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Abstract TheKAD(KnowledgeAidedDesign) tool is developed to predict the performance of anF1

car indifferent driving conditionsandwithdifferent configurations.The regulations toput in trimming

a car, also in the exasperated technology of the competitions, still demand a remarkable dose of luck

and an elevated number of tests. It is then important to know a set of regulations close to the optimal

trim before testing the car on the track. The difficult phase of this process is to evaluate the lap time. As

amatter of fact driving style, track conditions and car behavior should be simulated. The optimisation

of the fuzzy controller that simulates the pilot for anF1 racing car is difficult due to handling problems

and velocity of response. For this purpose a specificGeneticAlgorithm (GA)was conceived and tuned

to workwith a lumpedmassmodel of an F1 racing car for the optimization of the fuzzy controller that

simulates the pilot. A new mutation and a new crossover operator were defined to complement the

standard crossover and mutation operators of the basic Holland’s GA. This was necessary in order

to increase the overall performance of the fuzzy pilot. This approach was tested on an F1 car due to

the huge amount of data available (Donnarumma, 1998; Moelenbein, 1989; Lee and Takagi, 1993).
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Some years ago, the project named ‘‘Nuvolari-fuzzy’’ began.

Its aim was to provide a tool that would have provided design-
ers with a prediction of the performances of cars in the phase
of the conceptual design phase. This tool was thought to be

used in a conventional automobile and it should also have
been able to set the car in order to obtain possibly the best
performances.

However the choice of the car is not easy, since the data are

difficult to be obtained.
For this reason, it was decided to chose a F1 car, because a

lot of data are known, just like telemetry data, power, masses,

aerodynamic forces, tire performances. These data, previously
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kept secret, are now well known and measured at the best pos-

sible level of accuracy thanks to our collaboration with Ferrari
F1 Team (Nig and Li, 1994; Rajendra, 1995). So, an old F1
racing car (Ferrari 126C2 of Gilles Villeneuve, 1982, see Figure
1) was chosen in order to study several issues and find relative

solutions.
However, it is also important to underline that a model,

which takes into consideration easiness of driving, is still lack-

ing. For this reason, in our case a fuzzy model (i.e., a fuzzy
model is a model based on fuzzy logic, which is a logic that dif-
fers from conventional logical systems because it aims to pro-

vide a model for approximate rather than precise reasoning,
(Zadeh, 1996; Mamdani, 1976; Dubois and Prade, 1979) of
the human pilot and a lumped mass model of a F1 racing

car were used. This optimisation operates with an elitarian
combined genetic algorithm (Hoffman and Pfister, 1994;
Hanagandi et al., 1996; Furuhashi et al., 1994) that optimizes
the fuzzy pilot in a specific car (i.e., F1 car). The fuzzy control-

ler that simulates the pilot has several parameters that resem-
ble pilot’s driving style (Kargupta, 1996; Hoffman and Pfister,
1996; Ghini, 1998). These parameters are optimised by a spe-

cialized genetic algorithm that finds the best pilot for a certain
part of the track. The process is repeated from the starting po-
sition to the end of the track until a record lap time, or a set of

best lap times, can be found. The main advantages of this ap-
proach are the feasibility of the best lap by a human pilot and
the sensitivity to modifications on the car. As confirmed by
several F1 pilots, it is important to take into consideration

the four most important parameters which control a racing
car, in particular: the power of the engine; the aerodynamical
download; the grip of the tyres; the weight. In other words it is

important that an F1 car is settled to be easy driven. When the
GA finds the record time, it is possible to vary the setting to
find whether these variations improve the performances. If an-

other GA is used it is possible to find the best setting possible.
That is exactly what has been done and it is summarized in this
paper. The paper is organized as follows. Next paragraph (the

second one) introduces the overall structure of the optimisa-
tion procedure and defines the steps that conduct to the ‘‘best’’
solution. The model of the car is very briefly introduced in the
third paragraph. For further information on lumped mass

models of cars, with true suspension geometry and a model
of the tires see the references nr.(Moelenbein, 1989; A. Lee
and Takagi, 1993). The fourth paragraph describes the

fuzzy controller that simulates pilot behaviour. A general
introduction to fuzzy controller can be found in Zadeh
Figure 1 The Ferrari 126C2.
(1996), Mamdani (1976), Dubois and Prade (1979). The com-

bined elitarian GA that optimises the fuzzy pilots is introduced
in the fifth paragraph. For this purpose several algorithms are
described in Hoffman and Pfister (1994), Hanagandi et al.
(1996), Furuhashi et al.(1994).
2. The optimization procedure

The optimization process consists at first in choosing the
more suitable racing circuit (which will be Imola circuit),
considering that it should be divided into parts that can

be covered in less than 10 s each one, by the worst fuzzy dri-
ver, so that a set of adjustments could be defined in terms of
aerodynamic, damping, elastic and ground-tire friction coef-

ficient. Then, at second, certain track conditions should be
defined (perfect, dry but poor asphalt condition, dry but
dirty, wet, very wet).

After this operation a test run is performed to check
whether the input data are correct and everything works well.
In this run the GA optimises the fuzzy control to obtain the
record lap with that car, referred to the selected circuit and

the indicated asphalt condition. The best fuzzy control is
found for each sector of the track. The record lap time is cal-
culated as the sum of the times simulated for each sector.

After this step of work, the general GA, which operates on
car adjustments, is running. GA (Genetic Algorithm) evaluates
the fitness of every setting (or set of adjustments) according to

the record lap time of that car with those adjustments. At the
end, the best setting can be found. A racing car has several
adjustments that can be made directly on the track, starting
from rear and anterior wings, to springs, shock absorbers,

anterior height, posterior height, the bottom surface and many
others. It should be taken into account that the computation of
a single record lap time with a certain car of defined setting on

a circuit like Imola requires more than two hours on a stan-
dard Pentium Personal Computer (PCs). In order to obtain
the optimum trim with the normal regulations that can be

made on the Ferrari 126C2 racing car with the aid of a simple
screw-driver (about 20 regulations or 20 DOF to be optimised)
the Holland type GA algorithm (Moelenbein, 1989) requires

about 150 runs of the combined-elitarian GA that finds the re-
cord time for a total amount of 300 h (about 12 days). The
optimisation should then be performed on a net of PCs in par-
allel (the ideal number is 10, one for each individual of the

population) and it is still very time-consuming. The car model,
the fuzzy controller optimizer and the car set optimiser were
then kept as slim and efficient as possible in order to reduce

computation time. A 1000 times faster PC is only adequate
for this application.
3. The car model

The lumped mass model of the F1 racing car of Gilles

Villeneuve’s Ferrari 126C2 was implemented in 1984 and was
refined to its final version of 1998. The model takes into
account suspension geometry, non-linear spring-damper

assembly, frame stiffness, concentrated aerodynamic loads,
engine performances, and tire-soil contact. The model DOF
(Degrees Of Freedom) are 14. These are the 3 translations
and 3 rotations (pitch, roll and yaw) of the orthonormal refer-

ence system X, Y, Z (with X along the car axes and Z vertical
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Figure 2 The ‘‘view’’ membership functions.
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that comes out of the ground) and the 8 flexural movements (4

vertical and 4 lateral), due to the excursion of suspensions. In
other terms it can be asserted that the translations along the
axes X and Y, together with the rotation movement (spin)
around to the Z axis, interest and describe the motion of the

car in its complex, while the translation along the Z axis and
the rotation around X axis (roll) and Y (pitch) interest the elas-
tic motion of the suspended part. It should be also pointed out

that all the forces are applied in the contact point wheel-
ground: the calculation of the equilibrium of the car-body,
regarding to the ground, makes it possible to calculate the

accelerations, the speeds (by integration vs. time) and the coor-
dinates of the points of the suspensions, and this for every step
of prefixed time. Without going too much in the details of

these calculations, only some fundamental calculation steps
can be summarized. Given the position of the suspended mass
relatively to the step i-1, the forces and the aerodynamic mo-
ments applied on the car are reiterated and the coordinates

of the points of the suspensions attached to the chassis are
found (in this phase the programs considers also the yielding
of the tire, that is responsible of a further displacement of

the tire-ground contact point and a variation of its distance
from the wheel holder). Given the positions of frame-to-
suspension connection points, the suspension configuration is

iterated until the correct (tire-ground) contact points are
found. The true spring lengths, the roll bars angular displace-
ments and the force on shock absorbers are then calculated. At
the end equilibrium equation are solved and inertia forces on

the unsuspended mass (wheels and wheel holders) are evalu-
ated. The engine-transmission group is simulated by using
the characteristic curves of the engine coupled with an auto-

matic transmission that changes the gears automatically just
after the point of maximum torque. The new gear has then
the maximum available torque. A consistent time-lag in engine

response was also introduced as it happened with the 126C2,
this time lag depends on an estimation of the speed of the tur-
bo and then of the available intake pressure. This point is very

important since in Hoffman and Pfister (1996) Harvey
Postlethwhite says: ‘‘That car, the original [Ferrari] 126C
turbo had literally one quarter of the down force that, say
Williams or Brabham had. It had a power advantage over

the Cosworths for sure, but it also had massive throttle lag
at that time. In terms of sheer ability I think Gilles was on a
different plane to the other drivers. To win those races [the

1981 GPs at Monaco and Jarama] – on tight circuits – was
quite out of this world. I know how bad that car was.’’ Then,
this car should be a good chance to test a fuzzy pilot and its

GA optimizer.

4. The fuzzy pilot

Before realizing Fuzzy pilot simulator, it is opportune to intro-
duce the way in which the racing circuit is simulated. The sim-

ulator takes into consideration the lumping of every single
section of the circuit centerline and considering the track width
as a parameter associated to this line. The characteristic sec-
tions of track recognized by the simulator are three: the

straight track, the right curve and the left curve. The straight
track that starts from the point (xi, yi) and ends in the point
(xf, yf) is represented as a line of Eq. (1):

y ¼ mxþ c ð1Þ
where

m ¼
ðyf � yiÞ
ðxf � xiÞ

ð2Þ

and

c ¼ yi �mxi ð3Þ

y ¼ � 1

m
xþ f ð4Þ

It is then possible to evaluate the distance from track cen-
terline. This can be obtained from the f coefficient from the

Eq. (4) of the line normal to (1). The simulator is also able
to evaluate whether the car is on the left or on the right of
the centerline by evaluating the direction cosine of the position
vector. The curve is individuated by crf center position (xc, yc),

the curvature radius R and the curve amplitude in radians.
Curve equation is then

x2 þ y2 þ axþ byþ c ¼ 0 ð5Þ

where

a ¼ �2xc; b ¼ �2ycec� ðxcÞ2 þ ðycÞ
2 þ R2 ð6Þ

The distance of the car from the curve center can be evalu-
ated by a system of 2 equations composed by (5) and the equa-
tion of the line that passes through (xc, yc) and the car position.

This distance d is particularly important for the evaluation of
the car condition. In fact if the predicted car future position
tends to increase the value of d it is necessary to close the

curve. Another information, that the pilot should have, is
the presence of very thigh turns. For this simulator thigh turns
are curves with a radius inferior to 36 m.

4.1. The knowledge base of the fuzzy pilot

As mentioned by important pilots of the past, three input vari-

ables are necessary for realizing a car model (or car simulator):
throttle position, steer velocity and braking torque.

These three variables are controlled separately. The view is

given by the distance to the next curve (see Figure 2). The
‘‘view’’ and the car velocity control the throttle position. By
the way the view controls also the integration step of the car

simulator. The car velocity membership functions are depicted
in Figure 3. The first rule of the controller is the following: the
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throttle should be increased if the view is high and the velocity is
low. An example of throttle position is given Figure 4. The
second output membership function is the steering speed. It

depends from two variables: the distance from the center line
(see Figure 5) and the curvature radius (see Figure 6). The dis-
tance membership functions have been thickened in order to

improve the correction ratio, as the car is closer to track mar-
gins. The second fuzzy rule of the fuzzy pilot is the following: it
is necessary to increment steer velocity as the distance from cen-

terline increases and the curvature radius diminishes. Steering
velocity output membership functions are depicted in Figure
7. The third and last variable is the braking torque. The brak-
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Figure 5 Input membership functions for the input parameter distan
ing torque is applied only when the distance from the center-

line is more than 35% of the available track width (and it is
a curve) or when the danger signal is encountered. Input vari-
ables of the brake controllers are the distance from the center-
line and car velocity.

5. The fuzzy pilot optimizer for record lap time determination

The racing circuit is subdivided into sectors than can be
covered in less than 10 s each (see § 5.2). For each sector a best
fuzzy pilot is defined. The record lap time is given by the sum

of the record time for each sector. The car is started in the
starting position of the track with the car still with motor run-
ning. The first three sectors are then used to define the initial

condition of the fourth one. The first three partial times are
discarded. Then the finishing condition of the sector i-1 is gi-
ven as initial condition of the i sector. The choice of the sectors

influences final results, but an accurate selection is enough to
reduce this influence to a minimum. The time is calculated only
in the current sector but the controller should negotiate with
success also the following. As the car returns on the starting

position the three initial sectors are re-negotiated in order to
obtain the record lap time.

5.1. The initial population

Every fuzzy controller (pilot) is defined by three controllers

(throttle position, steering speed and braking torque). The dif-
ferent individuals are differentiated by the input and output
membership functions. Each pilot is then coded by the genes
relative to the input/output membership functions and by the

gain constants. These constants amplify the response of the
pilot and correspond to the aggressiveness of the pilot. Each
pilot is then defined by 169 real numbers. Ten reasonable pilots

are defined as an initial population. The number of ten is given
by a compromise between convergence speed and quality of
results. The reasonable pilots are defined by a set of pilots that

are able to keep the car in the track in most conditions. A
stochastic choice of the initial genes would have put on the
car a set of poor pilots very far away from an F1 driver.

5.2. The fitness function

The fitness function is defined as follows for each sector of the

racing circuit.
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ce from centre line. In this case the track width was fixed to 10 m.
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fitness ¼ 100

time
e

10
time ð6Þ

This fitness is particularly efficient in the selection of the

best pilots and works as a penalty functions for the slowest
controllers. The factor 10 is the maximum time allowed to
cover a certain sector. The gain factor 100 is given to assign

values close to 0 for the worst pilots and close to 1000 for
the best.

5.3. The genetic operators

In this optimizer two modified operators, that will operate only
on some genes with a selective crossover procedure, assist the

‘‘standard’’ GA operators. The standard crossover operator
makes the media of all the real genes of the parents and obtains
a son with the multiple crossover approach. The additional

factors that control the crossover and the generation of a
new population are the probability (0–100) and the points
(1–4). These number can be given as input to the GA and
control the convergence ratio and quality of the solution as

it will be see in § 6.. In fact when the probability is 100 all
the individuals can be coupled. When its value is 80 only the
first 8 individuals can be coupled, when it is 20 only two of

the individuals can be coupled. The coupling is stochastic
and the best ranking individuals have more probability to be
coupled than the others. The influence of the parameter point
is different from the standard crossover and for the modified
crossover. The value of points indicates the number of points
where the crossover takes place(1 ) 1 point, 2 ) 2 points,
3) 3 points). If point is equal to 4 it means that also the gain

constants are interested by the crossover. The standard cross-
over does not influence the ranges of the input variables. The
best individual takes part to the crossover but is inherited by

the following generation without being subject to crossover.
The modified crossover works in the same way of the ‘‘stan-
dard’’ crossover but operates on the output membership func-

tions. The standard mutation and the modified mutation
operate with the same philosophy of the crossover operators.
The standard mutation works on the input functions while
the modified works on the output ones. The sequence is similar

to the crossover (1 ) 1 point, 2 ) 2 points, 3 ) 3 points, 4
also gain constants). In our case the mutation cannot be purely
stochastic, otherwise the result would have been unsignificant.

In fact the coordinates of the membership functions are incre-
mented or decremented if the pilot ranking is odd or even. The
amount of these changes is regulated by an ad-hoc step.

5.4. The lap time optimisation

The combined-elitarian GA algorithm calculate the ranking of
the population, the maximum (fmax), the minimum (fmin) and
the media (fmedium) of the fitnesses. These three values are fun-
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damental for the selection of the operators. Given the fmax, fmin

and fmedium of the preceding (i-1) generation (f(i�1)max, f(i�1)min

and f(i�1)medium and the same values of the current (i) genera-
tion, only the traditional operators are used when:

fi�1max 1:05 6 fimax OR fi�1medium 1:05 6 fimedium OR fi�1min 1:05 6 fimin

Only the combined operators are used when

fi�1max 1:01P fimax AND fi�1medium1:01P fimedium AND fi�1min 1:01P fimin

In the case of uncertainty the choice between traditional
operators and the combined ones is stochastic.

6. Tests

These tests were performed on the Imola racing circuit and

were aimed to optimize the GA algorithm for record lap deter-
mination. The parameters to be tuned are the probability and
the number of points for crossover and mutation. The first

tests of the combined elitarian GA were made using the follow-
ing parameters: crossover, mutation, modified crossover and
modified mutation probability = 100%. Points of crossover,

mutation, modified crossover and modified mutation = 4.
These parameters induce the maximum possible evolution
spread. The results are depicted in Fig. 8. Convergence was

reached after 34 generations. Other tests with mutation and
modified mutation probability reduced to 60% were faster in
convergence (25 generations instead of 34) but the maximum
fitness value got down to 400. The original value of 100%

was then restored. Afterwards the crossover and modified
crossover points were reduced down to 3. Again the maximum
fitness value was around 400 and the convergence was even
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

0 4 8 12 16 20 24 28 32

# of generations

Fitness
Min Medium Max

Figure 8 GA with maximum spread.
faster (19 generations). Also this operation was discarded.

The crossover and modified crossover probability were de-
creased to 60%. This modification proved to be successful.
In fact to a slight reduction of maximum fitness (500 instead
of 504) has corresponded a significant increase in convergence

ratio (28 generations instead of 34). To further increase con-
vergence speed the mutation probability was decreased to
60%. The solution was reached after only 11 generations but

the best value was the worst ever had (350 instead of 504).
The best solution is then the following:

� Crossover and modified crossover probability = 60%.
� Mutation and modified mutation probability = 100%
(maximum).

� Points of crossover, mutation, modified crossover and mod-
ified mutation = 4 (multiple crossover and mutation on all
the variables).

At the end our pilot would have qualified for the 1982
Imola Grand Prix but at the 9th row. A single test was also
performed on the global optimization algorithm with the fol-

lowing DOF: front and rear spring stiffness, front and rear
wing incidence. The result was feasible and close to the setting
chosen by the Ferrari team in 1982. However, the direct exper-

imental validation is obviously impossible.
Test results can be consulted in the file attached named

‘‘Test_Results_KADToolToOptimizaF1Cars_def’’.
7. Conclusions

As a result of the tests made it is possible to state that the two

step optimisation of the F1 car trims and the fuzzy pilot, done
using respectively the standard GA and the combined-elitarian
GA algorithm, has been successfully implemented for the Fer-

rari 126C2 of Gilles Villeneuve (1982). As a matter of fact the
GA algorithms have been capable of a relevant optimization of
the fuzzy pilot, due to this fact it has been possible, at the end

of the tests, to calculate a best lap time near to the real F1
worst lap times. As stated in the previous paragraph, the best
lap time obtained by the fuzzy pilot has been good enough to

be virtually qualified for the 1982 Imola Grand Prix. This dem-
onstrate that even if human pilots are, obviously, better than
fuzzy pilots, it is possible to approximate human driving
behaviour using a fuzzy logic algorithm. Even if the lap time

recorded is higher than 1982 Imola Grand Prix real lap times,
it is important to notice that has been possible to obtain rea-
sonable results, so it would be possible in the future to further

refine this fuzzy pilot optimizer algorithm, along with the F1
car trim Optimizer algorithm, in order to simulate a better
pilot.

The tests made have demonstrated also that the general
optimization algorithm for the F1 car trims can give reason-
able output results. In particular, as stated in the previous par-

agraph, the algorithm has indicated spring stiffness and wings
incidence settings near to those that have been really imple-
mented on the Ferrari 126C2 during Imola Grand Prix.

To further investigate the optimization possibility of the car

trims, and how much they are close to those really imple-
mented, it would be appropriate to make a comparison among
tests carried on with different cars on different circuit. It is pos-

sible to carry on these additional tests, even if they require a
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detailed lumped mass model of the different cars, and appro-

priate models of the tracks. However if these additional tests,
as we expect, will give results close to the real ones, the ap-
proach described in this paper would be suitable to adapt a
certain car on a certain circuit. In this way it would be possible

to reach a true optimisation, with the result that several real
test sessions may be spared, permising to the racing teams to
reach faster the optimal setting for their car.

Regarding to the technical issues related to the system re-
quired to run these algorithms, accurate tuning of the two
GAs has been performed in order to reduce the computation

time. However a very fast PC is required: at least 3 orders of
magnitude faster than a Pentium II 300 MHz. Fortunately
the GA can be easily parallelized and may run on a net of sev-

eral computers (Piancastelli et al., 1999).
Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.jksues.2011.06.006.
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