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Abstract  

 

Background 

Chronic kidney disease (CKD) is common and important due to poor outcomes. An ability to 

stratify CKD care based on outcome risk should improve care for all. Our objective was to 

develop and validate 5 year outcome prediction tools in a large population based CKD cohort. 

Model performance was compared to the recently reported ‘Kidney Failure Risk Equation’ 

(KFRE) models. 

 

Methods  

Those with CKD in the GLOMMS-I (3396) and –II (18687) cohorts were used to develop and 

validate a renal replacement therapy prediction tool. The discrimination, calibration and overall 

performance was assessed. The net reclassification index compared performance of the 

developed model and the 3- and 4-variable KFRE model to predict RRT in the validation 

cohort. 

 

Results  

The developed model (with measures of age, sex, excretory renal function and proteinuria) 

performed well with a C-statistic of 0.938 (0.918-0.957) and Hosmer-Lemeshow (HL) χ2 

statistic 4.6. In the validation cohort (18687), the developed model falsely identified fewer as 

high risk (414 versus 3278 individuals) compared to the KFRE 3-variable model (measures of 

age, sex and excretory renal function), but had more false negatives (58 versus 21 individuals). 

The KFRE 4-variable model could only be applied to 2,274 individuals because of a lack of 

baseline urinary ACR data, thus limiting its use in routine clinical practice. 

 

Conclusions 

CKD outcome prediction tools have been developed by ourselves and others. These tools could 

be used to stratify care, but identify both false-positives and -negatives. Further refinement 

should optimise the balance between identifying those at increased risk with clinical utility for 

stratifying care. 
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Summary 

 

An ability to appropriately stratify care for those with CKD should improve care for all. We 

demonstrate the development of an outcome prediction tool and compared performance in a 

very large cohort to the 3- and 4-variable Kidney Failure Risk Equation (KFRE) outcome 

prediction equations. All current models require refinements to identify those at risk without 

labelling all individuals as high-risk.
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Introduction 

 

In the UK, over 3.6 million adults are estimated to have chronic kidney disease (CKD)(1); 23 

million in the United States(2, 3). While many remain undiagnosed, recognition is improving 

rapidly and more are coming to medical attention(4).  People with CKD are at increased risk of 

mortality, cardiovascular disease and progressive kidney function decline (leading to renal 

replacement therapy (RRT))(5, 6). Progression to poor outcomes is highly variable and only a 

small proportion will require RRT(4). Important opportunities therefore exist for improving 

care, maintaining function, reducing progression and minimising and managing complications.  

People with CKD often present to primary care, are often elderly and frequently have multiple 

morbidities.  An ability to identify which patients would benefit most from interventions 

including referral to specialist services is key. Stratification of patients by predicted risk of 

future outcomes would potentially enable care pathways to be optimised(7).   

 

The literature regarding prognosis prediction in CKD has been recently reviewed(8, 9) and the 

processes involved summarised(10). Of the studies identified in the reviews, ten predicted 

progression of CKD or renal failure, three cardiovascular events and five all-cause mortality. 

All but two of the progression prediction models(11, 12) were developed in patients referred to 

nephrology services. Thus model utility in other contexts, particularly the community, is not 

clear(13, 14). Some models used variables not routinely available in clinical practice e.g. cystatin 

C. Very few models have been externally validated. None have been applied in clinical 

practice. Although Tangri et al.(15) developed models using a population referred to nephrology 

services, these models contain commonly available variables (including measures of age, sex 

and excretory renal function), were externally validated by the authors in another referred 

population; and model performance has since been reported in 595 referred individuals(14). 

Unlike many prediction model studies, model performance metrics including discrimination, 
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calibration and reclassification (10) were reported. Thus these ‘kidney failure risk equation’ 

(KFRE) models have the best evidence for their use to predict risk in CKD(15).  

 

We aimed to report the development and validation of models to predict first outcome 

(mortality or RRT initiation) by five years in a large community based CKD cohort. We 

compared the performance of our RRT prediction model with the KFRE models(15), using real-

life data to explore applicability to current clinical care. 

 

Materials and methods 

This work was approved by the University of Aberdeen Ethics Review Board in keeping with 

the principles of the declaration of Helsinki. Data-linkage of pseudoanonymised routine 

healthcare data provided measures of renal function, demographics, baseline comorbidity and 

outcome data. Data was available from the Scottish Renal Registry, Information Services 

Division Scotland (hospital episode data) and NHS Grampian (single Clinical Biochemistry 

Service, Renal management system and Health Intelligence).  

 

Development cohort 

As outlined elsewhere (16-18), the GLOMMS-I cohort (n~3,400) consists of all residents of 

Grampian in 2003 aged over 15 years, with a creatinine measurement between January and 

June 2003 of ≥150µmol/L and ≥130µmol/L for males and females respectively, who had 

impaired renal function (eGFR<60ml/min/1.73m2) for at least three months. All but 1.5% of 

GLOMMS-I have follow-up until death or within a year of 30 June 2009. 

 

Validation cohort 

The GLOMMS-II cohort (70,780 individuals) consists of all residents of Grampian with at 

least one eGFR <60ml/min/1.73m2 in 2003 (both impaired eGFR (10,857) and CKD (18,687)), 
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a sample (~20,000) of those with only normal eGFR values in 2003 and a sample (~20,000) of 

those with no measurement of eGFR in 2003 but sampling in the years pre and post 2003. Only 

the 18687 with sustained (for at least three months) stage 3a-5 CKD were used for validation 

since the aim was to predict prognosis in those with true CKD. 

 

Model development 

Models were developed in the GLOMMS-I cohort. Only those with stage 3b CKD or worse 

were used for this analysis since there were only 18 with an eGFR of ≥45 ml/min/1.73m2. 

Those who died on the creatinine index date were also excluded, leaving 3,396 individuals. 

Age, gender, stage of CKD and presence of proteinuria were pre-specified as probable 

predictors of outcome. The additive value of vascular comorbidity or diabetes was also 

explored (with forward selection) since these have been associated with outcome amongst 

those with CKD(19, 20). The 4-variable IDMS-aligned MDRD equation (as used in local clinical 

practice) and baseline creatinine were used to calculate eGFR. The last urinary albumin (ACR) 

or protein creatinine ratio (PCR) measured prior to index was used, missing values were not 

imputed since these were considered likely to be “missing not at random” and only measured 

where there is clinical indication . Individuals were categorised based on whether they had 

either ACR, PCR or neither measured prior to baseline, to allow analysis both for all cases and 

for only those with a proteinuria measurement. Definitions and categorisation of the exposures 

available for the cohort are shown under Table 1. Outcomes included initiation of RRT and 

death by five years. 

 

The utility of several model types was explored including Cox proportional hazards, logistic 

and multinomial regression, measures of performance as below were compared. The 

multinomial regression model had similar performance to the logistic regression models for 

both RRT and mortality, for clarity the logistic regression models are reported here. Cox 
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models failed to follow proportional hazards and showed worse five year predictive 

performance. Hence only logistic regression models for the binary outcomes RRT initiation at 

five years or not and being dead at five years or not, are presented further here. For each model, 

the performance of predictors were judged using a summary measure of fit and complexity – 

the Bayesian information criterion (BIC), smaller BIC values equate to better performance(21). 

The models judged to offer the most parsimonious fit were then used to derive coefficients. 

Model ‘discrimination’ was assessed using C-statistics and receiver-operator-characteristics 

(ROC) curves(22). Calibration plots of the predicted outcome against the actual outcome were 

plotted(22) and Hosmer-Lemeshow (HL) statistics calculated based on deciles of risk(22). The 

‘calibration’ was also assessed using the performance of the predicted outcomes compared to 

the actual outcomes – false positive, false negative, true predictions and overall performance.  

 

Model validation 

The chosen models were then used to predict outcome in those with CKD in the GLOMMS-II 

cohort. Calibration plots for model performance were plotted and the HL statistic calculated.  

 

Comparison of model performance with ‘kidney failure risk equation’ 

The risk of RRT initiation using the KFRE 3- and 4-variable equations (KFRE-3v and KFRE-

4v) was also calculated for the GLOMMS-II cohort(15). Net reclassification improvement 

(NRI)(23-25) for RRT initiation by five years using the model developed here, compared with the 

KFRE-3v and KFRE-4v equations(15) were described using a threshold for high-risk of 

initiating RRT by five years at 5%, as used by Tangri in individuals with stage 3 CKD(15). For 

both the “event” and non-event” NRIs, positive values suggest the comparator model is better 

than the referent model at identifying “events” and “non-events” and negative values the 

opposite.   
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Results 

Development 

Of 3,396 individuals with stage 3b to 5 CKD, 44.0% were male, 66.8% had stage 3b CKD, 

70.6% had no measure of proteinuria prior to index and the average age was 78.6 years. The 

outcomes at five years by baseline characteristics are shown in Table 1 and in Figure 1. 

Individuals who initiated RRT (4.2%, some subsequently dying) were younger, had lower 

eGFR, were more likely to be male and have macroalbuminuria compared to those who did not 

start RRT.  

 

The best logistic regression models for the prediction of RRT initiation are shown in Table 2. 

Model 7 performed best (BIC 695, discrimination C-statistic 0.938 (0.918-0.957)). All models 

of RRT initiation had good calibration, HL χ2 statistic 4.6 for model 7 (HL χ2 statistic <20 is 

considered evidence of adequate calibration(8) and a non-significant probability observed 

outcome differs from predicted). Models with information on the presence of diabetes and 

vascular comorbidity did not improve discrimination (C-statistic 0.937 (0.918-0.957) and 0.938 

(0.920-0.957) respectively), calibration (HL χ2 statistic 6.7 and 5.8 respectively) or goodness of 

fit (BIC 695 and 701 respectively). For initiation of RRT, model 7, using a 5% threshold of 

high risk had a sensitivity of 0.82, specificity of 0.90, negative predictive value of 0.99, false 

negative rate of 0.18, resulting in 90% of individuals being correctly classified. Limiting 

analysis to those only with a measure of proteinuria (either 532 ACR or 468 PCR) again 

showed that a model based on model 6/7 were the best performing (results not shown here). 

However, only 998 individuals could be used.  

 

Logistic regression models to predict death by five years performed poorly with little 

improvement with the addition of measures of excretory renal function and proteinuria (C-

statistic 0.753 (0.737-0.769)) over that of age and sex alone (C-statistic 0.749 (0.733-0.765)). 
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There was poor calibration with statistically significant differences in the predicted and 

observed deaths (HL χ2 statistic all greater than 18). No further results are presented.  

 

Validation 

The validation cohort comprised 18,687 individuals with stage 3a-5 CKD. Age distribution was 

similar to the development cohort (Table 1 and Figure 1), a lower proportion (1.1%) initiated 

RRT and there was a higher proportion of survivors (66.9%).  

Model 7 (equation box 1) was applied to those with stage 3a-5 CKD in the GLOMMS-II 

validation cohort; using the 5% threshold of predicted risk of initiating RRT by five years as 

designating someone “high-risk”. Only 578 individuals were “high-risk”. Of the 222 

individuals who initiated RRT, 58 (26.1%) were incorrectly classified as not high-risk (false-

negative) (Table 3). The model had a specificity of 0.98, sensitivity of 0.74 and 94.5% of the 

18,687 were correctly classified as high-risk or otherwise, if limited to the 6341 with stage 3b-5 

CKD the equivalent figures were 0.93, 0.81 and 92.9% respectively.  

 

Comparison of models 

Our model 7 and the KFRE-3v model were compared for the 18,687 people with CKD in the 

GLOMMS-II validation cohort. The KFRE-4v model could only be applied to 2,274 

individuals because of a lack of baseline urinary ACR data. Model performance measures are 

shown in Table 3. Model calibration are shown in Figure 2a (for all with CKD) and 2b (for all 

with CKD and a measure of ACR). Both the KFRE-3v and KFRE-4v models over-predicted 

those that would initiate RRT. For all 18,687 with CKD, our model 7 had a (discrimination) C-

statistic of 0.960 (0.947-0.974) compared to 0.936 (0.918-0.954) for the KFRE-3v model. In 

the 2,274 where the urinary ACR was also available, the C-statistics were 0.936 (0.906-0.966), 

0.881 (0.827-0.935) and 0.948 (0.922-0.974) for our model 7, and the KFRE-3v and  KFRE-4v 

models respectively.   
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For the 18,687 people with CKD, using the 5% risk threshold for identifying high or low risk, 

our model was more specific, 0.98 overall (vs 0.82 with KFRE-3v model) However, our model 

missed more cases (58 vs 21 false-negatives) who went on to initiate RRT and thus generally 

had a lower sensitivity. These findings were consistent for those both under and over 75 years 

of age. For those with stage 3a CKD the proportion predicted a false-negative by the models 

(predicted low risk but went on to initiate RRT) were similar (87.0% and 82.6% respectively 

for ours and the KFRE-3v model). For both models’, performance was better in more advanced 

disease:- false negatives of 68.3% and 4.9% for stage 3b and 11.2% and 0% for stage 4 

respectively. The better identification of high RRT risk with the KFRE-3v than our model for 

all CKD is reflected in the “event” NRI (Table 3) which being generally negative implies that 

the referent model is better at predicting events. However this better event identification came 

at a cost, with 2,053 and 1,246 individuals with stage 3b and 4 CKD being classified as high 

risk compared to 102 and 333 for our model. Overall, our model correctly reclassified 2,864 

individuals from KFRE-3v ‘high-risk’ to ‘low risk’ (Table 3) – “non-event” NRI. The majority 

of individuals did not initiate RRT, as shown in Figure 3. Overall the NRI0.05 was small 

suggesting no model was better overall than another, although for stage 4 and 5 CKD the 

NRI0.05was positive thus favouring our model. 

 

For the subset of 2,274 individuals with urinary ACR data (second part of Table 3) there was a 

different performance profile. The KFRE-3v model identified 512 individuals as high risk, 

compared to 276 with the KFRE-4v model and 120 with our model. Overall the sensitivity of 

the KFRE-3v model was the same as the KFRE-4v model (0.84) and better than ours (0.56), 

reflected in the event NRIs. However the specificity of ours was better 0.96 vs 0.79 KFRE-3v 

and 0.89 KFRE-4v) . In particular the KFRE-3v model identified all those with stage 4 CKD as 

high risk (specificity 0.00, non-event NRI positive in favour of our model). Overall the NRI0.05s 
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favoured the KFRE-4v model over the KFRE-3v and our model, except for stage 4 CKD where 

our model was favoured over both the KFRE models (missing only one RRT initiator (false-

negative 6.3%) and identifying only 68 individuals as high risk).    

 

 

Discussion 

 

We have demonstrated that it is possible to develop prediction tools for the initiation of RRT in 

a community CKD population, not just those referred to nephrology clinics. Using routinely 

available clinical biomarkers we were able to predict the five year risk of RRT using a simple 

prediction model. This tool could be used to stratify CKD populations by RRT risk, identifying 

clinically relevant sub-groups at high and low risk. The performance of our model using 

traditional metrics was good, and comparable to the widely cited KFRE models(15). This is the 

first study to apply the KFRE 3- and 4-variable models to a non-referred population and only 

the second to apply them outside the Canadian health system(14). Both KFRE models performed 

well on traditional metrics, but the KFRE-4v model had restricted application because of the 

data available from routine care. This similar performance of the KFRE models was despite 

differing age and gender (35% vs 56% male; (74.4 (SD 0.8) vs 70(SD 24) years), lower 

prevalence of diabetes (8% vs 37%) and vascular disease (24% vs 40%) in our population  

compared to the KFRE deriving population.  

    

The major strength of this study lies in the availability of population-based routine clinical data 

with complete coverage for a large single health authority region, supporting good translation 

into clinical practice. The community cohort extends generalisability to beyond those already 

referred to nephrology care. The technical challenges of identifying those with chronic kidney 

disease are well-documented and have resulted in widely varying prevalence reporting in the 

literature(26). Here we have defined CKD using the internationally adopted definition with an 

eGFR of <60 ml/min/1.73m2 present for at least three months. We have reported a range of 
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model performance metrics to enable assessment of overall performance of the models. There 

are however some limitations to this study. The original (deriving) cohort was nested within the 

validating cohort and had no individuals with stage 3a disease, thus there is the potential for 

model over-fitting. However, this would not impact on the performance (and further external 

validation) of the KFRE models, and thus the issue with the over-prediction of risk for these 

models is appropriately highlighted. The use of data from one health board does potentially 

reduce generalisability, however registry data suggests that the region has similar RRT 

initiation rates to the rest of the UK. The majority of the population is Caucasian which limits 

reproducibility in more ethnically diverse populations. The use of a model that includes a group 

with “proteinuria not measured” is unusual. However, although there may be multiple reasons 

why proteinuria is not measured (we assume in the majority because the clinician in charge has 

not thought it relevant), the single reason it is not available in this dataset is that it was not 

measured. As such these individuals are an important risk group, particularly as demonstrated, 

this is the majority of individuals at a population level with CKD. We would expect that the 

use of such a model to assess risk should prompt future assessment and thus the measurement 

of proteinuria, and in itself is useful to consider “baseline” risk.  

   

There is growing evidence that prediction models in CKD have the potential to stratify future 

risk of major health outcomes including RRT. However, reporting of performance is variable 

and only three studies(15, 27, 28) report external validation, the ideal in prediction model 

development(29). Clinical applicability has also been limited by the variables included. For 

mortality prediction, we and others have found that the addition of renal function measures 

(including eGFR and proteinuria), added little to age and sex(27). 

Our RRT prediction model performed well, with good or excellent discrimination (C-statistic 

0.938 in the derivation and 0.960 in the validation cohort) and calibration (HL χ2 statistic 4.6). 

Equivalent figures published for Tangri et al.(15) were C-statistics 0.89, 0.91 and 0.92 for the 
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KFRE 3, 4 and 8-variable models and (Nam and D’Agnostino) χ2 statistic 37, 32 and 19 

respectively.  

 

This is one of only two studies(14) that have reported validation of the KFRE-3v and KFRE-4v 

models in an external population, both demonstrating excellent discrimination. However, we 

found that both KFRE models over-predicted risk compared to actual outcomes (calibration), 

likely due to the competing risk of death. This is supported by the original KFRE publication 

(15), reporting Nam and D’Agnostino χ2 statistics of 37, 32 and 19 for the 3-, 4- and 8-variable 

models, again suggesting the observed and predicted events were rather different. Although 

both Tangri et al.(15) and Peeters et al.(14) report the NRI comparing the KFRE models relative 

performance, neither is so explicit in terms of the numbers of individuals mistakenly identified 

as high or low risk. To our knowledge no others have reported the numbers that would be 

identified as high-risk using these models in a community CKD population and thus the 

implications of using them, e.g. in general practice to guide referral, particularly since all 

individuals with stage 4 CKD were high risk according to the KFRE-3v model. We 

demonstrated like others(15) that overall NRI favours the use of the KFRE-4v over the KFRE-

3v model, however this was only applicable to 2,274 of the 18,687 individuals with CKD.  

 

Head-to-head comparison of our model (more specific, less sensitive) to others allows 

assessment of the potential clinical utility of introducing models into routine practice. Although 

CKD outcome prediction models have the potential to identify individuals at high- and low-

risk, currently available models have limitations. Using the risk thresholds (P≥0.05=high-risk) 

in this study, the KFRE-3v model identified all with stage 4 CKD as high-risk and as such adds 

little to CKD stage. The KFRE-4v equation was unusable in 16,413 of 18,687 individuals in 

this population-level CKD cohort because of no measure of urinary ACR, although ACR 

measurement will increase given the most recent KDIGO guidelines (30). Our model 
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incorporating categorical information on whether urinary protein was measured (ACR or PCR), 

and if so, the level, does add some value to prediction estimates, facilitating use in real-world 

data. Although a more viable number of individuals were identified as high-risk by our model, 

offering potential to guide referral to nephrology care, the false negative rate limits current 

clinical application. This balance of false-positive to false-negative (whatever the clinical 

decision as a result – referral to nephrology or access surgery) is important both in terms of 

service (clinics, dialysis-access-surgery lists) and human (anxiety, risks of inappropriate 

surgery) costs against the missed opportunities to intervene earlier and thus change and 

improve prognosis. Other issues that would need to be considered if such models were to be 

introduced are the effect of using different thresholds for high-risk.  

This study has two major implications for current clinical practice. First it highlights the need 

for more timely investigation of those identified with CKD to identify risk factors such as 

proteinuria. This need has also been identified in the most recent KDIGO guidelines (30) by 

cross-classifying eGFR CKD stage by ACR. Second, with further refinement, prediction 

models could form part of a CKD pathway for shared care, potentially as a signal for first or re-

referral.  

 

Model refinements require further research to improve performance. In particular:- exploration 

of alternative methods (competing risk of death); and prior course of renal function (in clinical 

practice considered very important, but so far no measure of this in outcome prediction 

models). In terms of patient information, a model of patient “survival” i.e. being alive and not 

requiring RRT, would be appealing.  

 

Conclusion 

CKD is common with serious consequences for some patients. Tools that predict the initiation 

of RRT have been developed and perform well using traditional metrics. Prediction models 
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offer the potential to target and tailor clinical care within a carefully managed care-pathway. 

For clinical utility, further refinement is needed to optimise the balance between those labelled 

as high-risk and false-negatives, and clinical performance.  
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Table 1 - Outcome at 5 years follow-up by baseline characteristics 

Baseline characteristics

All N (%) 3396 (2.4) (1.8) (53.0) (42.8) 18687 (0.7) (0.4) (31.9) (66.9)

Sex Male 1493 (3.2) (2.7) (52.7) (41.4) 6580 (1.3) (0.8) (34.5) (63.5)

Female 1903 (1.7) (1.1) (53.2) (43.9) 12107 (0.4) (0.3) (30.5) (68.8)

Age Median (25-75%) 58 (46-71) 70 (63-76) 82 (76-87) 75 (67-80) 58 (44-70) 70 (59-76) 81 (75-87) 73 (66-79)

years 15-44 77 (24.7) (6.5) (3.9) (64.9) 305 (11.8) (2.3) (5.2) (80.7)

45-54 106 (12.3) (6.6) (11.3) (69.8) 660 (3.2) (1.2) (6.8) (88.8)

55-64 280 (6.8) (2.1) (22.9) (68.2) 2201 (1.5) (0.5) (12.2) (85.7)

65-74 758 (2.2) (3.3) (37.7) (56.7) 5630 (0.6) (0.6) (19.2) (79.6)

75-84 1418 (0.9) (1.3) (58.4) (39.4) 7119 (0.2) (0.3) (38.2) (61.2)

85+ 757 (0.0) (0.0) (80.2) (19.8) 2772 (0.0) (0.0) (65.8) (34.2)

eGFR Median (25-75%) 19 (13-28) 19 (14-28) 33 (27-36) 35 (30-37) 19 (13-32) 22 (15-34) 46 (37-53) 51 (44-56)

Index eGFR 45-59 0 12346 (0.1) (0.1) (26.1) (73.7)

ml/min/1.73m 2 30-44 2268 (0.8) (0.7) (50.2) (48.3) 4951 (0.4) (0.4) (40.2) (59.0)

15-29 1036 (3.5) (2.7) (59.7) (34.2) 1246 (4.5) (2.6) (55.1) (37.7)

0-14 92 (29.3) (19.6) (46.7) (4.3) 144 (32.6) (15.3) (36.1) (16.0)

ACR Median (25-75%) 129 (32-215) 135 (6-319) 4 (1-16) 2 (0.9-9) 143 (35-240) 135 (9-319) 3 (0.9-10) 1 (0.9-4)

PCR Median (25-75%) 261 (125-415) 228 (73-441) 39 (17-83) 31 (13-79) 216 (85-414) 228 (73-382) 26 (13-59) 21 (9-53)

mg/mmol Normoalbuminuria 504 (1.2) (1.4) (45.6) (51.8) 2125 (0.6) (0.3) (29.1) (69.9)

Microalbuminuria 181 (1.7) (1.7) (54.1) (42.5) 602 (0.5) (0.5) (39.7) (59.3)

Macroalbuminuria 313 (15.0) (10.2) (42.2) (32.6) 548 (13.1) (7.3) (35.2) (44.3)

Not measured 2398 (1.0) (0.8) (55.9) (42.3) 15412 (0.3) (0.2) (31.8) (67.6)

Alive then died no RRT Alive then died no RRT

Died SurviveRRT RRT Died Survive RRT RRT

Outcomes at 5 years Outcomes at 5 years

GLOMMS-I cohort GLOMMS-II cohort with CKD 3a-5

 
Microalbuminuria= ≥2.5mg/mmol albumin creatinine ratio (ACR) for men, ≥3.5mg/mmol ACR for women; macroalbuminuria = ≥30mg/mmol ACR, or ≥50mg/mmol protein 

creatinine ratio (PCR); normoalbuminuria = ACR or PCR below thresholds for micro/macroalbuminuria; not measured= no measure of ACR or PCR prior to index. In GLOMMS-

I, the presence of vascular disease was defined by a case-note review record of:- ischaemic heart disease (angina, myocardial infarction, abnormal coronary angiogram, coronary 

angioplasty or coronary artery bypass grafting); congestive cardiac failure (record of New York Heart Association criteria symptoms); peripheral vascular disease (claudication, 

suggestive angiogram or tissue loss due to vascular disease); cerebrovascular disease (transient ischaemic attack, stroke (with or without full recovery) or an abnormal CT scan in 

keeping with cerebrovascular disease), up to the time of “index”. Diabetes was defined as present in GLOMMS-I if case-note review up to the time of index had this recorded. In 

GLOMMS-II, the presence of any hospital episode record with ICD-10 (World Health Organisation, international classification of disease) coding in the five years prior to index 

consistent with vascular disease (I11.0, I13.0, I13.2, I20.x-I25.x, I42.0, I42.5–I42.9, I43.x, I50.x, I60.x-I71.x, I73.1, I73.8, I73.9, I77.1, I79.0, I79.2, G45.x-G46.x, H34.0) or 

diabetes (E10.x-E14.x, O24.0-O24.1) was taken to indicate these comorbidities were present. Coding performance compared to case-note review has been reported previously(31).
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Table 2 – Variables, odds ratios and performance of logistic regression models for 

predicting having initiated RRT by 5 years follow-up 

 

Variable 1 2 3 4 5 6 7

Sex (female vs male) 0.55 † 0.38 † 0.35 † 0.27 † 0.35 † 0.35 † 0.36 †

Age/10 (years) 0.47 † 0.44 † 0.42 † 0.46 † 0.47 † 0.47 †

(Mean age)2 1.00 †

CKD stage 4 vs 3 6.55 †

CKD stage 5 vs 3 93.37 †

Index eGFR 0.83 † 0.83 † 0.85 † 0.84 † 0.84 †

Age.eGFR interaction 1.00 †

A = Baseline proteinuria not measured

Normoalbuminuria vs A 0.84  

Microalbuminuria vs A 2.08  

Macroalbuminuria vs A 5.09 †

B = Baseline proteinuria not measured / Normoalbuminuria

Microalbuminuria vs B 2.16  

Macroalbuminuria vs B 5.31 †

C statistic 0.817 0.9022 0.917 0.865 0.918 0.938 0.938
(C statistic 95% confidence interval) (0.784-0.849) (0.876-0.928) (0.893-0.941) (0.827-0.903) (0.894-0.941) (0.918-0.957) (0.918-0.957)

P value* <0.0001 0.0077 <0.0001 0.2164 0.0004 0.8706

versus model 1 2 3 3 3 6

Bayesian information criterion 1011 801 729 830 737 703 695

Hosmer-Lemeshow Chi sq statistic 10.6 6.3 8.9 11.7 10.3 4.6 4.6

Hosmer-Lemeshow Chi sq statistic probability 0.229 0.609 0.353 0.165 0.244 0.801 0.800

Models

 
*Probability that C-statistic differs significantly from previous model (specified below) 

† = statistically significant odds ratios 

Addition of diabetes or vascular comorbidity to model 7 yielded C-statistics of 0.937 and 0.938, BICs of 695 and 701 and HL statistics of 6.7 

and 5.8 respectively.  

C-statistic higher indicates better discrimination, BIC lower indicates better goodness of fit, HL statistic lower value indicates that observed 

and predicted instances of RRT initiation are similar, P value examines the probability that the distribution of observed and predicted instances 

are significantly different or otherwise 
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Table 3 – Comparison of the performance of the KFRE 3- and 4-variable and our model to predict RRT initiation at 5 years in those with 

CKD in the GLOMMS-II cohort  
 

NRI0.05

Referent Comparator Total 

number of 

patients 

at risk 

Sens Spec Proportion 

correctly 

classified

Sens Spec Proportion 

correctly 

classified

Number 

of events 

correctly 

given 

higher 

risk

Difference 

in 

proportions 

of events 

reclassified

Number 

of non-

events 

correctly 

given 

lower 

risk

Difference 

in 

proportions 

of non-

events 

reclassified

TP FN TN FP TP FN TN FP ∆FN ∆FP

All

Stage 3a-5 KFRE-3v Ours 18687 201 21 15187 3278 0.91 0.82 0.823 164 58 18051 414 0.74 0.98 0.975 -37 -0.167 2864 0.155 -0.012 ( -0.061 , 0.038)

Stage 3a-5 (under 75years) KFRE-3v Ours 8796 163 18 7281 1334 0.90 0.85 0.846 137 44 8340 275 0.76 0.97 0.964 -26 -0.144 1059 0.123 -0.021 ( -0.072 , 0.031)

Stage 3a-5 (over 75years) KFRE-3v Ours 9891 38 3 7906 1944 0.93 0.80 0.803 27 14 9711 139 0.66 0.99 0.985 -11 -0.268 1805 0.183 -0.085 ( -0.221 , 0.051)

Stage 3a KFRE-3v Ours 12346 4 19 12291 32 0.17 1.00 0.996 3 20 12320 3 0.13 1.00 0.998 -1 -0.043 29 0.002 -0.041 ( -0.124 , 0.042)

Stage 3b KFRE-3v Ours 4951 39 2 2896 2014 0.95 0.59 0.593 13 28 4821 89 0.32 0.98 0.976 -26 -0.634 1925 0.392 -0.242 ( -0.390 , -0.094)

Stage 4 KFRE-3v Ours 1246 89 0 0 1157 1.00 0.00 0.071 79 10 903 254 0.89 0.78 0.788 -10 -0.112 903 0.780 0.668 ( 0.598 , 0.738)

Stage 5 KFRE-3v Ours 144 69 0 0 75 1.00 0.00 0.479 69 0 7 68 1.00 0.09 0.528 0 0.000 7 0.093 0.093 ( 0.027 , 0.159)

Those with urinary ACR data at baseline

All stage 3a - 5 KFRE-4v KFRE-3v 2274 36 7 1991 240 0.84 0.89 0.891 36 7 1755 476 0.84 0.79 0.788 0 0.000 -236 -0.106 -0.106 ( -0.172 , -0.040)

KFRE-4v Ours 2274 36 7 1991 240 0.84 0.89 0.891 24 19 2135 96 0.56 0.96 0.949 -12 -0.279 144 0.065 -0.215 ( -0.349 , -0.080)

KFRE-3v Ours 2274 36 7 1755 476 0.84 0.79 0.788 24 19 2135 96 0.56 0.96 0.949 -12 -0.279 380 0.170 -0.109 ( -0.244 , 0.026)

Stage 3a KFRE-4v KFRE-3v 1456 2 5 1436 13 0.29 0.99 0.988 1 6 1443 6 0.14 1.00 0.992 -1 -0.143 7 0.005 -0.138 ( -0.397 , 0.121)

KFRE-4v Ours 1456 2 5 1436 13 0.29 0.99 0.988 1 6 1447 2 0.14 1.00 0.995 -1 -0.143 11 0.008 -0.135 ( -0.395 , 0.124)

KFRE-3v Ours 1456 1 6 1443 6 0.14 1.00 0.992 1 6 1447 2 0.14 1.00 0.995 0 0.000 4 0.003 0.003 ( 0.000 , 0.005)

Stage 3b KFRE-4v KFRE-3v 650 12 2 527 109 0.86 0.83 0.829 13 1 312 324 0.93 0.49 0.500 1 0.071 -215 -0.338 -0.267 ( -0.407 , -0.126)

KFRE-4v Ours 650 12 2 527 109 0.86 0.83 0.829 2 12 604 32 0.14 0.95 0.932 -10 -0.714 77 0.121 -0.593 ( -0.831 , -0.355)

KFRE-3v Ours 650 13 1 312 324 0.93 0.49 0.500 2 12 604 32 0.14 0.95 0.932 -11 -0.786 292 0.459 -0.327 ( -0.545 , -0.108)

Stage 4 KFRE-4v KFRE-3v 153 16 0 28 109 1.00 0.20 0.288 16 0 0 137 1.00 0.00 0.105 0 0.000 -28 -0.204 -0.204 ( -0.272 , -0.137)

KFRE-4v Ours 153 16 0 28 109 1.00 0.20 0.288 15 1 84 53 0.94 0.61 0.647 -1 -0.063 56 0.409 0.346 ( 0.202 , 0.491)

KFRE-3v Ours 153 16 0 0 137 1.00 0.00 0.105 15 1 84 53 0.94 0.61 0.647 -1 -0.063 84 0.613 0.551 ( 0.407 , 0.695)

Stage 5 KFRE-4v KFRE-3v 15 6 0 0 9 1.00 0.00 0.400 6 0 0 9 1.00 0.00 0.400 0 0.000 0 0.000 0.000 ‡

KFRE-4v Ours 15 6 0 0 9 1.00 0.00 0.400 6 0 0 9 1.00 0.00 0.400 0 0.000 0 0.000 0.000 ‡

KFRE-3v Ours 15 6 0 0 9 1.00 0.00 0.400 6 0 0 9 1.00 0.00 0.400 0 0.000 0 0.000 0.000 ‡

Non-event NRI0.05 (95%CI)

Start RRT Do not start 

RRT

Comparison Referent Comparator Event NRI0.05

Start RRT Do not start 

RRT

 
 
‡All individuals predicted to initiate RRT by all models therefore NRI probability is inappropriate. 

TP=true positive; FN=false negative; TN=true negative; FP=false positive; Sens=sensitivity; Spec=specificity; NRI0.05=net reclassification index, p<0.05 is low risk; ∆FN=difference in false negatives between referent and 

comparator model; ∆FP=difference in false positives between referent and comparator model. 
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Figures and legends 

 

 
 

 

 
Figure 1 – Timeline and outcomes of development and validation cohorts 

Equation box 1 

P ( y =1, initiate RRT by 5 years)  = elp/(1 + elp) 

    = 1 / (1 + e-lp) 

Lp = 8.090-1.031 x (sex) - 0.761 x (age/10) - 0.175 x (eGFR)  if normoalbuminuric / not known 

Lp = 8.090-1.031 x (sex) - 0.761 x (age/10) - 0.175 x (eGFR) + 0.772 if microalbuminuric 

Lp = 8.090-1.031 x (sex) - 0.761 x (age/10) - 0.175 x (eGFR) + 1.670 if macroalbuminuric 

 

Sex = 1 if male, 2 if female 
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Figure 2 – Calibration plots for proportion of individuals in each predicted decile of risk 

who actually initiate RRT (a) with CKD in GLOMMS-II (b) with CKD in GLOMMS-II 

who had a measure of ACR available at baseline 

Size of the shape (circle, square or triangle) represents the number of individuals out of the 18687 or 2274 individuals who had a predicted risk 

within the given decile. For example in (a) our model had 18313 with predicted risk between 0.0 and 0.1, 124 with predicted risk between 0.1 

and 0.2, 57 between 0.2 and 0.3, 43 between 0.3 and 0.4, 32 between 0.4 and 0.5, 23 between 0.5 and 0.6, 26 between 0.6 and 0.7, 23 between 

0.7 and 0.8, 19 between 0.8 and 0.9, 27 between 0.9 and 1.0Similarly in (a) the KFRE 3-variable model had 16814 with predicted risk between 

0.0 and 0.1, 1001 with predicted risk between 0.1 and 0.2, 346 between 0.2 and 0.3, 170 between 0.3 and 0.4, 110 between 0.4 and 0.5, 53 

between 0.5 and 0.6, 54 between 0.6 and 0.7, 36 between 0.7 and 0.8, 44 between 0.8 and 0.9, 59 between 0.9 and 1.0. 
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Figure 3 – Predicted need for RRT at 5 years follow up, among those who did not initiate 

RRT: a comparison of models in the GLOMMS II validation cohort. 
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For each model and CKD stage, those who did not initiate RRT are shown, they are represented in white if correctly predicted not to initiate 

and black if incorrectly predicted to initiate RRT.   


