributed Stream-based Information System for Public Transit

Tianyi MA, Gianmario MOTTA, Kaixu LIU, Dongmeng LIU

Dept. of Industrial and Information Engineering

University of Pavia

Pavia, Italy

motta05@unipv.it, {tianyi.ma01, kaixu.liu01, dongmeng.liu01}@ateneopv.it

Abstract—Public transit generates a wide range of diverse data,

which include static data and high-velocity data streams from

sensors. Integrating and processing this big real-time data is a

challenge in developing analytical systems for public transit. We

here propose MOBANA (MOBility ANAlyzer), a distributed

stream-based system, which provides real-time information to a

wide range of users for monitoring and analyzing the performance

of public transit. To do so, MOBANA integrates the diverse data

sources of public transit, and converts them into standard and

exchangeable data formats. In order to manage such diverse data,

we propose a layered architecture, where each layer handles a

specific kind of data. MOBANA is designed to be efficient. E.g., it

identifies the real time position of vehicles by adjusting planned

position with real-time data as needed, thus dropping network

load. MOBANA is implemented by Distributed Stream Processing

Engine (DSPE) and Distributed Messaging System (DMS), which

pursue scalable, efficient and reliable real-time processing and

analytics. MOBANA was deployed as pilot in Pavia, and tested

with real data.

Keywords-public transit; destributed stream processing;

distributed messaging system; GTFS; real-time analytics

I. INTRODUCTION

Public transit is critical in cities. Thanks to the availability of
a variety of public transit data (e.g., transit schedule, routes, and
sensor data), cities can develop analytic systems to monitor the
performance of public transit, by modelling, integrating and
analyzing real data rather than by simulating [1]. The analytical
results on these data can serve municipalities, transit agencies,
third-party organizations (e.g., researchers) and citizens [2].
However, designing such analytic systems requires integrating
heterogeneous data and processing high-velocity data streams.
Let us shortly illustrate these points.

A. Integration of heterogeneous data

Public transit data include several sources, namely static data

published by transit agencies (e.g., timetables, routes, service

alerts) and real-time data from sensors (e.g., vehicle positions

from on-board GPS, real-time delay feeds). These data are

typically independent and follow diverse formats (e.g., XML /

JSON, CSV, PDF). Such diversity of data (i.e., the Variety and

Veracity in big data) makes integration a critical task. Integration

actually requires a great effort to understand the semantics of

each source, and to solve semantic ambiguity, instance

representation ambiguity, and data inconsistency [3].

Furthermore, because of the heterogeneity of source schemas,

source data shall be unified and integrated into a same schema

and be stored into a warehouse. Of course, traditional data

integration and data warehouse techniques are insufficient to

meet such needs. [4] From our viewpoint, a universal and

efficient approach to integrate data into a universal standard is

needed. General Transit Feed Specification (GTFS) [5] is the

most widely used format for mapping static transit data. Until

November, 2015, 965 transit agencies from more than 350 cities

worldwide published their static data in GTFS format [6]. 25

transit agencies published open transit feeds in GTFS-Realtime,

i.e., the real-time extension of GTFS [7]. However, until March,

2013, only 27% of public transit agencies in United States

published their own open data [8]. That low percentage is

explained by the GTFS conversion workload. Actually, mapping

data into GTFS is time consuming, especially for the agencies in

large cities who deal with large and complex transit networks.

Furthermore, transit agencies have to re-map their GTFS data

when transit schedules change.

B. High-velocity data stream

Public transit involves high-velocity data streams from
sensors, e.g., GPS. The data stream can be used by numerous
transportation services for traffic flow analysis, trip planning,
geographical social networking, smart driving, and map
matching [9]. However, because of the real-time nature of sensor
data, the amount of data may grow exponentially [10]. For
example, in Dublin, transit sensors generate 4-6 gigabytes real-
time data per day [11]. Thus, an effective, and scalable
processing model for real-time data is needed.

C. The MOBANA system

To overcome the above issues, we have developed an
information system for real-time transit performance monitoring
and analytics with heterogeneous data, named MOBANA
(MOBility ANAlyzer) to cover the whole lifecycle of transit
data, namely collection, conversion, processing, analysis,
visualization, and sharing. In order to cover such cycle, a
complete tool chain has been developed. MOBANA is based on
a scalable distributed stream-based publisher and subscriber
architecture, which combines Distributed Stream Processing
Engine (DSPE) and Distributed Messaging System (DMS) to
provide an efficient and reliable real-time processing. A set of
Key Performance Indicators (KPIs) are defined, and
accordingly, a KPI dashboard is implemented to monitor KPIs
according to various dimensions (e.g., date, daytime, stops,
routes, transit mode). The key contribution of MOBANA
concerns a new hybrid approach, which combines both static
data (in GTFS) and real-time data stream (in GTFS-Realtime) to
analyze and visualize KPIs and vehicle positions in real-time.
This approach reduces network traffic and server load versus the
traditional approaches, which use raw GPS record. Finally,
MOBANA publishes public transit information and analytic
results to stakeholders by web services.

In this paper, section 2 illustrates the MOBANA framework
and approach to the data lifecycle. Section 3 presents the case
study of Pavia Mobility Analyzer. Section 4 discusses the
performance of MOBANA. Section 5 compares similar systems,
frameworks and approaches. Finally, section 6, “Conclusion”,
summarizes achievements and sketches future improvements.

II. MOBANA

Public transit involves numerous stakeholder classes, which,
consume transit data, as municipality, transit agencies, and
citizens. In the typical usage scenario of MOBANA,
municipalities and transit agencies analyze real-time mobility
status through Key Performance Indicators (KPI) on a dashboard
(Figure 6) or on a public transit map (Figure 7). These KPIs
include the prediction of vehicle delay, the average vehicle delay
by stop. In turn, citizens search, on the web or smart phone, open
information about public transit (e.g., timetables, real-time bus
delays, expected arrival time). Finally, third party organizations
can use open information as a service to offer value added
services or further analytics.

Figure 1. Components of MOBANA

MOBANA covers by specific components for all phases of
the data lifecycle, namely gathering, conversion, processing and
storage, analysis, visualization and sharing (Figure 1). In the
following sections we describe the details of these phases and
corresponding components.

A. Data Gathering and Conversion

MOBANA integrates static and real-time data sources. Let
us shortly illustrate them.

Static transit data (time tables, routes, trips, agency, calendar,
stops) are published by transit agencies in CSV or PDF format.
These data can be also gathered from databases of public
agencies. We implemented a GTFS Converter to convert these
static data to GTFS format, which defines timetables, trips,
routes, stops and associated geographic information for multiple
public transit modes, e.g., bus, tramway and metro. Furthermore,
the Static Data Monitor (SDM) listens to the changes in transit
database. If changes are detected, SDM will trigger the GTFS
Converter to reconstruct GTFS files. Finally, the GTFS Loader,
the unique interface to access static data, will load these files for
further processing and analysis.

In order to support transit agencies which do not have their
GTFS files nor store their timetables and shape data (i.e.,
waypoints in routes), a GTFS Editor was implemented. It is a
WYSIWYG (What You See Is What You Get) editor for
creating, editing, and validating static transit data. Especially, it
enables transit agencies to visually add and edit shape
information on the map (see Figure 2). To the best of our
knowledge, it is the first application that supports interactive
editing and visualization of GTFS files.

Figure 2. GTFS Editor

Real-time data (JSON / XML format) are gathered from data
dispatching APIs of public transit agencies. MOBANA also
supports GTFS-Realtime compliant transit feeds that contains at
least one of following properties:

a) Trip time updates, which contains prediction of delays (in
second) and Estimated Time of Arrival (ETA) and Estimated
Time of Departure (ETD) of corresponding trip and stop;

b) Vehicle position updates, the real-time geo-location of
given vehicle. A data producer receives these real-time data,
converts them to GTFS-Realtime feeds and sends the feeds to
message queues. The Trip Update Consumers and Vehicle
Update Consumers get these data for further processing. In the
next section we describe details of data producer and consumers;

c) Service alerts which indicate incidents in the public transit
network. The service alerts are published by transit agencies or
submitted by citizens from dedicated city issue management
system (i.e., City Feed [13]) or social networks.

B. Distributed Stream-based Processing (DSP) and

Distributed Messaging System (DMS)

In order to process high-velocity real-time data, we designed
an architecture which combines Distributed Stream-based
Processing Engine (DSPE) and Distributed Messaging System
(DMS) (Figure 3). In such architecture a Publish / Subscribe
model decouples synchronized data processing from
asynchronous data sending and consuming. Apache Storm [14]
and RocketMQ [15] were used to implement this architecture.

Figure 3. The DSP architecture in MOBANA

RocketMQ is an open source DMS; it includes five modules,
described in Table I. We implemented a group of producers that
emit real-time data stream and we used Apache Storm, an open-
source DSPE, to implement three groups of data consumers.
Thanks to the scalability of RocketMQ and Apache Storm, these
producers and consumers can be easily deployed and managed

by cloud servers. A Data Dispatch Manager (DDM) listens and
receives real-time data, then it invokes the Real-time Data
Producer to send messages to brokers. We defined GTFS and
RT, respectively static and real-time, as data topics. GTFS
brokers serves Static Data Consumer, which checks the
consistency of RT data with GTFS files. If RT data are
inconsistent, it will invoke GTFS Converter to check and update
GTFS files.

RT brokers serve two groups of consumers, KPI and RT
consumers. Key Performance Indicator (KPI) Consumers
incrementally compute and update in real time KPIs on a
NoSQL based database, e.g., MongoDB. For each KPI, at least
one dedicated consumer is deployed. Each message will be
broadcasted to consumers of each KPI. RT Consumers store and
update real-time transit information (e.g., delays, vehicle
positions). These data are stored in a relational database, which
is used for data warehousing, restoring and validation.

Data Storage Builder and Dashboard Builder are developed
to re-build Data Warehouse and KPI dashboard if an unexpected
crash happens.

Figure 4. Cluster monitoring

MOBANA also supports cluster status monitoring (Figure
4), which monitors the progress of data producing and
consuming, and the workload of brokers in cluster. The measure
Transactions per Second (TPS) are monitored for producers and
consumers. TPS shows the performance of producers and
consumers, and, additionally, it can help balance the load of
cluster by monitoring 𝑇𝑃𝑆𝑖𝑛 , the average TPS of producers,
and 𝑇𝑃𝑆𝑜𝑢𝑡 , the average TPS of consumers. Let us illustrate how
we use these measures to balance system performance:

(1) When 𝑇𝑃𝑆𝑖𝑛 > 𝑇𝑃𝑆𝑜𝑢𝑡 , consumers require more
computing resources, and the higher Wait Time in Queue (WQ)
of messages will cause a higher delay in message consuming.
The possible solutions include: a) allocating more CPU cores to
existing consumers, or b) deploying more consumers and
brokers in server cluster; c) delete expired data, not a good
solution for analytics because it may lose information.

(2) When 𝑇𝑃𝑆𝑖𝑛 ˂ 𝑇𝑃𝑆𝑜𝑢𝑡 , which happens after resuming
from unexpected crash or blocking of producers, all data in
message queue will be consumed with a longer WQ. The
possible solution is like in the above case.

(3) When 𝑇𝑃𝑆𝑖𝑛 = 𝑇𝑃𝑆𝑜𝑢𝑡 , consumers can process data in
real-time / near real-time with a very short WQ and an almost
unperceivable delay, which is the ideal status of cluster.

C. Real-time Data Analytics

Thanks to DSP, MOBANA supports real-time data analysis.
Of course, it provides also historical data for trend analysis and
reporting. Here below, we illustrate the steps of designing the
real-time data analytics, by using the KPI “Delay of Vehicles”
as an example.

Step 1 - KPI identification: we use HIGO [16], a
stakeholder oriented business performance framework, to
identify stakeholders and related KPIs. Accordingly, KPIs for
public transit include: (a) Cost indicators, which assess the unit
costs of input and output and the productivity and utilization rate
of the resources, e.g., average travel time, average cost to
customer and fare recovery ratio; (b) Quality indicators, which
measure the consistency of process input and output in term of
compliance, customer satisfaction and availability, e.g., stop
overcrowding, urban area overcrowding, quality perceived and
network condition; (c) Service indicators, which measure the
time aspects of the service in term of service duration,
punctuality, flexibility and fulfillment, e.g., delay at stops, path
reliability, delay forecasting efficiency, land and social
inclusion, average speed of vehicles. Let us consider the KPI
“Delay of Vehicles”, and define its measure “delay at stop” as
follows:

𝐷𝑖 = {
0, 𝑇𝑉 ≤ 𝑇𝑆

𝑇𝑉 − 𝑇𝑆, 𝑇𝑉 > 𝑇𝑆
 (1)

Here 𝐷𝑖 is the delay of a vehicle at stop i, 𝑇𝑉 is the actual arrival
time of vehicle at stop i, and TS is scheduled arrival time of
vehicle should at stop i.

Step 2 - Dimensional Fact Model (DFM): after defining
KPIs, we design the conceptual model of Data Warehouse,
namely a dimensional Fact Model (DFM) [17], which define fact
(delay), related dimensions (date, route, and stop), and measures
(average delay) as in Figure 5.

Figure 5. Dimensional Fact Model of KPI: Delay of vehicles

Step 3 - Building data warehouse: Based on DFM defined
in step 2, ETL (Extract, Transform, Load) transformations are
implemented. Data can be integrated in a relational database
(e.g., PostgreSQL) or NoSQL database (e.g., MongoDB).
Relational database is for data validation and historical data
query; while NoSQL supports real-time data updating and query
for transit maps and real-time KPI dashboard.

Step 4 - Incremental updating: KPI Consumers
incrementally update data warehouse in MongoDB. Updated
KPIs are read by the Dashboard Publisher, a message dispatch
component implemented by Node.js. UI components receive the
emitted messages and update the KPI dashboard. Figure 6 is an
example of real-time KPI dashboard, showing the delay of
vehicles for each route and stop.

Table I. Modules in RocketMQ

Module Description

Name

server

A stateless server cluster that registers brokers and topics.

Producers and consumers get route information of master

brokers which serve specific topics from name server.

Brokers The server cluster that receives data of pre-defined topics and

stores messages in “commit_log” and message queues, which

are the files in which messages are stored. Brokers follow the
master / slave model, which enables consumers to consume

data from slave brokers when messages accumulate in a master

broker.

Message

queue

Group of lightweight message queues where only meta-data of

messages are stored. Messages are written and consumed in

sequence.

Producer Producers send messages to brokers that serve the same topics.

Consumers Consumers consume messages from brokers of topics they

subscribe. RocketMQ supports fault-tolerant message
consuming, when there are errors consumers will re-consume

the data.

Delay of vehicles

TransitKPI Facts

Month TimeQuarterYear

Season Holiday

Day of week

Day of month

Month of year

Weekend

Date

Week Half HourQuarter

Region

Route

Stop

Modal

Figure 6. KPI dashboard: vehilce elay

D. Data Visualization: Transit Map

MOBANA displays the status of the public transit network,

shows real-time vehicle positions and highlights delayed

vehicles. Figure 8 shows the public transit map, which helps

stakeholders to monitor the current status of public transit

network by comparing scheduled and current position. Inspired

by [18], we do not directly display the actual positions of

vehicles by GPS data but we use a kind of position prediction,

because: a) the availability of data is scarce, e.g., in Italy, up to

2015, only the city of Bari published APIs on vehicle position

[19][20]; b) the volume of GPS data will drop network

performance. Differently from [18], we combine static GTFS

and real-time delay prediction from transit agencies, which can

reduce the transmission load by filtering the real-time

messages. Furthermore, part of position computation cost shifts

from server to browser, which reduces the load on servers. Let

us illustrate our approach.

Figure 7. Public transit map of Pavia

Firstly, when the server initializes, the Map Data Generator
gets the latest GTFS data loaded by GTFS Loader, and gets all

the geometry information of key points in each route. Secondly,
Path Normalizer, the module that normalizes the paths,
computes the distances between adjacent points in each route. It
divides the trip into identical segments and calculates the
position of points between the segments. Finally, it builds
lookup tables for trip progress (also called normalized paths)
which contain progress of points with positions of each route.
Algorithm 1 illustrates how the Path Normalizer calculates
distances between points of a trip, and how it uses a sphere
model given in [21] to locate a point (the key points pre-defined
in Shape.txt by GTFS editor) onto a segment. Table II shows an
example of normalized path. Obviously, the more segments of
the path, the more accurate the lookup table. For instance, 1.000
calculations can make the lookup table accurate up to 0.1%. As
matter of fact, we define the optimal number of segments of trip

i by 𝑠𝑖 ≥
𝑙𝑖

𝑉
 . Here 𝑙𝑖 is the length of trip i, 𝑉 is the length of

vehicle, and 𝑛𝑖, the amount of key points in trip i is 𝑠𝑖 + 1. E.g.,
when a trip is 11 kilometers, its minimal segments are 1.000, and
the length of each segment is 11 meters. If we consider that the
bus length is 11 meters, results are good enough. However, for
longer vehicles, e.g., trains, we should choose larger 𝑠𝑖.

Afterwards, the normalized paths are loaded, and scheduled

positions are searched from normalized paths on client-side.

Meanwhile, on server-side, Event Emitter periodically checks

the updates on delays of each trip. If updates are detected, it

selects corresponding trips at the current time, computes the real

progress of these trips by delays, and sends the progress as

events to the client-side. Finally, the client-side displays the

new positions of vehicles by searching the corresponding

coordinates of the progress sent by Event Emitter. The progress

of a trip can be calculated by Algorithm 2. Here delayi is the

delay prediction of trip i measured in seconds, t is the timestamp

of now, δ is the time interval between now and the time when

the next calculation will start. The positions of the vehicle in the

next δ seconds will be calculated by searching points from the

normalized paths. δ can be adjusted to leverage the timeliness

of vehicle position prediction, network traffic and server load.

For example, in rush hour we can set a higher δ (e.g., 10

seconds) in order to reduce the network traffic and let client-

side compute the movements of next δ seconds. From our

observation in Pavia, Italy, the maximal running trips at the

same time in rush hour is 55 (8 AM). Meanwhile, the maximal

real-time feeds received by DDM every second in rush hour is

150. In the worst case, the maximal updates of progress to be

transmitted in the time interval δ is equal to the number of

running trips. Therefore, only 55 progress pairs (new progress

and trip id) in about 1,500 feeds are sent to clients every 10

seconds. Finally, the progress at each second of the next 10

seconds is calculated accordingly on client-side.
Table II. An example of normalized path for a trip

Algorithm 1 Normalize paths
Input: points

Output: normalized points

sum = 0

oldPoint = point0

Trip progress Location (latitude, longitude)

0%

0.1%
0.2%

…

100%

45.2107672, 9.1630315

45.2106254, 9.1630712
45.2106245, 9.16300692

…

45.2106843, 9.1630701

For all pointi in points
 compute sphere distances d between oldPoint and pointi //given in [21]

 totalDistance = totalDistance + d

 distances.push(d)
 oldPoint = pointi

End for

K = points.size
D = distances.size

For j = 0 to K

 targetDistance = j / K * totalDistance
 k = 0

 dSum = 0

 While (dSum + disctancesk) < targetSum and k < D
 dSum = dSum + distancesk

 k++
 k--

 delta = targetSum – dSum

 compute bearing b between pointk and pointk+1 //given in [21]
 compute next position p from pointk by b and delta //given in [21]

 normalizedPaths.push(p)

End for

return normalizedPaths

Algorithm 2 Compute trip progress with delay prediction
Input: delayi , t, δ

Output: nextProgress, currentProgress

For all tripi in trips

 nextProgressi = currentProgessi

 if startTimei < t and endTimei > t

 currentProgessi = (t - startTimei) / (durationi + delayi)

 nextProgressi = (t + δ – startTimei) / (durationi + delayi)

 if nextProgressi > 1

 nextProgressi = 1

 if currentProgessi > 1

 currentProgessi = 1

End for

return nextProgress, currentProgress

E. Data Sharing

MOBANA provides on cloud data sharing services (i.e.,
Transit Analytic Service and Transit Information Service). It
delivers KPI updates and reports on public transit network to
public transit agencies and municipality officers. It enables
citizens to query in real-time public transit information by web
or smart phone, and shows routes and stops, timetables, real-
time positions of buses, delay and ETA (Estimated Time of
Arrival). Figure 8. shows the information panel of a stop, which
displays information on routes, link of timetables, real-time
delay, ETA and statistics of average delay on this stop in last
five days. Furthermore, MOBANA features web services for
third parties to access transit analytics and transit information.

Figure 8. Information panel of stops

III. CASE STUDY: PAVIA PUBLIC TRANSIT

This section explains how MOBANA was used on public
transit in Pavia, Italy.

Pavia is a university city in Northern Italy with 68,000
inhabitants, where LINE, the public transit agency, runs 19 bus
lines. In 2015, Mobility Analyzer was deployed as a pilot. In the
following sections we describe each phase of data lifecycle.

Data gathering and conversion: We mapped GTFS files by
GTFS Editor since LINE has no GTFS files. We mapped 14 bus
lines (totally 30 bus routes). Real-time delay prediction were
received from the Data Dispatch Monitor (DDM) service
provided by LINE. Additionally, accessibility data on the urban
area [22] were integrated into OSM files and loaded by Open
Street Map (OSM). A Static Data Monitor (SDM) and a Real-
time Data Monitor (RDM) were implemented, to receive
updates on static data and real-time feeds. When changes are
detected, the GTFS Converter updates GTFS files and Mobility
Analyzer reloads such files. Generally, the SDM checks updates
every morning before the first trip starts. RDM receives feeds of
real-time delay, converts feeds to GTFS-Realtime Trip Update
Feeds, and invokes data producer to emit these feeds to different
data consumers.

Data processing and storage: One producer and two classes
of consumers were implemented. Producer filters feeds and
dispatches feeds to consumers (only the feeds of the selected 14
routes are sent to consumers). KPI Index consumers
incrementally calculate and update KPI dashboard. The
processed analytical data are stored in MongoDB for quick
updating and searching (MongoDB is a scalable database on
NoSQL and it is convenient when developing modules using
Node.js.) Volumes are high: indeed, real-time feeds average 1.5
million in every workday day. Real-time Delay Consumers store
the raw trip update feeds in PostgreSQL for KPI reports and data
validation. It also filters the feeds by checking the records in
MongoDB, only when the delay value of one trip changes, this
update is sent to the presentation module. Typically, only one
instance is fast enough for each producer or consumer in Pavia
case. In section “Performance evaluation”, the performance of
the architecture in Pavia case will be illustrated.

Figure 9. Land and social inclusion

(a) Land inclusion

(b) Social inclusion

Data analysis: Three KPIs were selected as a proof of
concept, namely: delay of vehicle, land and social inclusion, and
accessibility of stops. These KPIs cover all stakeholders and
three different data sources: real-time data, static data and
accessibility data. Delay of vehicle are analyzed by multiple
dimensions, i.e., stop, route, date, time, week, month, etc. A KPI
dashboard, which shows real-time delay and average delay of
vehicles by above dimensions, was developed for transit
agencies and Pavia municipality. On the public transit map,
citizens can search delays of each stop. The KPI “land inclusion”
(see Figure 9 (a)) is based on stop data stemming from GTFS
files. The radius of each stop which indicates the coverage of the
stop was set as 500 meters. Municipality and transit agency can
evaluate coverage of the whole transit network. The KPI “social
inclusion”, which indicates the accessibility of routes and stops,
can help municipality to improve infrastructure for disabled
people, let them go to bus stops with no difficulties. Figure 10
(b) shows the accessibility of transit network in central Pavia,
the left figure shows the accessibility of bus routes, and the right
figure shows the accessible stops that can be easily reached by
wheelchair users.

Pavia transit map: The public transit map of Pavia shows
the real-time position of each trip in Pavia. Users can search
delay, ETA and time table of each route on this stop.
Additionally, the measure “delay at stop” is also shown in the
information panel when clicking a stop on the transit map (see
Figure 9).

Data sharing: The KPI “delay of vehicle” is deployed as
RESTful web services and can be shared by third-party
applications. Another application in IRMA project called “Pavia
Public Transit”, used the web services published by MOBANA
to provide bus information services for citizens.

IV. PERFORMANCE EVALUATION

In this section, we describe performance evaluation of
MOBANA. The evaluation was performed in Pavia, Milan and
New York with different resources, thus scalability of proposed
system is also shown in testing results. These cases represents
the typical data volume and TPS in different size of cities. An
overview of datasets used for testing is given in Table III.

Specifically, the original real-time feeds of vehicle delay are in
JSON format, which contain timestamp, real-time delay (in
second), ETA, corresponding stop, route, trip, etc. An example
of a vehicle delay feed in Pavia is as follows:

Typically, each feed package contains multiple feeds and the
average size of a feed package sent by DDM is 4 KB.

We tested two measures, namely Wait Time in Queue (WQ)
and processing time in single server node which has only 8-core
CPU (AMD Opteron Processor 6238) and 8GB memories. In
Pavia case, we made a five-day test, with an average data volume
of 2.8 million per day. Figure 10 shows the average WQ and
processing time of consumers by hour in Pavia case. Two
consumers (GTFS and RT) are deployed and each consumer

uses maximal 3 CPU cores. Figure 11 plots the average WQ of
Pavia case with different number of CPU cores. The average
WQ and processing time for each message, especially in rush
hour (e.g., 7 AM, 13 PM and 17-19 PM), keeps small because:
1) the message queue decouples data consuming and producing,
thus, the average processing time of consumers is not affected;
2) computing resources for data consumers are automatically
balanced when data accumulation in message queue increases.
In test case of AVG WQ-3 in Figure 11, the minimal number of
CPU cores is set to 1 and the maximal number is set to 3, while
in test case AVG WQ-1, the number is set to 1. From the result
we can see that a low configuration server is fast enough for a
small-size city.

Figure 10. Performance of single server node in Pavia case

Figure 11. WQ with different number of CPU cores in Pavia case

Figure 12. Throughput of MOBANA with increasing number of server nodes

vs. maximal TPS of real-time public transit feeds in Pavia, Milan and New
York

Finally, in order to test the performance, scalability and
reusability of our system in larger cities, we did a test using
GTFS files of Milan public transit and New York city transit,
and simulated real-time data. Since we didn’t get real-time data
from public transit agencies in Milan and New York, we
estimated the data volume of rush hour instead, based on the
maximal TPSin (i.e., 150) for 477 stops in Pavia case, i.e., TPSin
is equivalent to 1,537 for 4,489 stops in Milan, and 5,710 for

Table III. Datasets used for testing in Pavia and Milan

Case #Stops #Routes #Trips #Real-time feeds
Pavia 477 30 2,313 13,864,672

Milan 4,889 156 138,693 102,656,885

New York 18,159 1,338 206,112 527,816,841

2

4

6

8

10

12

.00

2.00

4.00

6.00

8.00

10.00

12.00

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

#
fe

ed
s

(1
0

0
,
0

0
0

)

T
im

e
(m

s)

Hour

AVG WQ AVG Processing time #Feeds

0.00

1.00

2.00

3.00

4.00

5.00

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22W
ai

t
ti

m
e

in
 q

u
eu

e
(m

s)

Hour
AVG WQ-1 AVG WQ-3

18,159 stops in New York. We increased the simulated feed
stream and tested the maximal TPS with increasing number of
server node. The test result is shown in Figure 12. From this test
we got the minimal computing resources we need, only a three-
machine low configuration cluster is fast enough to process real-
time public transit feeds for a big-size city in Europe. The result
also shows a good scalability.

V. RELATED WORKS

In this section we summarize researches and systems for
public transit performance monitoring that use open transit data.
We reviewed not only transit analytic systems that serve transit
agencies and municipalities, but also traveler information
systems that provide analytical results to citizens. In Table V,
we compare our system with similar solutions and systems.

A. Analytic systems on public transit data

As GTFS data become more available, new approaches for
measuring level of service of public transit in an aggregate way
based on GTFS data are used in many systems [23]. In [24],
authors use GTFS and basic population count at group block
level to measure Transit Opportunity Index (TOI). Besides
GTFS, [25] uses Service Interface for Real-time Information
(SIRI) format data to analyze frequent delays, journey time
spending, traffic signal waiting times and link travel times IQR
(Interquartile Range) variations. [26] analyses ridership in New
York public transit network using GTFS, vehicle location data
and fare data. [27] proposed a visual analytic system for
intelligent transportation in metropolitan, which integrates large-
scale GPS data. However, all mentioned solutions do not support
online analytics and visualization, even if real-time data are
used. [28] proposed a multi-scale/multi-resolution design of the
ITS information infrastructure and the available options at each
distributed storage level. It integrates GTFS, social network data
and sensor data to evaluate Service Level Agreement (SLA) of

urban transit networks. However, even though it provides an
architecture which processes high volume of data, analytics are
not in real-time (based on ETL and data warehouse). [8]
analyzes KPIs selected from the Transit Capacity and Quality of
Service Manual (TCQSM), e.g., average headway, hours of
service, percentage of transit-supportive areas covered.
However, it takes more than 6 hours to get the analytic results.
[29] presents a smart timetable services for travelers which uses
crowd sensing data and GTFS to estimate Estimated Time of
Arrival (ETA). Compared to the GPS data or other public transit
data, the coverage of crowd-sensing data is low, because users
need to install the app and open the mobile it when on vehicles.
STAR-CITY integrates heterogeneous transportation data using
semantic web. It provides spatio-temporal analysis and
diagnosis of traffic status, and performs time-series prediction of
travel times. However, the diagnosis and prediction are time-
consuming, and the results are periodically updated. In [31]
authors use IBM InfoSphere Streams for scalable and real-time
intelligent transportation services. The proposed platform has
good performance and scalability in processing GPS data.
However, it only targeting GPS data, and the data streams are
not exchangeable format for other system / services.

B. Real-time vehicle position visualization

Some authors proposed vehicle position visualization based
on GTFS data. In [30], a real-time vehicle movement
visualization which uses GTFS, transit feeds of delay and GPS
data are proposed. It processes data in multi-layer spatio-
temporal grids, and it periodically updates vehicle positions for
an efficient and smooth vehicle movement visualization.
However, it doesn’t provide further analysis on public transit
data to users. [18] is a real-time public transportation
visualization framework for Ulm, Germany. It is the first
framework who simulates vehicle positions in real-time based
on GTFS data. However, it doesn’t support real-time data

Table V. Comparison of existing solutions / systems

Solutions Paradigm Data soruces Analytics

Static Real-time Other data & format

[24] Parallel batch processing GTFS - Basic population count by block Transit Opportunity Index (TOI)

[25] Batch processing GTFS SIRI OSM files Frequent delays, journey time spending, traffic
signal waiting times before and after public
transportation priorities, etc.

[26] Batch processing GTFS Shape
file

streams

Boarding location data from
Automated Vehicle location
(AVL) system

Ridership reports

[27] Incremental updating - - Taxi GPS data Statisitcs of taxis: e.g., trajactory, speed

[28] Stream processing + ETL GTFS - GPS, social media, sensor data SLA

[29] Crowd sensing GTFS - Extensible Messaging and
Presence Protocol (XMPP)

Crowdedness information and ETA

[8] Batch processing GTFS - National Transit
Database (NTD)

Average headway, hours of service, percentage of
transit-supportive areas covered, etc.

[30] Periodic updates GTFS GTFS-
Realtime

GPS data -

[11] Semantic web - - Bus stream, social events,
weather, etc.

Spatio-temporal analysis and diagnosis of traffic
status, prediction of travel time

[31] IBM InfoSphere Streams - - GPS data Traffic statistics, travel times and shortest path

MOBANA DSP (Apache Storm) +
DMS (RocketMQ)

GTFS GTFS-
Realtime

OSM files based on project “Pavia
Accessibile”

Vehicle delay, ETA, land inclusion, social inclusion
(Pavia case)

VI. CONCLUSIONS AND FUTUREWORK

We have illustrated a distributed stream-based information
system for analyzing performance of public transit, called
MOBANA (MOBility ANAlyzer). MOBANA integrates
heterogeneous data sources and, hence, can serve a wide range
of stakeholders and cover any scheduled transit (bus, metro, and
tramway). Compared to similar systems, it integrates more data
sources into a standard exchangeable data format, i.e., GTFS and
GTFS-Realtime. Second, MOBANA combines static and real-
time data for vehicle position, and, thus, drops the traffic of
network and load on server. Third, thanks to such selective
processing and to the architecture which combines DSPE and
DMS, MOBANA achieves a cost-effective performance.
Actually, as we show in the Pavia case study and in a preliminary
test for Milan and New York, a small number of low-power
servers can process the volumes of typical cities. Finally,
MOBANA can be easily be adopted by a community of cities,
thanks to the exchangeable data formats and the scalable and
easy-to-configure architecture.

As future works, we have identified various aspects:

 Data sources: develop an ontology-based data
management approach for heterogeneous data
integration, to support additional data sources, e.g.,
crowd data and social network data. Currently, we have
already developed such approach for other services (i.e.,
City Feed).

 Data analysis: extend KPI management, in order to
support a wider analysis in dashboard and data
visualization modules.

 Data quality: develop a Lambda-like architecture
paralleled with DSP for data validation.

REFERENCES

[1] W. Zeng, C. W. Fu, S. M. Arisona, A. Erath, and H. Qu, (2014).

“Visualizing mobility of public transportation system,” IEEE

Transactions on Visualization and Computer Graphics, 2014, pp. 1833-
1842, 20(12).

[2] G. Motta, D. Sacco, T. Ma, L. You and K. Liu, “Personal Mobility Service

System in Urban Areas: the IRMA Project,” IEEE Symposium on
Service-Oriented System Engineering (SOSE), Mar, 2015, pp. 88-97.

[3] X. L. Dong and D. Srivastava, “Big data integration,” IEEE 29th

International Conference on Data Engineering (ICDE), Apr, 2013, pp.
1245-1248.

[4] Z. Zheng, P. Wang, J. Liu and S. Sun (2015). “Real-time big data

processing framework: challenges and solutions,” Vol.9(6), Applied
Mathematics & Information Sciences, pp. 3169.

[5] GTFS: https://developers.google.com/transit/gtfs/?hl=en

[6] Transit Agencies Providing GTFS Data: http://www.gtfs-data-
exchange.com/agencies

[7] GTFS-realtime:https://developers.google.com/transit/gtfs-

realtime/reference?hl=en
[8] J. Wong, “Leveraging the general transit feed specification for efficient

transit analysis,” Vol.2338, Transportation Research Record: Journal of

the Transportation Research Board, 2013, pp.11-19.
[9] A. A. Chandio, N. Tziritas and C. Z. Xu, “Big-data processing techniques

and their challenges in transport domain,” Vol. 1, ZTE

Communications, 2015, pp.10.
[10] Transit Feeds: http://transitfeeds.com/search?q=gtfsrt

[11] F. Lécué, S. Tallevi-Diotallevi, J. Hayes, R. Tucker, V. Bicer, M. L.

Sbodio and P. Tommasi, “Star-city: semantic traffic analytics and
reasoning for city,” Feb, 2014, Proc. of the 19th international conference

on Intelligent User Interfaces, ACM, pp. 179-188.

[12] G. Motta, L. You, D. Sacco, T. Ma and G. Miceli “Mobility Service
Systems: Guidelines for a possible paradigm and a case study,” Oct. 2014,

IEEE International Conference on Service Operations and Logistics, and
Informatics (SOLI), pp. 48-53.

[13] G. Motta, L. You, D. Sacco and T. Ma, Apr. 2014, “City feed: A

crowdsourcing system for city governance,” IEEE 8th International

Symposium on Service Oriented System Engineering (SOSE), pp. 439-
445.

[14] Apache Storm: http://storm.apache.org/
[15] RocketMQ: https://github.com/alibaba/RocketMQ

[16] A. Longo and G. Motta, “Design processes for sustainable performances:
a model and a method,” Sep. 2005, Business Process Management

Workshops, Springer Berlin Heidelberg, pp. 399-407.

[17] M. Golfarelli, D. Maio and S. Rizzi, “The dimensional fact model: A
conceptual model for data warehouses,” Vol.7, 1998, International

Journal of Cooperative Information Systems, pp.215-247.

[18] UlmApi/livemap: https://github.com/UlmApi/livemap
[19] Public Feeds WIKI:

https://code.google.com/archive/p/googletransitdatafeed/wikis/PublicFee
ds.wiki

[20] Bari Bus Support Service API:
http://bari.opendata.planetek.it/OrariBus/v2.1/

[21] Calculate distance, bearing and more between Latitude/Longitude points:
http://www.movable-type.co.uk/scripts/latlong.html

[22] A. Greco and G. Valentina, “Accessibility and Social Sustainability:

Assessment tools for urban spaces and buildings,” 2013, 29th Conference

on Sustainable Architecture for a Renewable Future. Munich.
[23] M. Nazem, M. Trépanier and C. Morency, “Revisiting the destination

ranking procedure in development of an Intervening Opportunities Model
for public transit trip distribution,” Vol. 17, 2015, Journal of Geographical
Systems, pp. 61-81.

[24] K. Bertolaccini and N. E. Lownes, “Using GTFS Data to Measure and
Map Transit Accessibility,” 2015, Transportation Research Board 94th
Annual Meeting (No. 15-6045).

[25] P. Syrjärinne, J. Nummenmaa, P. Thanisch, R. Kerminen and E.
Hakulinen, “Analysing traffic fluency from bus data,” Vol.9, 2015,
Intelligent Transport Systems, IET, pp. 566-572.

[26] B. Suchkov, M. Boguslavsky and A. Reddy, “Development of a New,

Lightweight GTFS Real Time Stringlines Tool to Visualize Subway
Operations and Manage Service at New York City Transit,” 2015,

Transportation Research Board 94th Annual Meeting (No. 15-4665).

[27] S. Liu, J. Pu, Q. Luo, H. Qu, L. M. Ni and R. Krishnan, “Vait: A visual
analytics system for metropolitan transportation,” Vol.14, 2013, IEEE

Transactions on Intelligent Transportation Systems, pp. 1586-1596.

[28] K. Lantz, S. Khan, L. B. Ngo, M. Chowdhury, S. Donaher and A. Apon,
“Potientials of online media and location-based big data for urban transit

networks in developing countries,” 2015, Transportation Research Board

94th Annual Meeting (No. 15-4942).
[29] K. Farkas, “Smart Timetable Service Based on Crowdsensed

Data,” European handbook of crowdsourced geographic information.

Ubiquity Press, pp. 1-13, in press.
[30] H. Bast, P. Brosi, S.Storandt, “Real-time movement visualization of

public transit data,” 2014, Proceedings of the 22nd ACM SIGSPATIAL

International Conference on Advances in Geographic Information
Systems. ACM, pp.331-340.

[31] A. Biem, E. Bouillet, H. Feng, A.Ranganathan, A.Riabov, O.Verscheure,

H.Koutsopoulos and C. Moran. “IBM infosphere streams for scalable,
real-time, intelligent transportation services,” 2010, Proceedings of the

2010 ACM SIGMOD International Conference on Management of data,

ACM, pp. 1093-1104.

http://transitfeeds.com/search?q=gtfsrt
https://github.com/alibaba/RocketMQ
https://code.google.com/archive/p/googletransitdatafeed/wikis/PublicFeeds.wiki
https://code.google.com/archive/p/googletransitdatafeed/wikis/PublicFeeds.wiki
http://www.movable-type.co.uk/scripts/latlong.html

