
HAL Id: hal-02194208
https://hal.archives-ouvertes.fr/hal-02194208

Submitted on 25 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Interface Conditions for Domain Decomposition
Methods

F. Nataf, F. Rogier, E de Sturler

To cite this version:
F. Nataf, F. Rogier, E de Sturler. Optimal Interface Conditions for Domain Decomposition Methods.
[Technical Report] 301, CMAP Ecole Polytechnique. 1994. �hal-02194208�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/226588682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02194208
https://hal.archives-ouvertes.fr


ECOLE POLYTECHNIQUE
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Abstract

We define optimal interface conditions for the additive Schwarz method (ASM) in the sense that
convergence is achieved in a number of steps equals to the number of subdomains. Since these boundary
conditions are difficult to use, we approximate them by partial differential operators that are easier to
use. We present numerical results using these approximate interface conditions for the ASM and Schur
type methods (substructuring). We also give a new result of convergence for BiCG which is then used
for BiCGSTAB.

1 Introduction

The rate of convergence of Schwarz or Schur (substructuring) type algorithms is very sensitive to the choice of
the interface conditions. The original Schwarz method is based on the use of Dirichlet boundary conditions.
In order to increase the efficiency of the algorithm, it has been proposed to replace the Dirichlet boundary
conditions with more general boundary conditions, see [14]. In the usual Schur method, Dirichlet and
Neumann boundary conditions are used. In [11], they are replaced with artificial boundary conditions. More
generally, it has been remarked that absorbing (or artificial) boundary conditions are a good choice (see,
[11], [1], [17], [8] where such boundary conditions are used). In this report, we try to clarify the question of
the interface conditions.

In § 2, we specify the optimal interface conditions for the Schwarz method applied to a domain decomposed
into strips. As an example we discuss the Helmholtz equation in some detail. Then, we show that these
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interface conditions are also very efficient for Schur type algorithms. In § 3, we explain very briefly how
to approximate these optimal interface conditions by absorbing (artificial) boundary conditions which are
partial differential operators (for more details see [18], [19]). We are then no more restricted to a domain
decomposed into strips. In § 4, we show some numerical results for the convection-diffusion equation.

2 Optimal interface conditions

Remark 2.1 This section is formal. For instance we do not give any functional framework. Any space of
functions from a set Γ to R will be denoted by L(Γ). It is implicitly assumed that all the boundary value
problems (BVP) are well posed. In this section, we give, formally, interface conditions for an arbitrary
second order elliptic partial differential operator L, such that the Schwarz algorithm converges in a minimum
number of steps. A Schur type method based on the same interface conditions (see § 2.2) will also converge
in the minimum number of steps. As we shall see, these interface conditions are difficult to use and will,
therefore, be approximated (see § 3). This is the reason why we keep this section formal.

2.1 Optimal interface conditions for the Schwarz algorithm

The outline of this section is the following. We first define the problem to be solved and the decomposition of
the domain into vertical strips. After that, we define the interface conditions used in the Schwarz algorithm,
we then prove its convergence in a number of steps equal to the number of subdomains. Finally, we discuss
the optimality of the interface conditions.

Let Ω be a connected open subset of R2. Let L be a second order partial differential operator and C be
a partial differential operator. We want to solve:

L(u) = f in Ω (1)

C(u) = g on ∂Ω

where f and g are given functions.

The set Ω is decomposed into N vertical strips Ωi, 1 ≤ i ≤ N (Ω̄ = ∪1≤i≤N Ω̄i) (see fig. 1).

For each i, Ω − Ω̄i is written as the disjoint union of two open subsets Ωi,l and Ωi,r where Ωi,l is on the
left of Ωi and Ωi,r on its right. ∂Ωi − ∂Ω is written as the disjoint union of Γi,l and Γi,r where Γi,l is on the
left of Ωi and Γi,r is on its right (Ω1,l = ∅ and ΩN,r = ∅) (see fig. 2). The outward normal from Ωi on Γi,l

(resp. Γi,r) is denoted by ~ni,l (resp. ~ni,r).
In order to define the interface conditions, we introduce the following Steklov-Poincaré operators.

Definition 2.2 For each 2 ≤ i ≤ N , let Λi,l : L(Γi,l) −→ L(Γi,l) be such that Λi,l(v0) = ∂v
∂~ni,l

where v

solves the following BVP:

L(v) = 0 in Ωi,l

v = v0 on Γi,l

C(v) = 0 on ∂Ω ∩ ∂Ωi,l
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Figure 1: - Decomposition into vertical strips

Figure 2: - Partition of Ω − Ω̄i
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Figure 3: Ωi

Similarly, for each 1 ≤ i ≤ N − 1, let Λi,r : L(Γi,r) −→ L(Γi,r) be such that Λi,r(v0) = ∂v
∂~ni,r

where v

solves the following BVP:

L(v) = 0 in Ωi,r

v = v0 on Γi,r

C(v) = 0 on ∂Ω ∩ ∂Ωi,r

The operators
∂

∂~ni,r or l

− Λi,r or l (2)

are used as transmission conditions for the Schwarz algorithm.

For example, the operator ∂
∂~ni,r

− Λi,r will be applied to two kinds of functions

1) functions from Ωi to R.
2) functions from Ωi+1 to R.
In any case, the result is a function from Γi,r to R. We explain now how to apply this operator to a function
v from Ωi or Ωi+1 to R. The computation of ∂v

∂~ni,r
is made on Γi,r. As for Λi,r(v), one has to take the trace

of v on Γi,r and to apply definition 2.2 (v0 = v|Γi,r
).

Remark 2.3 If Ω = R2, these operators are exact absorbing boundary conditions, also called artificial
boundary conditions, radiation boundary conditions, open boundary conditions, outflow boundary conditions,
. . . (see e.g. [4], [5]).

We now define the Schwarz algorithm. Let u0
i be an initial approximation to the solution u to (1) and let

un+1
i be the value of the approximated solution to (1) satisfying:
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L(un+1
i ) = f in Ωi

( ∂
∂~ni,l

− Λi,l)(u
n+1
i ) = ( ∂

∂~ni,l
− Λi,l)(u

n
i−1) on Γi,l (2 ≤ i ≤ N) (3)

( ∂
∂~ni,r

− Λi,r)(u
n+1
i ) = ( ∂

∂~ni,r
− Λi,r)(u

n
i+1) on Γi,r (1 ≤ i ≤ N − 1)

C(un+1
i ) = g on ∂Ω ∩ ∂Ωi

Proposition 2.4 The Schwarz algorithm (3) achieves convergence in N iterations, where N is the number
of subdomains.

We give two proofs. The first one is direct. The second one is based on an interpretation of (3) as an
algorithm for unknowns defined on the boundaries of the subdomains. It is an introduction to the Schur
method.
first proof The equations are linear. In order to prove the convergence, we can consider the homogeneous

case f = 0 and g = 0. We only have to prove the convergence to 0 of un
i . We shall use two propositions:

Proposition 2.5 a) Let u : Ωi → R (2 ≤ i ≤ N − 1) satisfy L(u) = 0 in Ωi, C(u) = 0 on ∂Ω ∩
∂Ωi,r and ( ∂

∂~ni,r
− Λi,r)(u) = 0 on Γi,r

Then, ( ∂
∂~ni−1,r

− Λi−1,r)(u) = 0 on Γi−1,r.

b) Let u : ΩN → R satisfy L(u) = 0 in ΩN and C(u) = 0 on ∂Ω ∩ ∂ΩN .
Then, ( ∂

∂~nN−1,r
− ΛN−1,r)(u) = 0 on ΓN−1,r.

and

Proposition 2.6 a) Let u : Ωi → R (2 ≤ i ≤ N − 1) satisfy L(u) = 0 in Ωi, C(u) = 0 on ∂Ω ∩
∂Ωi and ( ∂

∂~ni,l
− Λi,l)(u) = 0 on Γi,l

Then, ( ∂
∂~ni+1,l

− Λi+1,l)(u) = 0 on Γi+1,l.

b) Let u : Ω1 → R satisfy L(u) = 0 in Ω1 and C(u) = 0 on ∂Ω ∩ ∂Ω1.
Then, ( ∂

∂~n2,l
− Λ2,l)(u) = 0 on Γ2,l.

proof of proposition 2.5 Let u be as in proposition 2.5 a). We introduce the function v : Ωi−1,r → R to
be solution of







L(v) = 0 in Ωi−1,r

C(v) = 0 on ∂Ω ∩ ∂Ωi−1,r

v = u on Γi−1,r

By definition of Λi−1,r, we have

(
∂

∂~ni−1,r

− Λi−1,r)(v) = 0 on Γi−1,r. (4)

We prove now that v and u coincide on Ωi−1 ∩ Ωi. Since Ωi,r ⊂ Ωi−1,r, we have

{

L(v) = 0 in Ωi,r

C(v) = 0 on ∂Ω ∩ ∂Ωi,r
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Figure 4:

so that by definition of Λi,r we have ( ∂
∂~ni,r

− Λi,r)(v) = 0 on Γi,r.

Thus, u and v solve the same BVP set on Ωi−1,r ∩ Ωi i.e.















L(v) = L(u) = 0 in Ωi−1,r ∩ Ωi

C(v) = C(u) = 0 on ∂Ω ∩ ∂(Ωi−1,r ∩ Ωi)
( ∂

∂~ni,r
− Λi,r)(v) = ( ∂

∂~ni,r
− Λi,r)(u) = 0 on Γi,r

v = u on Γi−1,r

We have assumed that the different boundary value problems are well-posed and we have thus v = u.
We have a similar proof for the second part of the lemma and for lemma 2.6.•

Thanks to these propositions, we have that

(
∂

∂~nN−j,r

− ΛN−j,r)(u
n
N−j+1) = 0 on ΓN−j,r for all 1 ≤ j ≤ N − 1 and n ≥ j (5)

Let us prove (5) for j = 1. From (3), un
N satisfies

{

L(un
N ) = 0 in ΩN

C(un
N) = 0 on ∂Ω ∩ ∂ΩN

so that by proposition 2.5 b), we have ( ∂
∂~nN−1,r

− ΛN−1,r)(u
n
N ) = 0 on ΓN−1,r.

Let us prove now (5) for j = 2. From (3), un
N−1 satisfies for n ≥ 2







L(un
N−1) = 0 in ΩN−1

C(un
N−1) = 0 on ∂Ω ∩ ∂ΩN−1

( ∂
∂~nN−1,r

− ΛN−1,r)(u
n
N−1) = ( ∂

∂~nN−1,r
− ΛN−1,r)(u

n−1
N ) = 0 on ΓN−1,r (cf. above)

By proposition 2.5 a), we have that ( ∂
∂~nN−2,r

− ΛN−2,r)(u
n
N−1) = 0 on ΓN−2,r.

A similar proof can be constructed for j = 3, . . . , N − 1.
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By using proposition 2.6 a similar proof can be made to prove that

(
∂

∂~nj+1,l

− Λj+1,l)(u
n
j ) = 0 on ΓN−j,l for all 1 ≤ j ≤ N − 1 and n ≥ j (6)

It is now easy to prove that uN
i = 0 for every i. Indeed, from (3), (5) and (6) we see that the right hand

sides of the BVP defining uN
i are zero and thus uN

i = 0 for every i.•

second proof of proposition (2.4) We drop the requirement that f and g be zero. Let hn
i,r or l =

( ∂
∂~ni,r or l

− Λi,r or l)(u
n
i ) on Γi,r or l (2 ≤ i ≤ N − 1), hn

1,r = ( ∂
∂~n1,r

− Λ1,r)(u
n
1 ) on Γ1,r and hn

N,l =

( ∂
∂~nN,l

− ΛN,l)(u
n
N ) on ΓN,l. We will show that hN

i,r or l is equal to

hi,r or l = (
∂

∂~ni,r or l

− Λi,r or l)(ui) (7)

This will prove the convergence of (3) in N steps. In order to specify the algorithm for the computation
of hn

i,r or l, we introduce some operators. Let Si : L(Γi,l) × L(Γi,r) × L(Ωi) × L(∂Ω ∩ ∂Ωi) −→ L(Ωi)
(2 ≤ i ≤ N) be such that Si(hl, hr, f, g) = v where v solves the following BVP:

L(v) = f in Ωi

(
∂

∂~ni,l

− Λi,l)(v) = hl on Γi,l (2 ≤ i ≤ N) (8)

(
∂

∂~ni,r

− Λi,r)(v) = hr on Γi,r (1 ≤ i ≤ N − 1)

C(v) = g on ∂Ω ∩ ∂Ωi

The domains Ω1,l and ΩN,r are empty. We consider S1 : L(Γ1,r) × L(Ω1) × L(∂Ω ∩ ∂Ω1) −→ L(Ω1) and
SN : L(ΓN,l) × L(ΩN ) × L(∂Ω ∩ ∂ΩN) −→ L(ΩN ) as operators of only three arguments but defined in a
similar way to (8).
From (3), we have for n ≥ 1

hn+1
2,l = ( ∂

∂~n2,l
− Λ2,l)(S1(h

n
1,r, 0, 0) + S1(0, f, g))

hn+1
3,l = ( ∂

∂~n3,l
− Λ3,l)(S2(h

n
2,l, 0, 0, 0) + S2(0, hn

2,r, 0, 0) + S2(0, 0, f, g))

...
hn+1

N,l = ( ∂
∂~nN,l

− ΛN,l)(SN−1(h
n
N−1,l, 0, 0, 0) + SN−1(0, hn

N−1,r, 0, 0) + SN−1(0, 0, f, g))

hn+1
N−1,r = ( ∂

∂~nN−1,r
− ΛN−1,r)(SN (hn

N,l, 0, 0) + SN (0, f, g))

hn+1
N−2,r = ( ∂

∂~nN−2,r
− ΛN−2,r)(SN−1(h

n
N−1,l, 0, 0) + SN−1(0, hn

N−1,r, 0, 0) + SN−1(0, 0, f, g))

...
hn+1

1,r = ( ∂
∂~n1,r

− Λ1,r)(S2(h
n
2,l, 0, 0) + S2(0, hn

2,r, 0, 0) + S2(0, 0, f, g))

(9)
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Thus algorithm (9) can be interpreted as an algorithm to solve the following linear system in hi,r or l:

h2,l = ( ∂
∂~n2,l

− Λ2,l)(S1(h1,r, 0, 0) + S1(0, f, g))

h3,l = ( ∂
∂~n3,l

− Λ3,l)(S2(h2,l, 0, 0, 0) + S2(0, h2,r, 0, 0) + S2(0, 0, f, g))

...
hN,l = ( ∂

∂~nN,l
− ΛN,l)(SN−1(hN−1,l, 0, 0, 0) + SN−1(0, hN−1,r, 0, 0) + SN−1(0, 0, f, g))

hN−1,r = ( ∂
∂~nN−1,r

− ΛN−1,r)(SN (hN,l, 0, 0) + SN (0, f, g))

hN−2,r = ( ∂
∂~nN−2,r

− ΛN−2,r)(SN−1(hN−1,l, 0, 0) + SN−1(0, hN−1,r, 0, 0) + SN−1(0, 0, f, g))
...

h1,r = ( ∂
∂~n1,r

− Λ1,r)(S2(h2,l, 0, 0) + S2(0, h2,r, 0, 0) + S2(0, 0, f, g))

(10)

We assume that this system has a unique solution. Due to the choice of the interface conditions (2) we have

Proposition 2.7 For every hr or l, we have

(
∂

∂~n2,l

− Λ2,l)S1(hr, 0, 0) = (
∂

∂~ni,l

− Λi,l)Si−1(0, hr, 0, 0) = 0 (3 ≤ i ≤ N) (11)

and

(
∂

∂~nN−1,r

− ΛN−1,r)SN (hl, 0, 0) = (
∂

∂~ni,r

− Λi,r)Si+1(hl, 0, 0, 0) = 0 (1 ≤ i ≤ N − 2) (12)

proof Let us prove for instance that ( ∂
∂~ni,l

− Λi,l)Si−1(0, hr, 0, 0) = 0 (3 ≤ i ≤ N). Indeed, v =

Si−1(0, hr, 0, 0) satisfies






L(v) = 0 in Ωi−1,r

C(v) = 0 on ∂Ω ∩ ∂Ωi−1,r

( ∂
∂~ni−1,l

− Λi−1,l)(v) = 0 on Γi−1,l

By proposition 2.6 a), ( ∂
∂~ni,l

− Λi,l)(v) = 0. The proofs of the other relations are similar.•

Summarizing, algorithm (9) can be written in a simpler form:

hn+1
2,l = ( ∂

∂~n2,l
− Λ2,l)S1(0, f, g)

hn+1
3,l = ( ∂

∂~n3,l
− Λ3,l)(S2(h

n
2,l, 0, 0, 0) + S2(0, 0, f, g))

...
hn+1

N,l = ( ∂
∂~nN,l

− ΛN,l)(SN−1(h
n
N−1,l, 0, 0, 0) + SN−1(0, 0, f, g))

hn+1
N−1,r = ( ∂

∂~nN−1,r
− ΛN−1,r)SN (0, f, g)

hn+1
N−2,r = ( ∂

∂~nN−2,r
− ΛN−2,r)(SN−1(0, hn

N−1,r, 0, 0) + SN−1(0, 0, f, g))

...
hn+1

1,r = ( ∂
∂~n1,r

− Λ1,r)(S2(0, hn
2,r, 0, 0) + S2(0, 0, f, g))

(13)

The equations on the hi,l and on the hi,r are decoupled. From (13), it can be checked that h1
2,l = hn+1

2,l , n ≥ 0,

h1
N−1,r = hn+1

N−1,r, n ≥ 0 and then that h2
3,l = hn+2

3,l , n ≥ 0, h2
N−2,r = hn+2

N−2,r, n ≥ 0 and so on . . . After

step N algorithm (13) will have converged. At step N , hN
i,r or l and hi,r or l satisfy the same linear system
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(10) and by the assumption of well-posedness of this system, we have thus hN
i,r or l = hi,r or l. Then, from

(3), we have uN
i = u|Ωi

for all i (u is the solution to (1)). This ends the proof that algorithm (3) converges
in N steps.•

We have just proved the convergence of the additive Schwarz method (algorithm (3)) in N steps where
N is the number of subdomains. This result is optimal in the following sense. Take L = ∆, the solution in
domain 1 depends on the value of the right hand side f in domain N and vice versa. Thus at least N − 1
exchanges of information between contiguous subdomains are necessary to converge. In the additive Schwarz
method, information is exchanged only between contiguous subdomains. Since the initial approximation u0

i

to the solution in each subdomain does not depend on f and g, at least N steps are needed to converge.

Application. We consider the 1-D Helmholtz equation with one discontinuity. Let c+ and c− be two
different positive real numbers. Using a domain decomposition method, we want to solve the following
problem:



































ω2u− + c2
−∆u− = f x < 0

ω2u+ + c2
+∆u+ = f x > 0

u+ = u− at x = 0

c2
−

∂u
−

∂x
= c2

+
∂u+

∂x
at x = 0

∂u+

∂x
+ i ω

c+
u+ = 0 at x = ∞

−∂u
−

∂x
+ i ω

c
−

u− = 0 at x = −∞

where f is a given function and i2 = −1. Let ]l, L[⊂ R− be a subdomain. We first write the interface
condition to be used at l. We have to introduce:

Λl : C −→ C
u0 −→ − ∂v

∂x
(l)

where v satisfies
ω2v + c2

−∆v = 0 x < l

v(l) = u0

− ∂v
∂x

+ i ω
c
−

v = 0 at x = −∞

It may easily be seen that Λl(u0) = −i ω
c
−

u0. The interface condition at x = l is therefore given by:

− ∂
∂x

+ i ω
c
−

.

We now consider the interface condition at x = L. We introduce:

Λr : C −→ C
u0 −→ ∂v

∂x
(L)

where v satisfies
ω2v + c2

−∆v = 0 L < x < 0
ω2v + c2

+∆v = 0 x > 0
v(0−) = v(0+)
c2
−

∂v
∂x

(0−) = c2
+

∂v
∂x

(0+)
v(L) = u0
∂v
∂x

+ i ω
c+

v = 0 at x = ∞

It may easily be seen that

v = αe
i ω

c
−

x
+ βe

−i ω
c
−

x
x < 0

9



and
v = γe

−i ω
c+

x
x > 0

where α, β and γ are deduced from the boundary conditions at x = 0 and x = L. A straight-forward
computation gives:

Λr(u0) =















−i ω
c
−

u0

(

1−
c
−

−c+

c
−

+c+
e

i 2ω
c
−

L

1+
c
−

−c+

c
−

+c+
e

i 2ω
c
−

L

)

, for L 6= 0

−i ω
c
−

u0, for L = 0

For L < 0, the optimal interface condition is:

∂

∂x
+ i

ω

c−





1 − c
−
−c+

c
−

+c+
e

i 2ω
c
−

L

1 + c
−
−c+

c
−

+c+
e

i 2ω
c
−

L





At x = 0, ∂u
∂x

is discontinuous, contrarily to the implicit assumption made in § 2.1. Thus, if L = 0, a small
adaptation is needed. We specify directly the optimal additive Schwarz method for a decomposition of R
into R+ and R−. Let un

− and un
+ be the approximations to u− and u+ at step n, un+1

− and un+1
+ satisfy



































ω2un+1
r or l + c2

±∆un+1
r or l = f, x ∈ R±

c2
−

∂u
n+1

−

∂x
+ iωc+un+1

− = c2
+

∂un
+

∂x
+ iωc+un

+ at x = 0

−c2
+

∂u
n+1

+

∂x
+ iωc−un+1

+ = −c2
−

∂un
−

∂x
+ iωc−un

− at x = 0
∂u

n+1

+

∂x
+ i ω

c+
un+1

+ = 0 at x = ∞

−
∂u

n+1

−

∂x
+ i ω

c
−

un+1
− = 0 at x = −∞

It may easily be checked that we have convergence in two steps.

Open question. We have considered a decomposition of the domain into vertical strips. We have seen
that there exist interface conditions which lead to optimal convergence results for the additive Schwarz
method. If we consider a decomposition into concentric rings, it may easily be seen that there exist also
interface conditions which lead to convergence in a finite number of steps for the additive Schwarz method.
A natural question is what happens when the geometry is more complex, e.g. the domain is decomposed
into polygons. We guess that for an elliptic operator there are no interface conditions such that the additive
Schwarz method converges in a finite number of steps in the case of a general domain decomposition, e.g.
a square decomposed into four squares. As far as we know this is still an open question. We note that
D. Gottlieb in [10] proposed for the Laplacian on a square divided into four squares a domain decomposition
method which converges in a finite number of steps. This result is not in contradiction with our guess since
his algorithm is not a Schwarz method.

2.2 A Schur type algorithm

In § 2.1, we defined the system of equations (10) whose unknowns are functions from the boundaries of the
subdomains to R. We thus obtain a substructuring formulation which may be solved by a conjugate gradient
like method. We refer to the resulting system as a Schur-type algorithm. More precisely, we introduce the
following notation in order to write the system of equations (10) in a compact form. Let Γ = ∪iΓi,r or l be

10



the set of the interfaces and L(Γ) = L(Γ2,l) × . . . L(ΓN,l) × L(Γ1,r) . . . L(ΓN−1,r). An element H of L(Γ) is
denoted by a 2(N −1)-tuple (h2,l, . . . , hN,l, h1,r, . . . , hN−1,r). Let T be a map from L(Γ) to itself defined by:

T (h2,l, . . . , hN,l, h1,r, . . . , hN−1,r) =































0
( ∂

∂~n3,l
− Λ3,l)S2(h2,l, 0, 0, 0)

...
( ∂

∂~nN,l
− ΛN,l)SN−1(hN−1,l, 0, 0, 0)

( ∂
∂~n1,r

− Λ1,r)S2(0, h2,r, 0, 0)
...

( ∂
∂~nN−2,r

− ΛN−2,r)SN−1(0, hN−1,r, 0, 0)

0































and G ∈ L(Γ) be defined by:

G =

































( ∂
∂~n2,l

− Λ2,l)S1(0, f, g)

( ∂
∂~n3,l

− Λ3,l)S2(0, 0, f, g)

...
( ∂

∂~nN,l
− ΛN,l)SN−1(0, 0, f, g)

( ∂
∂~n1,r

− Λ1,r)S2(0, 0, f, g)

...
( ∂

∂~nN−2,r
− ΛN−2,r)SN−1(0, 0, f, g)

( ∂
∂~nN−1,r

− ΛN−1,r)SN (0, f, g)

































Taking into account (11) and (12), system (10) can be written in the form:

(IdL(Γ) − T )(H) = G (14)

Equation (14) defines what we refer to as the Schur-type (or substructuring) formulation of problem (1).
Before considering conjugate gradient like methods in order to solve (14), we make a remark concerning the
additive Schwarz method. From (13), we see that the additive Schwarz method corresponds to the solution
of (14) by a Jacobi algorithm:

Hn+1 = T (Hn) + G (15)

The operator T can be written in the form of an operator valued matrix

T (H) =

































0 0

×
. . .

. . .
. . .

0 × 0

0

0

0 × 0
. . .

. . .

. . . ×
0 0

































































h2,l

...

...
hN,l

h1,r

...

...
hN−1,r
































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The crosses correspond to non zero operators. From the structure of T , it is clear that T N−1 = 0. Therefore,
we have

H = G + T G + T 2G + . . . + T N−2G (16)

and algorithm (15) converges in N − 1 steps in the general case. But, if H0 = G, only N − 2 steps are
needed. This is not in contradiction with § 2.1. Indeed, the computation of T applied to some vector implies
exchanges of information between contiguous subdomains. The computation of G counts for 1 exchange, the
N − 2 iterations of (15) count for N − 2 exchanges. This corresponds to N − 1 exchanges as for the additive
Schwarz method. From another point of view, in agreement with proposition 2.4, the BVP needs to be
solved N times in each subdomains to compute the solution u of (1). The computation of G counts for one
solution per subdomain, N − 2 iterations of (15) count for N − 2 solutions per subdomain, the computation
of u from H counts for one solution per subdomain.

Let us consider now two conjugate like methods: GMRES and Bi-CGSTAB. Let H0 be the initial
approximation to the solution to (14). Let r0 = G − (Id − T )(H0) be the initial residual. We seek for H̃

such that H = H0 + H̃ i.e. H̃ satisfies:
(Id − T )(H̃) = r0

The GMRES method minimizes the residual norm over the Krylov space Kn(Id − T ), r0) ≡ span{r0, (Id −
T )r0, . . . , (Id − T )n−1r0}. Clearly, H̃ ∈ KN−1(Id − T ), r0) so that N − 1 iterations are necessary for the
solution of (14). Thus, we have just proved

Proposition 2.8 The GMRES algorithm applied to (14) converges in at most N − 1 steps.

Let us now consider the convergence of Bi-CGSTAB [21] for the solution of the linear system (14). We shall
see that

Proposition 2.9 If there is no breakdown of Bi-CGSTAB, we have convergence of Bi-CGSTAB applied to
(14) in at most N − 1 steps.

Because Bi-CGSTAB is based on BiCG [7] we will first discuss the convergence of BiCG. We choose some
r̃0 6= 0, (for example r̃0 = r0). Now the BiCG algorithm generates two sequences of polynomials, the
residuals ri = Pi(Id − T )r0:

r0, r1, r2, . . .

and r̃i = Pi((Id − T )T )r̃0:
r̃0, r̃1, r̃2, . . . ,

where Pi indicates a polynomial of degree i. These sequences satisfy the following relations [7]:

rT
i r̃j = 0 i 6= j (17)

rT
i r̃i 6= 0 (18)

If rT
i r̃i = 0 then BiCG would break down, but we will not discuss this problem here. For the residuals

we have ri = Pi(Id − T )r0 ∈ span{r0, (Id − T )r0, (Id − T )2r0, . . . , (Id − T )ir0} = Ki+1(Id − T , r0), and
furthermore we have Ki+1((Id − T ), r0) = Ki+1(T , r0). Together this gives

ri ∈ Ki+1(T , r0) (19)

Proposition 2.10 Let {r0, r1, . . . , rk−1} be independent and rk ∈ span{r0, r1, . . . , rk−1}, then rk = 0 and
BiCG converges in k steps.
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Although being similar, this property differs from the finite termination properties for BiCG [7], for CG
if the operator is a low rank perturbation of the identity, which leads, as in this case, to convergence in a
number of steps equal to the rank of the perturbation [9], and for GMRES [20]. In these other cases, the
residual is necessarily zero because it is both an element of and orthogonal to the same space, whereas the
present property is derived from the residual being an element of one space and orthogonal to another, in
principle completely different space.

Proof: For rk we have the following two relations:

rk ∈ span{r0, r1, . . . , rk−1} (20)

rk ⊥ span{r̃0, r̃1, . . . , r̃k−1} (21)

So (20) implies rk =
∑k−1

i=0 αiri, and then (21) gives

∀j : 0 ≤ j ≤ k − 1 : r̃T
j

(

k−1
∑

i=0

αiri

)

= 0 ⇔
k−1
∑

i=0

αir̃
T
j ri = 0

Together with (17) this leads to
∀j : 0 ≤ j ≤ k − 1 : αj r̃

T
j rj = 0,

which means, using (18), that αj = 0, 0 ≤ j ≤ k − 1. Therefore we have

rk = 0,

and hence BiCG has converged. •

Proposition 2.11 For the linear system defined in (14) BiCG will converge in at most N − 1 iterations if
there is no breakdown.

Proof: From (14) we can derive that KN (T , r0) = KN−1(T , r0). Together with (19) this leads to
rN−1 ∈ KN−1(T , r0), so that rN−1 ∈ span{r0, r1, . . . , rN−2}. Proposition 2.10 then proves that rN−1 = 0,
and therefore BiCG has converged. •
Note that if the set {r0, r1, . . . , rk} becomes dependent before k = N − 1 BiCG will have converged as well.
It is not difficult to see that if the BiCG-residual rN−1 = 0, then also the Bi-CGSTAB-residual rstab

N−1 = 0. Bi-

CGSTAB constructs its residual rstab
i such as to be a polynomial of the form rstab

i = Qi(Id−M)Pi(Id−M)r0,
where Pi(Id − M)r0 is still the BiCG-residual [21]. So that, if the BiCG-residual ri = Pi(Id − T )r0 = 0,
then also rstab

i = 0, and Bi-CGSTAB will have converged as well.
Assuming that the set of vectors {G, T G, T 2G, . . . , T N−2G} is independent, the solution of (Id−T )x = G

is given by (16), so it can be computed without any extra Krylov method. Assuming that the norm of T N−2G

is sufficiently large, equation (16) also indicates that GMRES cannot solve the set of equations (14) in less
iterations than BiCG (however with half the number of matrix vector products).

3 Approximation of the optimal interface conditions

The interface conditions (2) lead to optimal results but only in the case of a decomposition into vertical strips.
Even in this case, they are difficult to use in a code. Indeed, operators Λi,r or l are not partial differential
operators. Moreover, in general, we do not have an explicit form of these operators. Nevertheless, it is

13



usually possible to approximate them by partial differential operators as it is done for approximating exact
absorbing boundary conditions (see e.g. [4], [5]). In this section, we explain briefly how the optimal interface
conditions are approximated by local operators (i.e. partial differential operators). This enables us to write
a Schur type formulation for an arbitrary decomposition of the domain and to remove the restriction of a
decomposition into vertical strips. In § 4, this strategy is applied to the convection-diffusion operator and
numerical results are shown.

3.1 Design of the approximate optimal interface conditions

Our goal is to approximate at some point x0 ∈ Γi,r or l the operators Λi,r or l by partial differential operators.
In order to be able to follow the strategy developed in [4], we make the following assumptions: x0 is far from
∂Ω and the interface is flat enough so it can be approximated by its tangent at x0. As a result, we may
approximate Ωi,r or l by a half-plane. We also assume that the coefficients of the operator L vary slowly so
that they can be approximated by their values at x0 (contrarily to the application of § 2.1). By making use
of the Fourier transform with respect to the tangential variable, we obtain an approximation of Λi,r or l in
the form of a convolution operator. This operator is itself approximated by a partial differential operator
by approximating its symbol by a polynomial (for more details, see [19], [18]). In some cases, it is possible
to make less restrictive assumptions (see e.g. in the context of absorbing boundary conditions or of paraxial
approximations [2], [3], [15], [16], [13]).

3.2 A Schur type algorithm

We want to write a system analogous to system (14) but based on the approximate optimal interface condi-
tions. Since these operators are local, we are not restricted any more to decompositions into vertical strips.
We will thus obtain a substructuring formulation which can be solved by conjugate gradient like methods.
The resulting algorithm is what we call a Schur type algorithm.

Let Ω be a bounded open set of R2. Let Ωi, 1≤i≤N be a finite sequence of sets embedded in Ω such that
Ω̄ = ∪N

i=1Ω̄i. Let Γ = ∂Ω, Γi = ∂Ωi − Γ. The outward normal from Ωi is ~ni and ~τi is a tangential unit
vector. Let us denote by Bi, 1≤i≤N the approximations to the optimal interface conditions defined by (2).
Since the operators Bi are local, the subscript r or l is meaningless and will not be used here. We assume
the operators Bi, 1≤i≤N to lead to well posed boundary value problems (see below BVP (22)). We assign
to each subdomain i an operator Si: Let f be a function from Ωi to R and h a function from Γi to R,
Si(h, f, g) is the solution v of the following boundary value problem:

L(v) = f(x), x ∈ Ωi

Bi(v) = h(x), x ∈ Γi (22)

C(v) = g(x), x ∈ ∂Ωi ∩ Γ

In order to take multiple overlaps into account, we introduce a sequence (ηj
i ), 1 ≤ i ≤ N, 1 ≤ j ≤ N, i 6= j

of functions defined on the boundaries of the subdomains which satisfy:

i) η
j
i : ∂Ωi −→ [0, 1]

ii) η
j
i = 0 on ∂Ωi − Ω̄j

iii)
∑

j,j 6=i η
j
i (x) = 1, x ∈ ∂Ωi

Remark 3.1 η
j
i is zero if ∂Ωi ∩ Ω̄j = ∅.
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It is now possible to write a substructuring formulation. Let u be the solution to (1) and ui = u|Ωi
. We

write a system for Bi(ui):

Bi(ui) =
∑

j,j 6=i

η
j
iBi(ui) =

∑

j,j 6=i

η
j
iBi(uj)

=
∑

j,j 6=i

η
j
iBi(Sj(Bj(uj), f|Ωj

, g))

=
∑

j,j 6=i

η
j
iBi(Sj(0, f|Ωj

, g)) +
∑

j,j 6=i

η
j
i Bi(Sj(Bj(uj), 0, 0))

Thus, (Bi(ui))1≤i≤N solves the following linear system:

Bi(ui) −
∑

j,j 6=i

η
j
iBi(Sj(Bj(uj), 0, 0)) =

∑

j,j 6=i

η
j
iBi(Sj(0, f|Ωj

, g)), 1 ≤ i ≤ N (23)

Let H = (Hi)1≤i≤N and G = (Gi)1≤i≤N be the vectors

H =







B1(u1)
...

BN (uN )






and G =







∑

j,j 6=1 η
j
1B1(Sj(0, f|Ωj

, g))
...

∑

j,j 6=N η
j
NBN(Sj(0, f|Ωj

, g))







and T be the linear operator defined by

T (H) =







∑

j,j 6=1 η
j
1B1(Sj(Bj(uj), 0, 0))

...
∑

j,j 6=N η
j
NBN(Sj(Bj(uj), 0, 0))







System (23) may now be written in the following compact form:

(Id − T )(H) = G (24)

As in § 2.2, we consider three three algorithms for the solution of (24), GMRES, BiCGSTAB and Jacobi :

Hn+1 = T (Hn) + G

The last algorithm corresponds to the additive Schwarz method. Since the operator T is no longer nilpotent,
the Schwarz method should not converge in a finite number of steps. GMRES and BiCGSTAB (except
if breakdown occurs) always converge in a finite number of steps (ignoring round-off errors) for a finite
dimensional problem.

4 Numerical results for the convection-diffusion equation

We apply the strategy explained above to the convection-diffusion equation. Let

L =
1

∆t
+ a(x, y)

∂

∂x
+ b(x, y)

∂

∂y
− ν∆ (25)
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where ~a = (a, b) is the velocity field, ν is the viscosity. ∆t is a constant which could correspond for instance
to a time step for a backward-Euler scheme for the time dependent convection-diffusion equation.
For a subdomain Ωi, the approximations to the optimal interface conditions obtained using the method
outlined in § 3.1 read as follows (~a is the velocity field (a, b), ~ni is the outward normal from Ωi and ~τi is a
tangential unit vector on ∂Ωi):

B0
i =

∂

∂ ~ni

−
~a. ~ni −

√

(~a. ~ni)2 + 4ν
∆t

2ν
(26)

or

B2
i =

∂

∂ ~ni

−
~a. ~ni −

√

(~a. ~ni)2 + 4ν
∆t

2ν
+

~a.~τi
√

(~a. ~ni)2 + 4ν
∆t

∂

∂~τi

−
ν

√

(~a. ~ni)2 + 4ν
∆t

(1 +
(~a.~τi)

2

(~a. ~ni)2 + 4ν
∆t

)
∂2

∂~τi
2

where the superscript denotes the order of the approximation, for more details see [19], [18]. The boundary
conditions B0 or 2

i are far field boundary conditions (also called Outflow B.C., Absorbing B.C., Artificial
B.C., Radiation B.C.,. . ., see [4], [12]).

We use a two-dimensional test problem to illustrate the validity of the method. We solve the following
problem:























L(u) = u
∆t

+ a(x, y) ∂u
∂x

+ b(x, y) ∂u
∂y

− ν∆u = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

u(0, y) = 1, 0 < y < 1
∂u
∂y

(x, 1) = 0, 0 < x < 1
∂u
∂x

(1, y) = 0, 0 < y < 1
u(x, 0) = 0, 0 < x < 1

The operator L is discretized by a standard upwind finite difference scheme of order 1 (see [6]) and Bi, 1≤i≤N

by a finite difference approximation. We used a rectangular finite difference grid. The mesh size is denoted
by h. The unit square is decomposed into overlapping rectangles. The resulting discretization of system (24)
is denoted by:

(Id − Th)(Hh) = Gh (27)

The test problem has been implemented at ONERA on an IPSC860.

Remark 4.1 Any other discretization could be used as well.

From the definition of Th, we see that the computation of Th applied to some vector Hh amounts to the
solution of N independent boundary value subproblems (one subproblem in each subdomain) which can be
solved in parallel. We have considered three algorithms in order to solve (27): GMRES(∞), Bi-CGSTAB
and a Jacobi algorithm (cf. § 2.2):

Hn+1
h = Th(Hn

h ) + Gh (28)

which corresponds to an additive Schwarz method (ASM) whose convergence in the continuous case has been
studied in [19] for outflow boundary conditions.

In tables 1 and 2, we give the number of subproblems solved so that the maximum of the error is smaller
than 10−6. One iteration of GMRES(∞) or of ASM counts for computing the solution for each subdomain
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once and one iteration of BiCGSTAB counts for computing the solution for each subdomain twice. In the
tables, Id corresponds to the use of Id as interface condition (Dirichlet problems). The tests include the
case Bi = Id since it corresponds to the classical Schwarz method when the Jacobi algorithm is used.

The results in Table 1 were obtained using the following parameters:
8 × 1 subdomains, 21 × 120 points in each subdomain, overlap = 2h, ν = 0.1, ∆t = 1040, a = y, b = 0.

Boundary Cond. ASM Bi-CGSTAB GMRES
Id 844 88 61
B0 86 38 33
B2 46 28 24

Table 1: Computational cost vs. interface conditions and solvers

The results in Table 2 were obtained using the following parameters:
4 × 4 subdomains, 35 × 35 points in each subdomain, overlap = 2h, ν = 0.1, ∆t = 1, a = y, b = 0.

Boundary Cond. ASM Bi-CGSTAB GMRES
Id 479 64 50
B0 27 22 19
B2 18 16 16

Table 2: Computational cost vs. interface conditions and solvers

The use of outflow boundary conditions leads to a significant improvement whatever iterative solver is
used. Bi-CGSTAB and GMRES give similar results with an advantage to GMRES in terms of computational
cost and to BiCGSTAB in terms of storage requirements, since only two directions have to be stored.
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[16] J.P. Lohéac, F. Nataf and M. Schatzman, Parabolic Approximations of the Convection-Diffusion Equa-
tion, Math. of Comp., 60 (202), p. 515-530, 1993.
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