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Stochastic analysis of a miRNA–protein toggle switchw
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Within systems biology there is an increasing interest in the stochastic behavior of genetic and

biochemical reaction networks. An appropriate stochastic description is provided by the chemical

master equation, which represents a continuous time Markov chain (CTMC). In this paper we

consider the stochastic properties of a toggle switch, involving a protein compound (E2Fs and Myc)

and a miRNA cluster (miR-17-92), known to control the eukaryotic cell cycle and possibly

involved in oncogenesis, recently proposed in the literature within a deterministic framework.

Due to the inherent stochasticity of biochemical processes and the small number of molecules

involved, the stochastic approach should be more correct in describing the real system: we study

the agreement between the two approaches by exploring the system parameter space. We address

the problem by proposing a simplified version of the model that allows analytical treatment, and

by performing numerical simulations for the full model. We observed optimal agreement between

the stochastic and the deterministic description of the circuit in a large range of parameters, but

some substantial differences arise in at least two cases: (1) when the deterministic system is in the

proximity of a transition from a monostable to a bistable configuration, and (2) when bistability

(in the deterministic system) is ‘‘masked’’ in the stochastic system by the distribution tails. The

approach provides interesting estimates of the optimal number of molecules involved in the toggle

switch. Our discussion of the points of strengths, potentiality and weakness of the chemical master

equation in systems biology and the differences with respect to deterministic modeling are leveraged

in order to provide useful advice for both the bioinformatician and the theoretical scientist.

Introduction

Complex cellular responses are often modeled as switching

between phenotype states, and despite the large body of

deterministic studies and the increasing work aimed to eluci-

date the effect of intrinsic and extrinsic noise in such systems,

some aspects still remain unclear. Molecular noise, which

arises from the randomness of the discrete events in the cell

(for example DNA mutations and repair), and experimental

studies have reported the presence of stochastic mechanisms in

cellular processes such as gene expression,19,35,38 decisions of

the cell fate,33 and circadian oscillations.34 Particularly, low

copy numbers of important cellular components and mole-

cules give rise to stochasticity in gene expression and protein

synthesis, and it is a fundamental aspect to be taken into

account for studying such biochemical models.1,2 In this

paper, we consider a simplified circuit that is known to govern

a fundamental step during the eukaryotic cell cycle that defines

cell fate, previously studied by means of a deterministic

modeling approach.3 Let us set the scene by reminding that

‘‘all models are wrong, but some are useful’’ (said by George

Edward Pelham Box, who was the son-in-law of Ronald

Fisher). Biologists make use of qualitative models through

graphs; quantitative modeling in biochemistry has been mainly

based on the Law of Mass Action which has been used to

frame the entire kinetic modeling of biochemical reactions for

individual enzymes and for enzymatic reaction network

systems.36 The state of the system at any particular instant is

therefore regarded as a vector (or list) of amounts or concen-

trations and the changes in amounts or concentrations are

assumed to occur by a continuous and deterministic process

that is computed using the ordinary differential equation

(ODE) approach. However, the theory based on the Law of

Mass Action does not consider the effect of fluctuations. If the

concentration of the molecules is not large enough, we cannot

ignore fluctuations. Moreover, biological systems also show

heterogeneity which occurs as a phenotypic consequence for a

cell population given stochastic single-cell dynamics (when the

population is not isogenic and under the same conditions).

From a practical point of view, for concentrations greater than

about 10 nM, we are safe using ODEs; considering a cell with

a volume of 10�13 litres this corresponds to thousands of
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molecules that, under the poissonian hypothesis, has an

uncertainty in the order of 1%. If the total number of

molecules of any particular substance, say, a transcription

factor, is less than 1000, then a stochastic differential equation

or a Monte Carlo model would be more appropriate. Similarly

to the deterministic case, only simple systems are analytically

tractable in the stochastic approach, i.e. the full probability

distribution for the state of the biological system over time can

be calculated explicitly, becoming computationally infeasible

for systems with distinct processes operating on different

timescales. An active area of research is represented by

development of approximate stochastic simulation algorithms.

As commented recently byWilkinson, the difference between an

approximate and exact model is usually remarkably less than

the difference between the exact model and the real biological

process.9 Given that we can see this either as an unsatisfactory

state of art or as a promising advancement, we can summarise

the methodological approaches as follows. Biochemical

networks have been modeled using differential equations when

considering continuous variables changing deterministically

with time. Single stochastic trajectories have been modeled

using stochastic differential equations (SDE) for continuous

random variables, and using the Gillespie algorithm for discrete

random variables changing with time. Another choice consists

in characterizing the time evolution of the whole probability

distribution. The corresponding equation for the SDE is the

Fokker–Planck equation, and the corresponding equation for

the Gillespie algorithm is called the Chemical Master Equation

(CME).37 Therefore, the CME could be thought as the meso-

scopic version of the Law of Mass Action, i.e. it extends the

Law of Mass Action to the mesoscopic chemistry and bio-

chemistry, see for example ref. 47 and 48.

Here we compare the results of a stochastic versus determi-

nistic analysis of a microRNA–protein toggle switch5,6

involved in tumorigenesis with the aim of identifying the most

meaningful amount of information to discriminate cancer and

healthy states. We show that the stochastic counterpart of

such a deterministic model has many commonalities with the

deterministic one, but some differences arise, in particular

regarding the number of stable states that can be explored

by the system. The disagreement between the stochastic and

deterministic descriptions is observed in a ‘‘ghost’’ effect

caused by the proximity to a deterministic bifurcation,22 and

in a somehow opposite situation, in which the variance of the

stable point can mask the detection of the second peak in the

stationary distribution. In this paper we perform a numerical

study of the complete two-dimensional model, but we consider

also a simplified, biologically meaningful version of the model

that allows us to calculate an exact solution, with a numerical

characterization of the parameter ranges in which the two

systems produce qualitatively similar results. A discussion of

the possible implications of our results in a real system is

described in the last section.

I. Properties of a microRNA toggle switch

Oncogenes and tumor-suppressor genes are two pivotal

factors in tumorigenesis. Recent evidences indicate that

microRNAs (miRNAs) can function as tumor suppressors

and oncogenes, and these miRNAs are referred to as oncomirs.

miRNAs are small, non-coding RNAs that modulate the

expression of target mRNAs. The biogenesis pathway of

miRNAs in animals was elucidated in ref. 29. miRNAs undergo

substantial processing since the nuclear transcription where

two proteins play an essential role: Drosha and Dicer. Most of

miRNAs are first processed into pre-miRNAs by Drosha.

After export to the cytoplasm, the pre-miRNA is processed

by Dicer into a small double stranded RNA (dsRNA) called

the miRNA: miRNA duplex. The active strand, which is the

mature miRNA, is incorporated into the RISC and binds to

the target mRNA, whereas the inactive strand is ejected

and degraded. In normal tissue, proper regulation of miRNAs

maintains a normal rate of development, cell growth,

proliferation, differentiation and apoptosis. Tumorigenesis

can be observed when the target gene is an oncogene, and

the loss of the miRNA, which functions as a tumor suppressor,

might lead to a high expression level of the oncoprotein. When

a miRNA functions as an oncogene, its constitutive amplifica-

tion or overexpression could cause repression of its target

gene, which has a role of the tumor suppressor gene, thus, in

this situation, the cell is likely to enter tumorigenesis. miRNAs

are often part of toggle switches: important examples involve

gene pairs built with oncogenes and tumour suppressor

genes.7,8 Here we focus on the amplification of 13q31–q32,

which is the locus of the miR-17-92. The miR-17-92 cluster

forms a bistable switch with Myc and the E2F proteins.3,14,15

The oncogene Myc regulates an estimated 10% to 15% of

genes in the human genome, while the dysregulated function of

Myc is one of the most common abnormalities in human

malignancy.16,18 The other component of the toggle switch is

the E2F family of transcription factors, including E2F1, E2F2

and E2F3, all driving the mammalian cell cycle progression

from the G1 into S phase. High levels of E2Fs, E2F1 in

particular, can induce apoptosis in response to DNA damage.

The toggle switch also interacts with dozens of genes (Fig. 1

depicts a portion of the whole circuitry), particularly with Rb

and other key cell-cycle players. A summary of the experi-

ments perturbing miRNA/Myc/E2F and E2F/RB behaviours

has suggested the following:

� The Rb/E2F toggle switch is OFF when RB inhibits E2F,

i.e. stopping cell proliferation; it is ON when E2F prevails and

induces proliferation. Once turned ON by sufficient stimulation,

Fig. 1 The E2F–MYC–miR-17-92 toggle switch with its biochemical

environment (derived form).3 Arrows represent activation, and

bar-headed lines inhibition, respectively. The elements inside the

dashed box represent the protein compound p (Myc–E2F) and the

miRNA cluster m (miR-17-92), modelized in eqn (1) and (2).
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E2F can memorize and maintain this ON state independently

of continuous serum stimulation.

� The proteins E2F and Myc facilitate the expression of

each other and the E2F protein induces the expression of its

own gene (positive feedback loop). They also induce the

transcription of microRNA-17-92 which in turn inhibits both

E2F and Myc (negative feedback loop).17

Moreover, the increasing levels of E2F or Myc drive the

sequence of cellular states, namely, quiescence, cell prolifera-

tion (cancer) or cell death (apoptosis).

Although there is increasing amount of research on cell

cycle regulation, the mathematical description of even a

minimal portion of the E2F, Myc and miR-17-92 toggle switch

is far from trivial. Aguda and collaborators3 have developed

a deterministic model, which reduces the full biochemical

network of the toggle switch to a protein (representing

the E2F–Myc compound) and the microRNA-17-92 cluster

(seen as a single element).

It is a 2-dimensional open system, in which p represents the

E2F–Myc complex and m the miRNA cluster: thus no Mass

Action Law holds, and the total p and m concentration is not

conserved. The dynamics of p and m concentrations are

described by eqn (1) and (2):

_p ¼ aþ k1p
2

G1 þ p2 þ G2m
� dp ð1Þ

:
m = b + k2p � gm (2)

The model is the following: constitutive creation–destruction

processes for p and m are driven by a, d, b and g parameters,

while k1 and k2 control p and m state-dependent synthesis.

The G1 term is a kinetic (enzymatic-like) constant, while G2

modulates miRNA inhibition of p synthesis. The nonlinearity

of p in eqn (1) is a Hill coefficient (=2) representing a self-

promotion effect driven by a sigmoidal activation curve, a

very common behaviour in gene regulation systems. A Hill

coefficient >1 can be justified by a cooperative effect of the

terms involved in the compound represented by p: for example

due to the E2F trimer, or a more complex aggregate with Myc.

Although several experimental results suggest that in some cancer

processes, a certain amount of interdependence and interaction

among E2Fs exists, a detailed experimental investigation should

be needed in order to estimate such a parameter correctly.11–13

All the results described in this article are very robust with

respect to the choice of the specific Hill coefficient (here chosen

equal to 2 for continuity with the original model in ref. 3) as

long as it is larger than one (data not shown). We found a good

qualitative agreement even if a different functional form was

hypothesized, as long as it retained its sigmoidal-like structure.

The system can be rewritten in an adimensional form as follows:

e _f ¼ a0 þ kf2

G01 þ f2 þ G02m
� f ð3Þ

_m = 1 + f � m (4)

where the parameters are: a0 ¼ k2
dba, k ¼ k1k2

db , G01 ¼
k2
2

b2
G1,

G02 ¼
k2
2

bgG2, e ¼ g
d and the change of variables is: f ¼ k2

b p,

m ¼ g
bm and t = gt.

In the original model,3 the rate of protein synthesis is not a

function of the instantaneous concentration (as assumed in

eqn (3)) but rather of its concentration at some time D in

the past:

e _f ¼ a0 þ k½fðt� DÞ�2

G01 þ ½fðt� DÞ�2 þ G02mðt� DÞ
� fðtÞ: ð5Þ

We will not consider such delay in our stochastic realization of

the model, since it would increase system dimensionality and it

does not seem necessary to obtain the features we want to

characterize.

The steady state can be studied in the nondimensionalized

system and, therefore, the conditions of the parameters for

the existence of multiple steady states. In the resulting cubic

equation:

a0 þ kf2

G01 þ f2 þ G02ð1þ fÞ
� f ¼ 0 ð6Þ

the necessary (but not sufficient) conditions for the existence of

3 steady states (and thus a bistable system) are:

ðG02 � kÞoa0o 1þ G01
G02

� �
ð7Þ

We took advantage of the deterministic results in ref. 3 in

order to consider suitable parameter ranges for our stochastic

modelling (as described in the following sections).

II. The stochastic modeling approach

The system represented by eqn (1) and (2) can be studied as a

stochastic system through the Chemical Master Equation

(CME) approach.4 The resulting CME has two variables, the

number of p and m molecules, labeled as n and m. The

temporal evolution of the probability pn,m(t) to have n and m

molecules at time t is described by the following equation:

:
pn,m = (En � 1)rnpnm + (E�1n � 1)gnpnm + (Em � 1)rmpnm

+ (E�1m � 1)gmpnm (8)

This CME is derived under the conditions of a one-step

Poisson process: E and E�1 are the forward and backward

step operators, g and r are the generation and recombination

terms for the n and m variables, as shown in superscripts.

The two generation and recombination terms associated

with the n and m variables are respectively:

gn ¼ aþ k1n
2

G1 þ n2 þ G2m
; rn ¼ dn ð9Þ

gm = b + k2n; rm = gm (10)

We remark that the molecule influxes into the system

(represented by the a and b terms) could be included in

different ways in the stochastic equations, since in the deter-

ministic equations they represent a sort of ‘‘mean field’’ value.

As an example, molecules could be added in bursts with

specific time distributions, which do not appear in the macro-

scopic continuous deterministic equations. We will consider

the simplest approach, but the choice of different influx

patterns should deserve further investigation.
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A. The one-dimensional model

We can reduce the problem from two to one dimension, by

considering a different time scale for the two reactions

(in particular considering m as a fast variable) and thus

considering the steady state solution for the m:

m ¼ bþ k2p

g
¼ b0 þ k0p ð11Þ

As a consequence we obtain a deterministic equation for the

p only:

_p ¼ aþ k1p
2

G0 þ G00pþ p2
� dp ð12Þ

with G0 ¼ G2k2
g and G00 ¼ G1 þ G2b

g . The stochastic equation for

pn is thus as follows:

:
pn = (E � 1)rnpn + (E�1 � 1)gnpn (13)

gn ¼ aþ k1n
2

G0 þ G00nþ n2
; rn ¼ dn ð14Þ

A general solution can be obtained

psn ¼
YN
i¼1

gði � 1Þ
rðiÞ p0 ¼

YN
i¼1

aþ k1ði�1Þ2

G0þG00ði�1Þþði�1Þ2

di
p0 ð15Þ

with an adequate normalization factor imposed on p0:

p0 ¼
1

1þ
PN
i¼1

QN
i¼1

psn1

ð16Þ

We remark that the system is open, thus in theory N is not

fixed, but we can truncate the product to a sufficiently high

value of N obtaining a good approximation of the whole

distribution. This one-dimensional system (for which an

analytical solution can be obtained) will be compared to

numerical simulations of the exact one-dimensional and two-

dimensional systems.

III. Model analysis

A. The stationary distribution

The one-dimensional model can show monomodal as well as

bimodal stationary distributions, depending on the parameters

considered. As an example, we obtain bistability with a set of

parameters as shown in Fig. 2.

Thus the qualitative features of the two-dimensional deter-

ministic model (i.e. the possibility of being bistable depending

on the parameter range) are recovered for the one-dimensional

approximation of the stochastic system. Also the two-

dimensional stochastic system shows bistability for the same

parameters, and they are in optimal agreement for a range of

parameters in which the
:
m c

:
p condition holds.

We also observe some remarkable differences between the

deterministic and the stochastic models: there are regions in

the parameter space in which the deterministic approach

shows only one stable state, but in the stochastic system two

maxima in the stationary distribution are observed (see Fig. 3).

This difference can be explained qualitatively as follows: for

the deterministic system, there are parameter values for which

the system is monostable but very close to the ‘‘transition

point’’ in which the system becomes bistable. It is known that

in these situations a ‘‘ghost’’ remains in the region where the

stable point has disappeared,22 for which the systems

dynamics has a sensible slowing down (i.e. when the system

is close to the disappeared fixed point, it remains ‘‘trapped’’

for a longer time close to it, in comparison with other regions).

This behaviour results in the presence of a peak in the

stationary distribution of the corresponding stochastic

systems, which thus remains bistable also when the determi-

nistic system is not bistable anymore.

Another difference is observed: for some parameter values

the deterministic system is bistable, but the stochastic distri-

bution shows a clear peak for the maximum with the largest

basin of attraction and the smaller peak results ‘‘masked’’ by

the tail of the distribution around the first peak (see Fig. 4),

thus resulting in a monomodal distribution with a long tail. In

practice, the highest state behaves like a sort of metastable

Fig. 2 The stationary distribution for the one-dimensional space,

obtained using the following parameters: a = 1.68 (molecule h�1),

b = 0.202 (molecule h�1), d = 0.2 (h�1), g = 0.2 (h�1), G1 =

10 300 (molecule2), G2 = 1006 (molecule), k1 = 90 (molecule h�1)

and k2 = 0.05 (h�1).

Fig. 3 Comparison between the deterministic solution (bottom) and

the stationary distribution (top) for the parameter set as in Table 1,

case 3.
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state, since the states of the system with a high protein level are

visited only occasionally.

B. Numerical analysis

Here we implemented numerical methods to find the stationary

distribution of a CME. The most accurate is the Kernel

resolution method: given the complete transition matrix of

the system, it is possible to solve numerically the eigenvalue

problem, obtaining the correct stationary distribution. This

method, in this case, has a serious drawback: the system is of

non-finite size, preventing a complete enumeration of the

possible states. Even with a truncation, the system size rises

in a dramatic way: the state space for a bidimensional system is

of order N2 if N is the truncation limit, and thus the respective

transition matrix is of order N4. This means that even for a

relatively small system (with a few hundreds of molecules) the

matrix size explodes well beyond the computational limits.

The only feasible resolution strategy is a massive exploration

of state space by Monte Carlo methods, in which single

trajectories of the system are simulated: performing this

simulations long enough for several times allows us to estimate

the stationary distribution.

The Monte Carlo method we chose is a modified version of

the SSA (also known as the Gillespie algorithm) named

logarithmic direct method,23,25 which is a statistically correct

simulation of an ergodic Markov system. It is not the fastest

algorithm available, as compared to other methods like the

next-reaction or the t-leap method, but it produces a correct

estimation of the statistical dispersion of the final state.

For each parameter set we performed 10 simulations for

about 106–107 iteration steps each. The multiple simulations

were averaged together for a better estimation of the stationary

distribution, and they allowed also an estimation of the

variance over this average distribution.

In the following we discuss four cases that describe the

system behaviour for different parameter settings, shown in

Table 1.

In case 1, we have a system in which the hypothesis of a

time-scale separation between m and p is strongly satisfied.

The simulation was performed up to a time limit of 103: we can

see how the two resulting distributions are in good agreement

with the theoretical one (see Fig. 5), with the regions of higher

variance of the histogram around the maxima and minima of

the distribution.

Table 1 Parameter sets for the cases considered

Parameter Case 1 Case 2 Case 3 Case 4

a (molecule h�1) 1.0 1.68 1.0 20.0
d (h�1) 1.0 0.20 0.09 1.19
b (molecule h�1) 1.0 0.202 0.0 1.0
g (h�1) 100.0 0.20 10.0 1.0
k1 (molecule h�1) 30.0 90.0 12.5 230.0
k2 (h

�1) 100.0 0.05 10.0 1.0
G1 (molecule2) 60.0 10 300.0 (72.8)2 (110.0)2

G2 (molecule) 10.0 1006.0 10.0 10.0

Fig. 4 Comparison between the deterministic solution (bottom) and

the stationary distribution (top) for the parameter set as in Table 1,

case 4.

Fig. 5 Case of good agreement between the theoretical and obtained distribution (see Table 1, case 1). Left: one-dimensional system, right:

two-dimensional system. The thin black line is the theoretical distribution obtained from eqn (15). The thick dark grey line is the average of the

various simulations, while the grey and light grey areas represent the range of one and two standard deviations from the average distribution.

D
ow

nl
oa

de
d 

by
 B

ro
w

n 
U

ni
ve

rs
ity

 o
n 

20
 J

ul
y 

20
11

Pu
bl

is
he

d 
on

 3
0 

Ju
ne

 2
01

1 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

1M
B

05
08

6A
View Online

http://dx.doi.org/10.1039/c1mb05086a


Mol. BioSyst. This journal is c The Royal Society of Chemistry 2011

Fig. 6 Case of poor agreement between the theoretical and obtained distribution (see Table 1, case 2). Left: one-dimensional system, right:

two-dimensional system. The thin black line is the theoretical distribution obtained from eqn (15). The thick dark grey line is the average of the

various simulations, while the grey and light grey areas represent the range of one and two standard deviations from the average distribution.

Fig. 7 Case 3, ‘‘ghost effect’’: only the biggest peak comes from a deterministic stable point. Left: one-dimensional system, right: two-dimensional

system. The thick dark gray line is the average of the various simulations, while the gray and light gray areas represent the range of one and two

standard deviations from the average distribution.

Fig. 8 Case 4, peak masking effect (parameters as in Table 1, case 4). The deterministic system has two stable points, but only the peak related to

the smallest stable point (with the largest basin of attraction) is visible. Left: one-dimensional system, right: two-dimensional system.
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In case 2, the time-scale separation assumption does not

hold, due to the very low values of g and k2: even if this

condition doesn’t guarantee that the stationary state will be

different from the approximate one-dimensional solution, with

this set of parameters we can observe a large difference

between the two distributions (Fig. 6).

In case 3, as defined before, we observe a ‘‘ghost effect’’ in

which, even if a deterministic stable state does not exist, there

is clearly a second peak in the distribution (Fig. 7). In this

system the time-scale separation assumption holds, and we can

see how both distributions show similar features.

In this final case (Table 1, case 4, Fig. 8) we observe another

effect, in which the peak related to a deterministic stable state is

masked by the tail of the stronger peak, becoming just a fat tail.

Even without a strong time-scale separation for the m and p

variables, both systems give a very similar response, evidencing

that this effect is very robust. It is noteworthy that the increase

of the g and k2 values does not affect the distribution as long as

their ratio is kept constant. Note that while there are several

computational tools for discrete-state Markov processes such as

PRISM,42 APNNtoolbox,45 SHARPE,46 or Mobius,43 there is

very little for CMTC (see for instance ref. 44). Different

modeling approaches for toggle switches do exist in the area

of formal methods (see for example ref. 26 and 27).

IV. Discussion and conclusion

We have studied a stochastic version of a biochemical circuit

(the toggle switch) that is supposed to be involved in cell cycle

control, with implications for the onset of severe diseases such

as cancer, consisting of a gene cluster (Myc–E2F) and a miRNA

cluster (miR-17-92). This cluster has been reported in a very

large number of cancer types: particularly in different types of

lymphomas, glioma, non-small cell lung cancer, bladder cancer,

squamous-cell carcinoma of head and neck, peripheral nerve

sheath tumor, malignant fibrous histiocytoma, alveolar rhabdo-

myosarcoma, liposarcoma and colon carcinomas. This huge

variety of cancer stresses the centrality of this toggle switch and

suggests that advancements in its modelling could lead to

insights into differences between these cancers. This aim is still

far but we are delighted to report that our modeling approach

shows important results inching to that direction. First of all,

many features are recovered, as observed for the deterministic

version of the same system, also by means of a further

approximation that reduces the system to a unique variable:

in this case the system can be treated analytically, and compared

to the one- and two-dimensional numerical simulations.

The stochastic approach, that is the exact approach when the

number of molecules involved is low, shows a different behaviour

than the deterministic one in two situations we have observed. It

is noteworthy that the number of molecules involved shows some

agreement with the estimates in ref. 31 and ref. 30 for other

miRNA-systems (see also ref. 32). The cell volume is assumed to

be about 10�13 litres, then 1 nM = 100 molecules.

First, bistability in the stochastic system (namely, the

possibility of having two stable states, one associated with a

resting and the other with a proliferative cell state) is observed

also in situations in which the corresponding deterministic

system is monostable, and this can be explained by the

presence of a ‘‘ghost’’ state in the deterministic system that

is strong enough to produce a second peak in the stationary

distribution of the stochastic model.

Secondly, there are situations in which the peak for the

stochastic distribution related to the highest level of expression

(with parameter values for which the deterministic system is

bistable) is masked by the tail of the distribution of the lowest-

expression maximum (that is related to the largest basin

of attraction in the deterministic model), making the

‘‘proliferative state’’ appear almost as a scarcely visited

metastable state. This is an interesting behaviour that should

be further investigated in real experimental data of protein

concentration and gene expression related to the biochemical

circuit considered. The ‘‘metastable’’ and the ‘‘fully’’ bimodal

distributions could be associated with healthy and tumoral cell

states, respectively, because the highest ‘‘proliferative’’ state

has different properties in the two cases. From a biological

point of view, such state, being associated with a dysregulated,

disease-related conditions, could actually represent a compendium

of several dysregulated states.

We argue that the deterministic approach to this bio-

chemical circuit is not capable of characterizing it completely,

and the stochastic approach appears more informative: further

features unique to the stochastic model could be obtained by

considering different time patterns for the molecular influxes

to the system, and this point in our opinion should deserve

more investigation in a future work. MicroRNAs (miRNAs)

express differently in normal and cancerous tissues and thus

are regarded as potent cancer biomarkers for early diagnosis.

We believe that the potential use of oncomirs in cancer

diagnosis, therapies and prognosis will benefit from accurate

cancer mathematical models.

Given that miR-17-92 seems to act as both oncogene and

tumor suppressor through decreasing the expression levels of

anti-proliferative genes and proliferative genes, this behavior is

suggestive of a cell-type dependent toggle switch. Therefore,

fitting experimental data could provide insights into differences

among cancer types and on which cell type is behaving

differently. The fitting of experimental data with respect to

models with different values for the Hill coefficients could also

be interesting towards understanding better the chemistry/

physics of the real microRNA system.Moreover, the comparison

between the shape of the expression distributions of the genes/

proteins involved in the circuit (and not only the average

expression) considering normal and tumoral cells for different

cell types should provide experimental evidence for the

different behaviour described from a theoretical point of view

in our work, namely the possibility that normal and tumoral

cells are in different proliferative ‘‘stationary states’’.
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