@° PLOS | ONE

CrossMark

click for updates

G OPEN ACCESS

Citation: Vitali F, Cohen LD, Demartini A, Amato A,
Eterno V, Zambelli A, et al. (2016) A Network-Based
Data Integration Approach to Support Drug
Repurposing and Multi-Target Therapies in Triple
Negative Breast Cancer. PLoS ONE 11(9):
€0162407. doi:10.1371/journal.pone.0162407

Editor: Jianhua Ruan, University of Texas at San
Antonio, UNITED STATES

Received: May 30, 2016
Accepted: August 22, 2016
Published: September 15, 2016

Copyright: © 2016 Vitali et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data analyzed to
select disease proteins for TNBC (doi: 10.1038/
nature10933). Protein-protein interactions have been
retrieved from STRING (http:/string-db.org/). Drug-
target interactions from DrugBank (http://www.
drugbank.ca/), Comparative Toxicogenomic database
(http://ctdbase.org/). Pathways from KEGG(http:/
www.genome.jp/kegg/). Diseases from Disease
Ontology (http://disease-ontology.org/). mMRNA
experiments on TNBC have been retrieved from
Triple-Negative Breast Cancer Database.

A Network-Based Data Integration Approach
to Support Drug Repurposing and Multi-
Target Therapiesin Triple Negative Breast
Cancer

Francesca Vitali' *, Laurie D. Cohen', Andrea Demartini', Angela Amato?,
Vincenzo Eterno?, Alberto Zambelli®3, Riccardo Bellazzi'?

1 Dipartimento di Ingegneria Industriale e dell'Informazione, Universita di Pavia, Pavia, Italy, 2 IRCCS-
Fondazione S. Maugeri, Pavia, Italy, 3 Oncologia Medica, ASST Papa Giovanni XXIII, Bergamo, ltaly

* francesca.vitali03 @ universitadipavia.it

Abstract

The integration of data and knowledge from heterogeneous sources can be a key success
factor in drug design, drug repurposing and multi-target therapies. In this context, biological
networks provide a useful instrument to highlight the relationships and to model the phe-
nomena underlying therapeutic action in cancer. In our work, we applied network-based
modeling within a novel bioinformatics pipeline to identify promising multi-target drugs.
Given a certaintumor type/subtype, we derive a disease-specific Protein-Protein Interaction
(PPI) network by combining different data-bases and knowledge repositories. Next, the
application of suitable graph-based algorithms allows selecting a set of potentially interest-
ing combinations of drug targets. A list of drug candidates is then extracted by applying a
recent data fusion approach based on matrix tri-factorization. Available knowledge about
selected drugs mechanisms of action is finally exploited to identify the most promising can-
didates for planning in vitro studies. We applied this approach to the case of Triple Negative
Breast Cancer (TNBC), a subtype of breast cancer whose biology is poorly understood and
that lacks of specific molecular targets. Our “in-silico” findings have been confirmedby a
number of in vitro experiments, whose results demonstrated the ability of the method to
select candidates for drug repurposing.

Introduction

Over the past decades, advances in biological science have led to the generation of a large
amount of molecular data at the level of genome, transcriptome, proteome, and metabolome,
with the potential for greatly advancing patient care and clinical research, in particular con-
cerning cancer. The characterization of thousands of disease cases has revealed that the major-
ity of cancers harbors a cocktail of mutated or altered genes that work in concert to specify
molecular pathways that lead to their genesis, maintenance, and progression [1]. Therefore, the
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identification of genes and proteins is not sufficient to fully understand the disease complexity,
since it provides only a catalog of individual molecular components [2]. On the contrary, it is
crucial to know how the individual components interact with each other, or how changes in
external and internal conditions may dynamically alter the resulting complex behaviors.

In this context, system biology and bioinformatics can offer a suitable way of approaching
the study of the disease, and, more ambitiously, the discovery of novel therapies by developing
models that consider the whole pathophysiological picture without losing the key molecular
details. Substantial advances have been achieved by integrating computational modeling with
quantitative experimental data and knowledge with different methodological approaches, com-
ing from statistics, machine learning and systems theory, particularly in the field of cancer sys-
tem biology [3].

In recent years, methods based on a network description and analysis have shown to be able
to provide an interesting strategy for drug design and repurposing [4-9]. Through a network-
based approach, a complex system can be represented as a graph, where nodes correspond to
the molecular entities of interest (e.g. proteins, drugs), while edges represent their interactions
(e.g. physical interactions). Latest studies in network biology showed that systems underlying
complex diseases are controlled by several biological concurrent processes and are robust
against perturbations. Therefore, gene and protein networks seem ideal instruments for study-
ing the repurposing of approved drugs, especially when jointly taking the wired nature of tar-
geted biological systems [10].

As a consequence, network modeling can be also seen as a “natural” instrument to deal with
the combination of drug repurposing and multi-target drug design. Multi-target drugs may be
able to comprehensively target the pathological network of a disease and to amplify the final
therapeutic success due to their treatment effects by synergy [11]. In fact, combinations of
drugs with synergistic mechanisms of action should minimize drug resistance and maximize
cellular effects [12]. Therefore, a bioinformatics, network-based, pipeline may have a crucial
role to reduce the space of drug candidates and to select new potential disease therapies for
complex diseases.

Recent approaches have demonstrated that many proteins are already targeted by more
than one drug, suggesting that multi-target candidates can be automatically retrieved by ana-
lyzing the interactions among proteins, drugs, and diseases [8,13,14]. Other interesting meth-
ods have been developed to prioritize the most effective combinations of drugs and targets for
experimental validation in vivo or in vitro. Such computational models represent a crucial
enabling factor, since testing all possible drug combinations is unfeasible because their number
increases exponentially with the drugs to be tested. It should be noted that the molecular
response profiles, such as gene expression data, are currently still scarce for drug combinations,
even if some efforts towards their prediction have been made [4]. In order to improve the inte-
gration of knowledge sources about drug behaviors, Huang et al. have proposed an evaluation
tool, called DrugComboRanker [15]. In this study, the authors developed a synergistic score for
drug combinations on the basis of the topological relatedness of drug targets in signaling net-
works, semantic similarity of gene ontologies and the dissimilarity of gene expression profiles
of different drugs. The method was assessed on lung adenocarcinoma and HER2-subtype
breast cancer and most of the top multi-target combinations were confirmed by literature
reports [15].

Other approaches focus on the integration of drug-target network with the human disease
network to reveal drug targets that are often involved in multiple diseases. These approaches
can be useful to automatically repurpose drug and targets, too [16-18].

Network construction and analysis can also provide a computational framework for per-
forming perturbation experiments in silico and to assess the global effect of targeted
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interventions. These experiments are aimed to predict the robustness of a network to perturba-
tions that simulate pharmacological administrations.

A key disadvantage of drug discovery approaches based on the construction of protein, drug
and disease networks, such the ones previously presented, is that they provide a static view of
the problem. The cellular network underlying a specific disease is highly dynamic: in fact, mol-
ecules, proteins and gene associate, dissociate and interact. Taking into account these dynamics
across pathways and networks is a very challenging problem, involving detailed experimental
data and computational requirements [9]. In this context, pathways representing specific paral-
lel, cross-talk or feedback of molecular structures are powerful elements to explore in depth the
mechanisms underlying the drugs actions: these ones can be perceived as network perturba-
tions whose effect should lead the pathophysiological networks back to their normal state.
Thus, studies addressing perturbation dynamics have key importance in drug design.

A number of studies suggests that the representation of signaling pathways through Boolean
Networks (BNs) may be a useful first step in this direction [19-23]. BNs became very popular
for modeling signaling networks since the emergence of public databases (like KEGG [24]).
This knowledge can be used to constructa BN of a biological process in which nodes are genes
and edges represent interactions among them. A model can be obtained by associating a Bool-
ean value to each node (e.g. 0 or 1 if the node is active or inactive) and a logic relation to each
edge (i.e. AND, OR, NOT depending on the type of interaction between two nodes). Moreover,
for simulation purposes BNs can be converted into ODEs with continuous time description,
thus providing more understandable information about general pathway dynamics under dif-
ferent conditions. To support these studies, publicly available software tools such as Boolean-
Net [19], PATHOLOGIC-S [25] and Odefy [23] have been developed; they offer a scalable
Boolean framework for modeling cellular signaling.

Following these considerations, in this work we present a novel bioinformatics pipeline that
combines network-based approaches and BN to integrate data and knowledge and to propose
new therapeutic strategies or novel therapeutic uses of already approved drugs for a specific
multi-factorial disease. An overview of the proposed approach is shown in Fig 1.

The first step of the method consists in building a PPI network by integrating high-throughput
experiments and PPI data; then, by analyzing this network, a ranked list of target combinations is
obtained through the application of a methodology that has been previously developed by our
group [12]. This method has been extended to automatically select interesting drugs. It should be
noted that the search space is not limited to known drug-target interactions, but also, through the
application of a novel data-fusion method [26], to predicted ones. Finally, we build Boolean models
of the pathways with the strongest association with diseases, in order to evaluate and predict which
drug combinations achieve the greatest degree of perturbation of the phenotype. To assess our
results, in vitro experimental data can be produced to validate the computed predictions.

In this work, we illustrate our approach and its potential validity by applying it to the case of
Triple Negative Breast Cancer (TNBC). TNBC is a heterogeneous and aggressive subclass of
breast cancer that affects 15% of all breast cancer patients. TNBC has the poorest prognosis of
all subtypes with rapid progression leading to mortality in younger patients. So far, there is no
targeted therapy for TNBC and the only approved treatment option is chemotherapy; for its
poorly understood biology and for its complexity TNBC is a suitable candidate for network-
based modeling and multicomponent therapeutics, as well as for drug repositioning. The devel-
oped approach extracted a number of drug candidates for repurposing, ranking their potential
combinations, allowing to plan and execute in vitro experiments. In the results section, we will
describe the findings we obtained, as well as the outcomes derived from in vitro testing the
drugs. Results suggest that our method has the ability to select potential drug candidates and to
provide potentially useful therapeutic strategies.
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Fig 1. Overview of the proposed approach. (1) A PPl network is constructed starting from a list of disease proteins (DPs); then a list of target candidates
(TPs) for drug synergy is obtained based on topological network properties; (2) A score function, called Topolgical Score of Drug Synergy (TSDS), assigns a
score to each combination of TPs allowing the selection of significant multi-target combinations; (3) TP combinations are furtheraugmented through the
application of a data fusion approach. Here, the integration of several data sources [26] allows to obtain a list of known and predicted drug-target interactions;
(4) The biological pathways related to disease progression are extracted; the pathways are represented with Boolean Networks (BNs); (5) BNs are simulated
taking into account drug activities to understand biological pathways alterations through different pharmaceutical interventions. Finally, in vitro studies to
validate the ability of the method to propose potential therapies can be carried on taking into account the results obtained from the previous phases.

doi:10.1371/jourral.pone.0162407.9001

Materials and Methods

The implementation of the developed approach (depicted in Fig 1) can be divided into five
main steps: (1) PPI network design; (2) Multi-target ranking through TSDS score; (3) Identifi-
cation of drug candidates; (4) Boolean modeling of disease pathways; (5) Simulation of drug
actions and planning of in vitro studies. In this paper we show the application of the method
through the TNBC case, although it can be readily applied to other diseases. The approach has
been implemented in Python and Matlab; the code is available upon request from the authors.

TNBC network design

The initial step of the proposed approach focuses on constructing a disease-specific PPI net-
work and the selection of drug targets.

Selection of Disease Proteins. Since our aim is to build a PPI network tailored to TNBC,
the proposed approach starts with the selection of a list of genes and proteins known to have a
role in the disease. The list was generated through the analysis of a recent mutational study
where different high-throughput experiments from 104 cases of primary TNBC were per-
formed [27]. The analysis of these data allowed to extract a list of the most significantly
mutated and differentially expressed genes in TNBC. The proteins that are codified by such
genes have been called Disease Proteins (DPs) (depicted with red circles in Fig 1) and they were
assumed to be the final destinations of the therapeutic effect of a potential therapy. The method
has thus been developed by assuming that a successful multi-target treatment should have an
effect on all DPs.

PPI network construction. The PPI network related to TNBC was derived by extracting
the PPIs stored in the STRING public repository [28]. In our PPI network, two proteins (net-
work nodes) are linked (network edge) if an interaction between them is found in STRING.
The set of network nodes include the initial DP list and their STRING interactors, while the set
of edges is restricted to the most reliable STRING associations, i.e.: (i) the associations need to
be derived from experimental and database evidence; (ii) the STRING confidence score has to
be higher than 0.7 (i.e. only edges with a score higher than the 70th percentile of the STRING
weight distribution are taken into account). The cut-off has been chosen considering that
STRING curators suggest 0.7 as a reference value for high-confidence association [28]. The
resulting network is a weighted graph, where the edge weights are proportional to the confi-
dence scores.

Target Selection. Once DPs were identified and the network built, the next step consisted
in the network targeting. Instead of selecting all the network nodes as possible targets, the
nodes space was restricted to most interesting nodes from a pharmacological point of view, as
reportedin [12].

In detail, potential Target Proteins (TPs) (depicted with blue diamonds in Fig 1) are identi-
fied following three constraints: (i) hub nodes are discarded as potential TPs; (ii) bridging
nodes are elected as TPs; (iii) a TP has to be druggable.

The first constraint involves hubs, i.e. nodes having a number neighbors higher than aver-
age. Beside their topological and functional significance in networks, hubs have special
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biological properties due to their central role in modular organization of the protein interaction
network. In fact, if hubs are selectively attached, the network information transfer rapidly dete-
riorates. Because of this property, they are usually considered attractive drug targets [7]. How-
ever, hubs often also correspond to essential proteins, thus, their attack may cause adverse
effects or it may result in increased toxicity [7,12,29]. For these reasons, we decided to discard
such nodes as potential TPs.

The selection of hubs in the network have been performed by considering the top 20% high-
est degree nodes, as suggested in [30].

An alternative strategy consists therefore in targeting a set of proteins that locally have less
impact than hubs, but that may provide a synergistic effect on a broad portion of the disease
network. To this end, the second constraint involves bridging centrality (BR), a centrality mea-
sure that can discriminate bridging nodes, i.e. the nodes that are crucial to dispatch informa-
tion to the network topological structures: such nodes usually have fewer neighbors than hubs,
and are typically located between highly connected regions (i.e. network modules). Bridge
nodes are therefore regulated by the nodes of different modules and this may lead not only to a
lower toxicity but also to a higher therapeutic effect, since the higher BR(i), the more informa-
tion flows through node i. This makes bridging nodes good drug target candidates: therefore,
bridging centrality can be used to locate the key target proteins TPs. Bridging nodes in the net-
work were identified as the nodes whose values were in the highest quartile of the bridging cen-
trality. This threshold was suggested by Hwang et al. and it has been also confirmed by
empirical studies on several real world network systems [31]. BR of a node i was calculated as
proposed by Hwang et al. [31] following the equation:

BR(i) = BC(i) - B(i) (1)

where B is the betweenness centrality and BC is the bridging coefficient, which measure the
global and local features of a node, respectively. It has to be noticed that instead of standard B,
Random Walk Betweenness Centrality (RWBC) [12] is used in Eq 1 because it takes into
account all possible paths between two nodes and not only the shortest paths between nodes
(as B does) [32]. On the other hand, the bridging coefficient of a node i is computed as:

D(i)

BC(i) = —2)
ZveN(i) ﬁ

(2)

where D(i) is the degree of node i, and N(i) is the set of neighbors of node i.

Finally, in order to take into account the druggability of bridging proteins, we selected as
TPs only those with interacting chemicals in the STITCH [33] protein-drug repositories. Also
in this case, we selected only the associations with high confidence (STITCH confidence
score > 0.9). In addition, the list of druggable network nodes has been extended by using Drug-
Bank [34].

Multi-target ranking through TSDS score. The subsequent step (see Fig 1) of the proce-
dure focused on ranking the target combinations through the application of the Topological
Score of Drug Synergy (TSDS), a score function that we have previously developed [12] (for
details, see S1 Appendix). For computational and therapeutic compliance reasons, the multi-
target approach has been restricted to combinations of target triplets. In detail, each combina-
tion of three TPs is ranked according to its TSDS, a topological index based on the shortest
paths connecting the TPs and the network DPs. The TSDS also takes into account the network
edge weights (i.e. favoring shortest paths with higher edge weights). Next, significant target
combinations are selected through the construction of a null distribution and by applying a p-
value threshold (p-value < 0.01, for details, see S1 Appendix).
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Selection of drug candidates through data fusion. The third step of the proposed
approach aims selecting potential drugs candidates (see step 3 in Fig 1). First, DrugBank [34]
and Comparative Toxicogenomics Database (CTD) [35] are used to extract a list of approved
drugs known to interact with the TPs. Second, this list is further augmented through the appli-
cation of a novel data fusion approach based on matrix tri-factorization [26,36] (for details, see
S2 Appendix).

This approach, which extends a strategy used in recommender systems, represents data
sources through association matrices, e.g. disease-gene, drug-target, protein-protein. Such
matrices are then jointly factorized through a product of low-rank matrix factors (correspond-
ing to "latent"” dimensions, i.e. meta-genes, meta-proteins). The factors are found by means of a
suitable optimization algorithm that allows to take into account the entire set of matrices all at
once. When factors are multiplied, the original matrices are reconstructed with a good approxi-
mation while generating predictions on potential new interactions [26]. The application of this
procedure to our problem enables to detect new interaction pairs between drugs and selected
targets by combining various data sources with the aim to reposition drugs used for other dis-
ease to the TNBC case.

In detail, as we can see from Table 1, we took into account: (i) Diseases; (ii) Drugs; (iii) Pro-
teins and their relationships (see Table 1). Each knowledge source is represented through a
data matrix. A data matrix can link objects of the same type (e.g. protein-protein interactions)
or objects of different types (e.g. drugs and their targets). Relationships between objects of the
same type i are defined by the constraint matrix ©;, while the links between the objects i and j
are represented through the relation matrix R;; (for details, see S2 Appendix). Such matrices
are simultaneously factorized by the algorithm to reveal hidden drug-target associations. The
drugs predicted to interact with the significant targets are finally merged with the known drug
list extracted from DrugBank and CTD. Thanks to this procedure a final list of candidates for
selected targets is obtained.

Boolean modeling of disease pathways

After having selected the list of drugs, the proposed pipeline focuses on the construction of
drug response prediction models, whose simulations should lead to the prediction of a single-
compound drug efficacy as well as of a multi-compound drug efficacy. In our case study (as
depicted in Fig 2), we concentrate our efforts on the signaling pathways related to the TNBC
progression.

As a first stage (see step 1 in Fig 2), a list of biological pathways related to the TNBC pro-
gression is extracted from the KEGG pathways repository and each pathway is subsequently
modeled as a Boolean Network (BN). To this end, we developed an automated procedure to
process and convert KEGG signaling pathways into BNs. Each regulatory reaction in a pathway
is translated into a logic formula by parsing the related KEGG KGML file related. In the KEGG
database, interactions between molecules are mainly contained in signaling maps and they

Table 1. Collection of data sources used for matrix tri-factorization, their size and number of edges.

Matrices
©4

O

O3

Ris

F{2,1

Res

Associations

disease-disease
drug-drug
protein-protein
disease-protein
drug-disease
drug-protein

doi:10.1371/journal.pone.0162407.t001

# Nodes # Interactions Data Sources

6337 35201 DiseaseOntology [37]
1196 11921 DrugBank [34]
14250 431600 STRING [28]
1844/13250 96157 GeneRIF [38]
766/134 799 TTD[39]

1338/3585 15153 DrugBank [34]
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encode information such as “A activates B”. We translate every possible interaction into a Bool-
ean function following the conversion rules shown in Table 2. For example, if in a pathway “A
activates B” this relation has been automatically converted into “A AND B”. In this way, it is
possible to assign a Boolean equation to every node belonging to a pathway. As a result, we
obtain a BN for each TNBC-related pathway extracted from KEGG.

Next, further data were integrated into the BN models (see step 2 in Fig 2) in order to better
specialize them to the TNBC case. In detail, we integrated gene expression microarray data
about TNBC into the model: the TNBC database (TNBCDD) [40] was used to extract a list of
differentially expressed genes (i.e. genes with fold-change (FC) values greater than 2 in TNBC
tissue(s) versus different types of non-TNBC tissues). If a gene was differentially expressed in
multiple experiments, it was considered up- or down- regulated by checking the FC values
obtained in each experiment; i.e. its final differential expression direction is assigned based on
the majority of times it was up- or down- regulated. If a gene was found both up- and down-
regulated in the same number of experiments, it was discarded.

We then set the values of the BN nodes corresponding to these genes, i.e. Disease Nodes
DN, to 0 or 1 depending on their differential expression (i.e. down-regulation or up-
regulation).

1. BOOLEAN MODELS 2. MODELING OF DRUG ACTIONS

each BIOLOGICAL PATHWAY

e D1
s

°3 J. V‘O DP2 = 0

DPi1=1
DP initial values TP initial values
@ uvr 1 INCREASED | 1

@oowN |0 DECREASED | 0

3. MONTE CARLO SIMULATIONS 4. RANKINGS

[0:119

oS,

for each DRUG/DRUG COMBINATION

-

@0

EFFECT index DPscore

D1,D2,D3 10.5
D2,D1
D3,04,D5 0.5

D1

Fig 2. Predicting the drugs effect on biological pathways. (1) Boolean modeling of KEGG pathways; (2) Modeling the disease
nodes and the pharmacological actions; (3) Monte Carlo simulations of the drug combination actions; (4) Ranking of the drug efficacy
and the disease proteins.

doi:10.1371journal.pone.0162407.9002
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Table 2. Conversion table of KEGG associations into Boolean rules.

KEGG biological relationship Symbol Booleanrule
Activation --> AND
Inhibition - NOT
Expression --> AND
Repression - NOT
Indirect effect > AND
State change e AND
Binding/association -- AND
Dissociation -+- NOT
Phosphorylation +p AND
Dephosphorylation -p NOT
Glycosylation +g AND
Ubiquitination +U AND
Methylation +m AND

doi:10.1371/journal.pone.0162407.t002

Simulation of drug actions and planning of in vitro studies

In the final step of the proposed approach (see step 4 in Fig 1), the action of each interesting
drug and drug combination was simulated in every selected pathway.

Initialization of target nodes. First, the administration of a drug or a drug combination
was modeled by identifying the BN nodes corresponding to the related TP targets and by set-
ting, as shown in Fig 2, their initial values to 0 or 1 based on the related drugaction (i.e. 0 or 1
if the drug decreases or increases the expression or the activity of its targets, respectively). To
this end, the Comparative Toxicogenomics Database [35] was used to exploit available knowl-
edge on drug-gene interactions. In detail, we retrieved drug-gene interactions and their
descriptions were analyzed in order to assign a final value (0 or 1) to the target genes of inter-
esting drugs.

Monte Carlo Simulations of drug actions in pathways. As depicted in step 3 of Fig 2,
since only the initial values of the DP and TP nodes were known, we performed M Monte
Carlo simulations to randomly assign values to the other network nodes.

In detail, the simulations were performed using the MATLAB-toolbox Odefy [23]. Thanks
to this procedure Boolean models are converted to continuous ODEs for a better visualization
and interpretation of the node behavior (see plots in step 3 of Fig 2).

Drug combination ranking by EFFECT index. The simulation results were then analyzed
to provide a ranking of drug therapies (see step 4 in Fig 2). To this end, we defined a global
effect index, called the EFFECT index, which assigns a score to each selected drug and drug
combination.

The EFFECT index can be computed in three main steps:

1. PathEFF,c index. First, for each pathway we independently analyze the simulation results.
Here, we assume that the therapeutic efficacy of a drug or a drug combination can be evalu-
ated taking into account the BN nodes corresponding to Disease Nodes (DNs, see previous
sections).

A therapy is considered to be more effective than another one if it regularizes more DN,
while the other network nodes (i.e. not-disease nodes DN ) must not be perturbed by the
drugaction. Note that a node is considered a regularized node RN if its initial value changes
after the simulation (i.e an up-regulated DP becomes 0 or a down-regulated DP becomes 1)
otherwise it is called "not regularized" node (RN ). The identification of regularized nodes

PLOS ONE | DOI:10.1371/journal.pone.0162407 September 15,2016 9/27
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allowed us to assign a pathway-related score to every simulated treatment. This score, the
PathEFF index, measures the potential effect of a treatment in a specific pathway. The
PathEFF index is based on the construction of a confusion matrix, where:

o True Positives (TrPs) correspond to the disease nodes DN correctly regularized by the drug
administration.

False Positives (FPs) are network nodes not corresponding to DNs, whose values have been
changed by the drug.

False Negatives (FNs) are DN nodes not regularized.

True Negative (TNs) are not-diseased nodes (i.e. DN) not affected by the pharmacological
action.
The PathEFF of a drug or a drug combination D in a pathway p is then calculated as:

PathEFF(D, p) = 2 precision - recall
a -9. £ @@
P precision + recall

where:
o TrP (@)
recision = —————
p TeP + FP
and
TrP
l = ——— 5
TN T TP 1 BN ()

Precision and recall are calculated based on the confusion matrix of the considered path-
way p. It is easy to see that the PathEFF index is the F-measure of the confusion matrix: the
score is high if the proportion of disease genes that have been regularized (i.e. True Posi-
tive) in a pathway by a given drug administration is high.

Following this procedure, the actions of each possible treatment were simulated in every
selected pathway. Since we perform M Monte Carlo simulations (usually with M = 1000)
for each drug D in each pathway p;, we average PathEFF over all the simulations:

1
PathEFF, (D, pj) = 2 Y21 PathEFF, (6)

2. DrugEFF index. The individual PathEFF ;¢ indices are then averaged over all the pathways
to obtain a global score of a treatment effect on the disease, i.e. the DrugEFF index. Formally,
DrugEFF for a drug/drug combination D can be defined as:

DrugEFF = " PathEFF, (D, p;) (7)

where # is the number of pathways in which at least one target of the drug D is included.

3. EFFECT index. Finally, in order to evaluate the effective potential activity of a treatment, the
DrugEFF index can be compared to the noDrugEFF index, i.e. a measure of the pathway
behaviors without treatment. This index is obtained by following the same procedure used
to compute the DrugEFF index, except that the target TP values are not initialized.
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In this way, an EFFECT index of a drug or a drug combination D can be calculated as:

DrugEFF(D) — noDrugEFF(D)
noDrugEFF(D)

EFFECT(D) = 100 (8)

The EFFECT(D) can be used to rank therapies and to select the best candidates for in vitro

studies.

Disease Protein ranking to support in vitro studies. Finally, a ranked list of DPs that
should be monitored during in vitro experiments can be obtained by analyzing the results and
taking into account the number of regularized DNs in a disease pathway.

The aim of this final procedure is to plan in vitro studies measuring the expression of a fixed
panel of genes under different drug actions, in order to validate the ability of the method to
retrieve potential therapies.

The ranked list can be obtained thanks to the definition of a score that evaluates, for each
candidate combination (drugComb), the probability P(DP) that a DP will be regularizedin a
pathway k in M Monte Carlo simulations. The probability P,(DP) can be obtained as:

Nr(DP)

if DP belongs to the pathway k

P (DP) =
«(DP) otherwise

©)
0

Where Nr(DP) is the number of times a DP is regularized in M simulations.
Next, the global score of a DP for a drugComb is computed as:
DP_, = median[P, (DP),...,P,(DP),... P, (DP)]

score 10
if P,(DP) # 0; N = number of pathways (10)

The median has been chosen in order to favor nodes that obtained high scores even if they
do not belong to many pathways.

The final panel of DP is provided by computing a “consensus” ranking, taking into account
the individual ranking preferences of the different drug combinations. To this aim, we used the
Borda count, a form of preferential voting where rankings are converted into points, and the
candidate that receives the most points is declared the winner [41].

Results

We started from the selection of a list of proteins known to be strongly related to the genetic
variants caused by the disease. Analysis of the experimental data reported in [27] allowed to
extract a list of 43 DPs codified by the most significantly mutated and differentially expressed
genes in TNBC (see S1 Table). The list of DPs obtained with this procedure allowed building a
PPI network by using the STRING database. The resulting TNBC network, shown in Fig 3, has
554 nodes (proteins) and 2602 edges (associations).

We then selected target protein (TP) candidates according to the approach described above
and in [12]. We identified 110 hub nodes by selecting the top 20% of nodes ordered by their
degree values (depicted in pink in Fig 4(A)) and 139 bridging nodes by considering only the
proteins in the highest quartile (0.003087) of bridging centrality values (reported as orange
nodes in Fig 4(B)). Bridging nodes were selected as TPs. Finally, in order to evaluate druggabil-
ity, the use of DrugBank and CTD allowed the extraction of 6074 drugs or compounds associ-
ated to 180 network nodes. Only such nodes, depicted in dark green in Fig 4 (C), were
considered as druggable and thus as potential targets.
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Fig 3. TNBC PPI Network. In the network the 43 DP seed nodes are highlighted in red while the 33 TP nodes are depicted by blue diamonds. The node size
depends on the Bridging Centrality values as shown in the graph below the figure.

doi:10.1371/journal.pone.0162407.9003

The final list contains 33 TP nodes, selected out of 110 hub proteins (discarded), 139 bridg-
ing and 180 druggable nodes. They are listed in Table 3 and depicted in blue diamonds in Fig 3.

The TSDS for each possible combination of 3 targets was then calculated and a null distribu-
tion was computed to find the significant TSDS proteins. In detail, the most significant triplets
with p-values<0.01 resulted in 134 combinations of 16 different involved TPs. The significant
target nodes are marked with an asterisk in Table 3; the table also reports their frequency in the
triplets.

The third step involves the selection of drug candidates to be repurposed to the TNBC.

We first retrieved 7 approved drugs with known significant drug-target interactions from
DrugBank and CTD repositories. Second, by applying the tri-factorization algorithm, we iden-
tified 8 predicted drugs associated to network nodes out of 816 predicted drug-target associa-
tions. The known and predicted drugs and the related significant TP nodes are listed in
Table 4.

Within the drug lists, 7 promising drugs, i.e. Imatinib, L- Aspartic Acid, Vemurafenib,
Hydroxyurea, Azacitidine, Flucytosine and Trametinib, have been selected for further
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Hub nodes Bridging nodes

Fig 4. Network constraints to select TP nodes. In Fig 4(a) hubs are highlighted in pink. Note that these nodes are discarded as potential TPs. In Fig 4(b)
orange nodes correspond to the bridging nodes, while in Fig 4(c) druggable nodes are depicted in dark green. The node size is proportiona to its degree (i.e.
number of neighbors).

doi:10.1371/journal.pone.0162407.9004

investigations. In fact, they seem to be suitable repositioned in TNBC, since previous studies
indicate their effective use in malignancies other than breast cancer [42-48]. A particularly
interesting candidate that emerged using our method was Imatinib. Imatinib is a well-
described protein tyrosine kinase inhibitor that has potent activity against the oncogene fusion
protein, BCR-ABL, the platelet-derived growth factor receptor (PDGFR), and the growth factor
receptor of the tyrosine kinase subclass III family, C-Kit (or CD117). The clinical activity of
Imatinib was first established in the treatment of chronic myelogenous leukemia (CML), a dis-
ease defined by the overexpression of BCR-ABL. When administered to patients with CML,
the response rate (RR) to Imatinib was over 90%, with most patients experiencing long-term
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Table 3. List of network Target Proteins TP. The column Freq. reportsthe protein frequency in the significant triplets.

Ensembl Prot ID Gene Name Description Frequency
ENSP00000400175* RHOA ras homolog family member A 68
ENSP00000344220* PDPK1 3-phosphoinositide dependent protein kinase 1 57
ENSP00000261584* PALB2 partnerand localizer of BRCA2 38
ENSP00000380024* ING4 inhibitor of growth family, member 4 38
ENSP00000302564* BCL2L1 BCL2-like 1 32
ENSP00000324173* HSPA5 heat shock 70kDa protein 5 29
ENSP00000295400* TGFA transforming growth factor, alpha 25
ENSP00000364929* ING1 inhibitor of growth family, member 1 21
ENSP00000265171* EGF epidermal growth factor 18
ENSP00000262033* PTGESS3 prostaglandin E synthase 3 (cytosolic) 14
ENSP00000262948* MAP2K2 mitogen-activated protein kinase kinase 2 14
ENSP00000302886* PA2G4 proliferation-associated 2G4, 38kDa 11
ENSP00000276603* TERF1 telomeric repeat binding factor (NIMA-interacting) 1 10
ENSP00000291700* S100B S100 calcium binding protein B 8
ENSP00000361275* PLK3 polo-like kinase 3 6
ENSP00000381098* GRIP1 glutamate receptor interacting protein 1 1
ENSP00000005257 RALA v-ral simian leukemia viral oncogene homolog A (ras related) 0
ENSP00000233057 EIF2AK2 eukaryotic translation initiation factor 2-alpha kinase 2 0
ENSP00000238721 TP5313 tumor protein p53 inducible protein 3 0
ENSP00000264818 TYK2 tyrosine kinase 2 0
ENSP00000270279 CBLC Cbl proto-oncogene C, E3 ubiquitin protein ligase 0
ENSP00000278385 CD44 CD44 molecule (Indian blood group) 0
ENSP00000316032 NUP98 nucleoporin 98kDa 0
ENSP00000321410 MAPK9 mitogen-activated protein kinase 9 0
ENSP00000326031 PPP1CA protein phosphatase 1, catalytic subunit, alpha isozyme 0
ENSP00000338799 IL6ST interleukin 6 signal transducer 0
ENSP00000342924 MCPH1 microcephalin 1 0
ENSP00000347046 PDE5A phosphodiesterase 5A, cGMP-specific 0
ENSP00000356529 RGS16 regulator of G-protein signaling 16 0
ENSP00000357283 LMNA lamin A/C 0
ENSP00000369981 SH3GL2 SH3-domain GRB2-like 2 0
ENSP00000370330 ERBB2IP erbb2 interacting protein 0
ENSP00000379330 NFATC2 nuclear factor of activated Tcells, cytoplasmic, calcineurin-dependent 2 0

*Proteins resulted in significant combinations are marked with an asterisk.

doi:10.1371/journal.pone.0162407.t003

Table 4. Known and predicted drugs associated with significant TP nodes.

Significant TP GeneName Known Drug Predicted Drug

ENSP00000344220 PDPKA1 Celecoxib No drugs

ENSP00000302564 BCL2L1 No drugs Imatinib*, Hydroxyurea*, Azacitidine*,L-Aspartic Acid*, Flucytosine*
ENSP00000324173 HSPA5 Antihemophilic Factor No drugs

ENSP00000265171 EGF Sucralfate No drugs

ENSP00000262948 MAP2K2 Bosutinib, Trametinib*, Vemurafenib* Mercaptopurine, Dimethyl fumarate, Carbidopa

ENSP00000291700 S100B Olopatadine No drugs

*Drug selected as promising candidates are marked with an asterisk.

doi:10.1371/journal.pone.0162407.t004
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disease control [42]. Imatinib is also indicated for the treatment of gastrointestinal stromal
tumor (GIST) in which C-Kit is typically overexpressed, resulting in a disease control rate of
over 80% [49]. Moreover, interesting data have suggested that imatinib can induce a positive
response in at least 90% of patients with dermatofibrosarcoma protuberans (DFSP) [50]. Imati-
nib has limited efficacy as a single agent in conditions where overexpression of its tyrosine
kinase target has not been well defined. However, some preliminary experiences of Imatinib in
combination with other cytotoxic agents, reported a sort of anti-tumor activity, even in the
absence of specific molecular targets, in different types of solid malignancies. In metastatic
breast cancer the use of combination of chemotherapy (i.e. Vinorelbin, Taxanes or Capecita-
bine) with Imatinib derived a limited but measurable clinical benefit, in heavily pre-traeted
mBC patients [51].

From above and with the intent to deeply investigate the off-targets effect of Imatinib, based
on the suggestion of our model, we decided to focus our further analysis on the combinations
involving this drug.

Following the pipeline, we extracted from the KEGG repository a list of 18 pathways
(detailed in Table 5) mostly involved in the TNBC progression and related to the targets of the
selected drugs. Each pathway was then modeled as a Boolean Network (BN). The numbers of
nodes, edges and disease proteins of the pathways are provided in Table 5.

We then extracted from the TNBC database (TNBCDb) [40] a list of differentially expressed
genes. The list included 2052 up-regulated and 1239 down-regulated genes. For each BN
related to a KEGG pathway, the initial values of the DPs were automatically assigned according
to their expression values (i.e. 0 for down-regulated genes and 1 for up-regulated genes; see
green and red nodes in Fig 5). S2 Table reports the 111 up-expressed and the 62 down-
expressed genes belonging to at least one of the selected pathways.

Before running the BN simulation Odefy, the possible drug combinations were restricted to
the ones whose actions are not opposite on their shared targets (e.g. a drug pair is discarded if
one drug activates a target that is inhibited by the other drug). For example, looking at the

Table 5. Pathways selected from KEGG. For each pathway, the number of nodes and edges of the related BN as well as the number of DPs and drug tar-
gets (for each of the drugs considered) present in the pathway networks are listed. In the table No TPs means that no drug targets were found in the pathway.

KegglID

hsa04062
hsa04060
hsa04012
hsa04068
hsa04066
hsa04910
hsa04630
hsa04010
hsa04150
hsa04115
hsa05200
hsa04151
hsa04015
hsa04014
hsa04350
hsa04668
hsa04620
hsa04370

Pathway Name
Chemokine
Cytokine-cytokine
ErbB

FoxO

HIF-1

Insulin

Jak-STAT

MAPK

mTOR

p53

Pathways in cancer
PI3K-Akt

Rap1

Ras

TGF-beta

TNF

Toll-like

VEGF

doi:10.1371/journal.pone.0162407.t005

#Nodes #Edges #DPs Imatinib Vemurafenib Flucytosine

56 85 21 9 3 No TPs
236 217 50 15 No TPs No TPs
57 113 21 12 3 No TPs
76 115 26 8 3 No TPs
73 106 21 15 1 1

69 104 18 11 3 No TPs
30 47 9 7 No TPs No TPs
128 226 40 15 4 1

43 63 12 12 1 No TPs
57 98 16 7 No TPs 2

146 274 56 33 3 3

83 140 28 18 3 3

78 109 23 5 4 No TPs
80 135 25 7 4 No TPs
47 62 13 5 No TPs No TPs
50 90 16 15 1 No TPs
72 124 23 15 1 No TPs
33 51 14 7 3 No TPs
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SPRED1,SPRED2,SPRED3

SPRY2,SPRY1,SPRY4

network shown in Fig 5, a combination of Hydroxyurea and Imatinib was discarded because of
their opposite interaction with CCND1, CCND2, CCND3 genes.

Under this assumption, we considered the following combinations: Imatinib, Imatinib-
Vemurafenib, Imatinib-Flucytosine and Imatinib-Vemurafenib-Flucytosine.

For each selected drug, we extracted the related TP targets by using CTD: the numbers of
targets participating in each KEGG pathway for the selected drugs are shown in Table 5. As evi-
dent in the table, Imatinib targets are involved in all the disease pathways, unlike the other
drug’s targets. Afterwards, we simulated the action of every combination in each pathway by
fixing the initial values of the TP involved in the pathway and associated with the drugs in the
combination. Initial values were set to 0 or 1 based on CTD interactions between the TPs and
the drug candidates.

By applying the Odefy toolbox with 1000 Monte Carlo simulations, we simulated the action
of Imatinib and drug combinations involving Imatinib in order to estimate the behaviors of the
selected 18 biological pathways. An example of the output is provided in Fig 6: Fig 6(A) shows
all gene nodes behaviors after the Imatinib action simulation, while Fig 6(B) reports only the
ones related to the regularized nodes.

IL15
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\ PTPN6

LRy

CBLC,CBLB,CBL

SOCS7
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CISH EDGE ARROW TYPE

el NOT
EP300,CREBBP = AND
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O OTHER NODE
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Fig 5. Boolean Network of the Jak-STAT signalling pathway.

doi:10.1371journal.pone.0162407.9005
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Time [a.u.]

Time [a.u]

(a) All nodes behaviour (b) Regularized nodes behaviour
Fig 6. An example of Odefy outputs obtained by simulating Imatinib administration in Jak-STAT signaling pathway.
doi:10.1371/journal.pone.0162407.9006

The effects of drug treatments were then evaluated for all possible drug combinations in
each pathway by computing the EFFECT index. First, the PathEFF,c index was calculated as
in Eq (6) to obtain a score of the effect of each simulated therapy in all disease pathways. The
results are shown in Fig 7(A) and details on the data are provided in S3 Table.

The DrugEFF index was then calculated for all the 4 treatments following Eq (7). Here, the
DrugEFF index for the combinations was computed by averaging only the PathEFF ;c of the
pathways involving at least one TP of Vemurafenib or Flucytosine. With the same procedure,
for each treatment, the related noDrugEFF indices were calculated to evaluate the behaviors of
untreated pathways. The resulting DrugEFF and noDrugEFF are shown in Fig 7(C). Lastly, the
final therapy EFFECT index, computed as in (8), allowed capturing the differential effect on
treated and untreated pathways (see Fig 7(C)). In detail, Imatinib had a positive effect on the
treatment of the disease (EFFECT = 4.81), as well as a combination of Imatinib and Vemurafe-
nib (EFFECT = 8.53) and a combination of Imatinib and Vemurafenib and Flucytosine
(EFFECT = 10.47). On the other hand, Imatinib combined with Flucytosine had a small nega-
tive effect (EFFECT = -0.57).

Finally, we calculated the DP;,,. (according to Eq (10)). This procedure provided a ranked
list (see S4 Table) of DPs that were suggested to be monitored during in vitro experiments.

In vitro results

According to the previous findings, in vitro experiments were carried out to validate the pro-
posed approach and to verify the potential effectiveness of the selected combinations.

As a first stage, an MTT assay was performed to assess how different cell lines react under
different concentrations of Imatinib. In detail, the MCF?7 cell line of luminal breast cancer sub-
types was used as a control line, while the MDA-MB-231 cell line was taken as representative
of TNBC. Cell viability was evaluated in MCF7 and MDA MB 231 cells after 2-5-7 day of treat-
ment with different concentration of Imatinib (5, 10, 15 pM; Sigma). The number of viable
cells was detected using CellTiter Aqueous Assay kit (Promega Corporation) accordingly to
manufacturer's instructions. Untreated MCF7 or MDA-MB-231 cells were used as a control
for cell death measurement. The effects of Imatinib administration at different doses and times
are shown in Fig 8 (for details, see S5 Table).
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Fig 7. (a) PathEFFyc index for each simulated treatmentin every pathway; (b) DugEFF(D) and the related noDrugEFF(D) for each drug combination; (c)
EFFECT index for each simulated drug administration

doi:10.1371/purnal.pone.0162407.9007

An evaluation of the behavior of interesting DPs was performed after a one-week treatment
with 10 pM Imatinib on both cell lines (see Fig 9 (A)) with Western blotting experiment. Here,
SDS PAGE was performed as previously described in [52]. Primary antibodies were: mouse
monoclonal cleaved-PARP (1:100, Santa Cruz), Mcl1 (1:100, Santa Cruz), beta-actin (1:200,
Santa Cruz), or rabbit polyclonal pAKT (1:400, Cell Signaling technology).

Finally, a gene expression assay of the relevant DPs was performed by using a quantitative
real-time PCR (qPCR). In these experiments, total RNA of each sample was isolated and
c¢DNA achieved using High Capacity cDNA Archive kit as recommended by manufacturer
(LifeTech). For amplification 50ng of cDNA/sample was combined with specific primers (Taq-
Man Assay) as recommended by manufacturer (LifeTech). Amplification was performed by
Vii7 Real-Time PCR systems (LifeTech). All amplification reactions were performed in tripli-
cate, and the relative quantitation of genes expression was calculated using the comparative Ct
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Fig 8. Evaluation of cell viability performed by treating MCF7 and MDA-MB-231 cell lines with different doses of Imatinib. MCF7 cell line is taken as
control, while MDA-MB-231 is used as representative of TNBC.

doi:10.1371/journal.pone.0162407.9g008

method (DeltaDeltaCt). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as
endogenous control. Data processing and statistical analysis were performed using Vii7 soft-
ware. The results are shown in in Fig 9(B).
As predicted by our approach, TNBC cell lines show increased sensitivity to Imatinib in
comparison with luminal-like breast cancer cells.
In addition, the method predicts a further synergic cytotoxic effect when TNBC cell lines
are treated with Imatinib and Vemurafenib. To establish this synergy, we evaluated the prolif-
eration rate of TNBC cells and luminal-like breast cancer cells treated with Imatinib 10 uM

MCF-7 MDA MB 231

Imatinib( - +\( - +\

pAKT
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(a) Western blot assay
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(b) Gene expression assay

Fig 9. Disease genes evaluations by treating disease and control cell lines with Imatinib.

doi:10.1371/jourral.pone.0162407.9009
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Fig 10. Evaluation of proliferation rate of TNBC cells (IDA-MB-231) and luminal-like breast cancer cells (MCF?7).
doi:10.1371/journal.pone.0162407.9010

and Vemurafenib 25 uM for three days. The results are shown in Fig 10. Fig 10 also shows the
proliferation rate obtained by treating the cell lines only with Imatinib (see ima on the x axis).

Discussion

Cancer clinical trials have been the key for the major advances in modern oncology. However,
in the last years a clear recognition about the obstacles of such a model of clinical research
emerged within the academic, and pharmaceutical/biotech communities, with the evidence
that our current conception of new drug discovery and development is no longer fit for pur-
pose. Minimal success rates of drug approvals, poor safety profiles, and long development pro-
cesses are some of many hurdles encountered in the drug discovery. In this scenario, drug
repurposing can provide an alternative approach, to meet the demands of the new, potent and
safe anticancer agents in terms of both economic cost and time efficiency. The common molec-
ular pathways of different diseases and secondary indications of most of the approved drugs,
together with advances in genomics, informatics and biology, and finally with the availability
of approved or safe drug libraries can provide an efficient way of screening safer drugs for new
indications. Network based bioinformatics approaches, able to integrate the best knowledge on
a specific disease and relevant drugs information, open new avenues for an effective pre-analyt-
ical screening that could be incorporated in the challenging process of anti-cancer drug
discovery.

In our work, we have investigated the application of our proposed framework to the case of
TNBC, a subclass of breast cancer that still doesn't have clearly identified molecular targets.

For TNBC, the PPI network was constructed starting from a list of proteins derived from
the analysis of a recent mutational study on TNBC [27].

The targets selected as candidates by applying the TSDS function on TNBC network are
shown in Table 3 and, interestingly, none of them is currently used in robust ongoing clinical
trials, thus opening the study to new prospects for TNBC treatments. Moreover, the drugs we
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identified as potential candidates (e.g. Imatinib, L-Aspartic Acid, Vemurafenib, Hydroxyurea,
Azacitidine, Flucytosine and Trametinib) seem to be suitable repositioned in TNBC since their
effect in other malignancies have been already assessed [42-48].

As anticipated, a particularly interesting candidate that has been predicted using our
method is Imatinib, the elective drug for chronic myeloid leukemia and GISTs, and whose oft-
targets activity herein identified, suggest encouraging antitumor opportunities in TNBC.

The use of BNs allows for a better interpretation of molecular patterns of tumors under dif-
ferent drug administrations. Currently there are many approaches to model and simulate bio-
logical processes, such as signalling pathways (e.g. Petri networks, Bayesian networks,
differentially equations ODEs [53]) that can be considered as valid alternatives. We decided to
choose BN since they provide a simple and intuitive representation of the biological interac-
tions occurring between genes and they are amenable to easily represent KEGG pathways.
Moreover, thanks to the Matlab tool Odefy it has been possible to convert them into continuous
models and obtain a visual representation of the node response to external stimuli (i.e. drug
action). BNs are clearly a strong simplification of the real biological pathways behaviors, but
they are considered good mathematical models able to predict ordered sequences of activation/
inhibition patterns, albeit without predicting the exact dynamics of a biomolecular network. In
our case, their use is instrumental to highlight the pathways that can be investigated first to ver-
ify the efficacy of the proposed drug candidates.

The construction and simulation of BNs for the pathways mostly related to TNBC progres-
sion under drug activities confirmed that Imatinib is a suitable candidate for TNBC treatment.
Many of its targets are involved in all the pathways related to TNBC (see Table 5). On the other
hand, the other drugs selected to be combined with Imatinib have fewer targets participating in
such pathways.

Moreover, analysis of the simulation results performed through the definition of EFFECT
index allowed to clarify whether a stronger effect can be achieved by combining Imatinib with
other drugs, such as Vemurafenib and Flucytosine. The results showed that the predicted
stronger effects on the disease are obtained by combining Imatinib with Vemurafenib or both
with Vemurafenib and Flucytosine (see Fig 7). On the contrary, the combination of Imatinib
and Flucytosine resulted in a negative EFFECT index and, therefore, such multi-drug treatment
has been discarded for future experiments.

Based on the results we obtained, different in vitro studies have been performed to validate
the ability of our approach to retrieve potential therapeutics. First, we performed an MTT
assay to assess how TNBC cell lines reacted under different concentrations of Imatinib.
Remarkably, the curve decreased (see Fig 8) only for the TNBC cell line but not for the controls,
demonstrating the drug selectivity for the tumor subtype.

The results of the evaluation of interesting DP signaling (shown in Fig 9 (A)) confirmed
that Imatinib can be considered as a potential drug candidate, since proteins related to a
decrease in survival such as PTEN and Mcl-1 showed decreased activity in the treated TNBC
line, while proteins such as Cleaved PARP, related to DNA damage, showed an increased signal
(see Fig 9 (A)).

Finally, the results of a gene expression assay of the relevant DPs demonstrated a decreased
expression of EGFR and BMI only in the TNBC line (see Fig 9 (B)). These two genes are
involved in TNBC progression, again supporting the potential activity of Imatinib.

Preliminary in vitro experiments were also performed on TNBC and control cell lines using
a combination of Imatinib and Vemurafenib. As shown in Fig 10, we found a significant delay
in the proliferation of TNBC cells in comparison with luminal-like breast cancer cells, due to a
synergic cytotoxic effect of the two drugs. Thus, a lower proliferation rate in the TNBC cell
lines was found when using a multi-drug approach instead of the single drug treatment. This
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finding confirms that synergistic treatments may have a higher impact on complex diseases
such as TNBC.

This work has shown the applicability of a network-based approach to identify potential
drug targets by integrating specific molecular profiles of a disease subclass with data and
knowledge extracted from a variety of information sources.

The developed methodology can easily be applied to a large variety of multifactorial diseases
thus enabling the selection of tailored treatments, one of the crucial components of precision
medicine.

For instance, if we are interested in investigating therapies for a specific patient, the PPI net-
work can be constructed on the basis of the list of mutated proteins in the patient's specific
proteomic or genomic background.

The results obtained by applying the proposed approach can also be translated into practical
recommendations for planning in vitro experiments aimed at validating the identified drug
candidate combinations.

Future directions of this work will be devoted to address its current limitations, both from
the experimental and the methodological perspectives.

As concerns the experimental aspects, additional validation and testing of some of the pre-
sented procedures will be included. Other in vitro studies will be performed to further investi-
gate the Imatinib-Vemuafenib combination. Moreover, the triplet of Imatinib, Vemurafenib
and Flycitosine will be tested, too, in order to validate the findings obtained about its potential
effect on TNBC.

As relates to the methodological aspects, more detailed models of disease pathways will be
studied, in particular Bayesian networks and Petri networks, in order to get a more detailed
description of the biological processes involved in the disease and in drug activities and of their
synchronization. In particular, an actual restriction introduced by using Boolean networks is
that such models allow the representation of the problem with binary variable and logic rela-
tions. In contrast, Bayesian networks may allow representing the problem with multiple states.
Therefore, in the network modeling, it will be possible to include information about the differ-
ential expression of specific genes (i.e. how much a gene is over- or under- expressed), the nor-
mal states and the activity of drug combinations that have opposite effects on certain targets.
Moreover, Petri Networks may allow better representing control/synchronization mechanisms
and to manage inconsistent and incomplete data [54].

A future extension of the proposed approach can be aimed at the integration of available
knowledge regarding side-effects. A possible way to select further interesting candidates is to
investigate drugs having side effects similar to the ones identified by the proposed method [55-
57]. To this aim, repositories such as SIDER can be used to retrieve drug side-effects [58].
Another option could be to include the side-effect information in the trifactorization algorithm
thus highlighting potential novel drug-target interactions by taking into account such knowl-
edge. This would be possible by adding a constraint drug-drug matrix representing drug simi-
larities based on the number of shared side effects.

Finally, other drug-protein repositories can be exploited, such as STITCH, thus allowing
considering also drugs derived from experiments, databases and the literature [33], together
with approved ones.

Conclusion

The development of an efficient bioinformatics framework is definitely needed to support drug
design in order to automatically provide or repurpose tailored therapies for a specific disease or
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for a group of patients. However, it is difficult to systematically investigate the molecular mech-
anisms underlying a complex disease, such as cancer, due to its multifactorial nature.

Recently, network-based approaches have been largely used to integrate, analyze and visual-
ize the available knowledge on a disease. Moreover, combining different types of information
(e.g. drug interactions, biological signaling pathways) into network models may help to better
understand the molecular mechanism of drug actions and to investigate potential drug
therapies.

In this work, we presented a network-based framework for a feasible and efficient identifica-
tion of personalized drug treatments that may be used to deal with complex diseases, such as
cancer. Such framework is specifically designed to combine drug repurposing and multi-target
therapy.

We propose a generic pipeline to rank multi-target proteins through the definition of the
TSDS score based on network analysis. The fusion of different data and knowledge sources by
applying the tri-factorization algorithm allows exploring the possibility of drug repurposing for
the disease under study. Simulations of drug administration by modeling biological pathways
into Boolean networks helped to provide suggestions for testing in vitro the most promising
candidates. The experimental validation demonstrated the ability of the proposed approach to
reveal potential thera*pies.
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