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Abstract We construct three new families of fibrations π : S → B where S is an algebraic
complex surface and B a curve that violate Xiao’s conjecture relating the relative irregularity
and the genus of the general fiber. Thefibers ofπ are certain étale cyclic covers of hyperelliptic
curves that give coverings of P1 with dihedral monodromy. As an application, we also show
the existence of big and nef effective divisors in the Brill–Noether range.
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1 Introduction

Let S be a smooth complex projective surface and B a smooth curve of genus b andπ : S → B
a fibration, i.e., a surjective morphism with connected fibers. Let C be the general fiber of
π and gC its genus. Let q = dim H1(S,OS) be the irregularity of S and qπ = q − b the
relative irregularity of the fibration. The fibration is called isotrivial if the smooth fibers are
all isomorphic.
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A. Albano, G. P. Pirola

Assume that the fibration is not isotrivial and b = 0, that is, B = P
1 is the projective line.

Under these hypotheses, Xiao proved in [14] the inequality

q ≤ gC + 1

2

and he conjectured that the inequality

qπ ≤ gC + 1

2
(1.1)

holds in general for non-isotrivial fibrations, see also [9,15].
It was shown in [11] that this conjecture is false by constructing a fibration π with gC = 4

and qπ = 3 and the failure of the conjecture was linked to the non-triviality of a certain
higher Abel–Jacobi map.

This motivates the following

Definition 1.1 Let S be a surface. A fibration π : S → B with general fiber C is called a
Xiao fibration if

qπ >
gC + 1

2
.

Up to now, the only examples of Xiao fibrations were the ones constructed in [11]. In this
paper, we construct three new families of Xiao fibrations associated with cyclic étale covers
of hyperelliptic curves.

Let us explain the main idea: Let E be an hyperelliptic curve of genus g and f : C → E
a cyclic étale cover of odd prime order p. In this situation, the hyperelliptic involution lifts
to an automorphism of C and let D be the quotient of C by this automorphism (see [1,5]).
The lift of the involution and the deck transformations of the étale cover generate a dihedral
group Dp of automorphisms of C . This group is also the monodromy of the induced ramified
cover D → P

1.
Let P(C, E) be the (generalized) Prym variety associated with f . In [12], it is proved

that P(C, E) is the product of the jacobian J (D) with itself and hence J (C) is isogenous to
J (D) × J (D) × J (E). We have gC = p(g − 1) + 1 and gD = (p − 1)(g − 1)/2.

This construction gives a map

ψ : Hg,p → M(p−1)(g−1)/2 (1.2)

from the moduli space Hg,p of unramified cyclic covers of degree p of hyperelliptic curves
of genus g to the moduli space MgD of curves of genus gD .

We study the fibers of ψ and determine when they are positive dimensional (Proposi-
tion 2.7). In those cases, an irreducible component of the fiber gives a family of curves C
whose Jacobians have a fixed part J (D) × J (D).

In general, from a family of curves one can construct fibrations that have the curves C of
the family as fibers. In our situation, the geometry of the étale covers allows us to construct
these fibrations as subvarieties of an appropriate Hilbert scheme of the surface D × D, and
hence, we have a lower bound on the relative irregularity. We will prove the

Theorem 1.2 There exist Xiao fibrations π : S → B with general fiber C in the following
cases:

1. E of genus g = 2 and covers of degree p = 5. This gives gC = 6, qπ = 4;
2. E of genus g = 4 and covers of degree p = 3. This gives gC = 10, qπ = 6;
3. E of genus g = 3 and covers of degree p = 3. This gives gC = 6, qπ = 4;
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Dihedral monodromy and Xiao fibrations

First of all, in Sect. 3, we construct the fibrations associated with the positive-dimensional
fibers of ψ , and then, we analyze the three cases, respectively, in Sects. 4–6.

In case 1, we compute the differential of the Prym map to show that the fibers of ψ have
dimension 1 and hence the fibrations are in fact surfaces.

In case 2, we find that an irreducible component of the fiber of ψ is the curve D itself.
This allows us to construct the surface S as a ramified double cover of D × D. From this
explicit description, we can compute all the invariants of the surface S (Theorem 5.6).

In case 3, let F be the fiber of ψ . Then, F has dimension 2 and generically the genus of
C is 7 so we obtain a threefold such that for a general curve X inside F the corresponding
fibered surface is not a Xiao fibration. We then compactify the fiber of ψ and analyze the
singular curves we obtain at the limit. One can normalize these curves obtaining a surface
with the same relative irregularity and geometric genus of the generic fiber equal to 6, giving
again a Xiao fibration.

We note that for the Xiao fibration found in [11] as well as for all these new ones, the
Xiao conjecture fails only by 1/2, i.e., in all cases one has

qπ =
⌈

gC + 1

2

⌉
(1.3)

This bound has appeared recently in the work of Barja et al. and González-Alonso (see
[2,6]). The main result of [2] says that for a non-isotrivial fibration π : S → B one has

qπ ≤ gC − cπ

where cπ is the Clifford index of the general fiber. When cπ =
⌊

gC − 1

2

⌋
, i.e., cπ is equal

to the Clifford index of the general curve of genus g, the previous inequality becomes

qπ ≤
⌈

g + 1

2

⌉
(1.4)

In [2], it is conjectured that the inequality (1.4) holds for all non-isotrivial fibrations. Our
work seems to confirm this conjecture. It is an interesting problem to provide examples of
Xiao fibrations with gC arbitrarily high.

Our examples in cases 1 and 2 provide also an answer to a question posed in [8] (Ques-
tion 8.6). In fact we have

Proposition 1.3 There exist surfaces S and nef and big effective divisors C on S in the Brill–
Noether range, i.e., such that q(S) < ga(C) < 2q(S) − 1, where ga(C) is the arithmetic
genus of C.

Proof In cases 1 and 2, the curves C embed into S = D × D with positive self-intersection
by Lemmas 2.4 and 2.6. Since q(S) = 2g(D), we have q(S) = (p − 1)(g − 1), and since
C is smooth, we have ga(C) = gC = p(g − 1) + 1, and so C is in the Brill–Noether
range. ��

In case 2, the divisor C is even ample (see Remark 5.4).

2 Dihedral groups and hyperelliptic curves

We recall the following well-known result (see [1,5,12]):
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Proposition 2.1 Let C → E be an étale abelian Galois cover, where E is an hyperelliptic
curve. Then, the hyperelliptic involution lifts to an involution on C. If moreover the Galois
group is cyclic, then the group generated by the Galois group and a lift of the involution is a
dihedral group Dn of order 2n, where n is the order of the Galois group.

In the cyclic case, we consider the following commutative diagram:

C
p:1
f

��

2:1 ρ

��

E

2:1
��

D
p:1

��
P
1

(2.1)

where E is an hyperelliptic curve of genus g, E → P
1 is the hyperelliptic quotient and

f : C → E is étale and abelian with cyclic Galois group H of odd order p. By the previous
Proposition, C → P

1 is Galois with Galois group G = Dp .
Then, ρ : C → D is the quotient by a lift of the hyperelliptic involution, and D → P

1 is
a non-Galois ramified cover with dihedral monodromy.

This can be realized as follows: fix an hyperelliptic curve E of genus g and a cyclic
subgroup H ′ of order p of Pic0(E). This gives the cover C → E . Note that g(C) = gC =
p(g − 1) + 1.

Now let j ∈ Dp ⊆ Aut(C) be a lift of the hyperelliptic involution. Then, j has 2g + 2
fixed points, one over each Weierstrass point of E (which are the ramification points of the
double cover E → P

1). We use here the fact that the order p is odd.
Hence, the genus of D is gD = (p − 1)(g − 1)/2.
The ramification of the cover D → P

1 is: Over every branch point of the hyperelliptic
covering, there are 1+ (p − 1)/2 points. One of these points is non-ramified, and the others
have ramification index 1.

Conversely, starting with D → P
1 with the above ramification and dihedral monodromy,

its Galois closure is C → D → P
1.

Associated with the étale cover f : C → E , there is a Prym variety P(C, E) defined
as the connected component of the identity of the kernel of the map f∗ : J (C) → J (E)

and J (C) is isogenous to the product P(C, E) × J (E). The main theorem of [12] identifies
precisely the Prym variety:

Theorem 2.2 [12, Theorem 1] There is an isomorphism of abelian varieties

P(C, E) ∼= J (D) × J (D).

Moreover, if h is a generator of the cyclic subgroup H ⊆ Aut(C), then the endomorphism
η = h∗ + (h−1)∗ of J (C) induces a non-trivial automorphism of J (D) for p > 3.

Corollary 2.3 1. J (C) is isogenous to J (D) × J (D) × J (E).
2. For p > 3, the curve D is special in moduli since its Jacobian has non-trivial automor-

phisms.

Hence, End(J (D)) ⊗ Q contains at least Q(η) which is isomorphic to the maximal real
subfield of the cyclotomic field Q(ζ ) with ζ p = 1. For more results on endomorphism of
Jacobians, see [4].

Let Hg,p be the moduli space of unramified cyclic covers of degree p of hyperelliptic
curves of genus g. A point in Hg,p is (up to isomorphism) a pair (E, H ′) where E is an
hyperelliptic curve of genus g and H ′ is a cyclic subgroup of order p of Pic0(E). The

123

Author's personal copy



Dihedral monodromy and Xiao fibrations

dihedral construction of diagram (2.1) determines uniquely the isomorphism class of D,
since any two lifts of the hyperelliptic involution are conjugated in Aut(C) and hence gives
a morphism

ψ : Hg,p → M(p−1)(g−1)/2 (2.2)

from the moduli spaceHg,p to the moduli spaceMgD of curves of genus gD = (p − 1)(g −
1)/2.

The image of ψ is clearly contained in the locus of p-gonal curves. When p = 3, the
closure of the image is the trigonal locus since for D → P

1 a map of degree 3 with simple
ramifications, the monodromy is the full symmetric group S3 = D3 and hence D is in
the image of the map ψ . These curves form an open subset of the trigonal locus which is
irreducible.

We study now the fibers of thismap, and for this, we analyze the correspondence associated
with the endomorphism η of J (C).

Recall that h ∈ H ⊆ Dn is a generator of the cyclic subgroup H and j is a lift of the
hyperelliptic involution. Let j1 = hj and note that j1 is again an involution. Let γ : C →
D × D be defined by

γ (x) = (ρ j (x), ρ j1(x)).

where ρ j , ρ j1 are the quotient maps associated with the involutions. Note that ρ j1 = ρ j ◦
h(p−1)/2.

We have:

Lemma 2.4 The map γ is an embedding.

Proof If x is not a fixed point for j , it follows that the map ρ j (x) is smooth at x, that is, the
differential dρ j is injective at x and a fortiori dγ (x) is injective. Therefore, dγ (x) can fail
to be injective only if j (x) = j1(x) = x , and this implies h(x) = x . But since f is étale, h
does not have fixed points.

In a similar way, we see that γ is injective. Assume by contradiction that γ (x) = γ (x ′),
but x = x ′. Then, j (x) = j1(x) = x ′ and h(x ′) = hj (x) = j1(x) = x ′ and as before h
would have a fixed point. ��
Remark 2.5 The proof of Theorem 2.2 shows that the induced map γ∗ : J (C) → J (D) ×
J (D) is surjective. We will need this remark in Lemma 3.1.

Let (E, H ′) ∈ Hg,p , let [D] = ψ(E, H ′) and let X be an irreducible component of the
fiber ψ−1([D]). The discussion above shows that there is a morphism

α : X → Hilb(D × D) (2.3)

from X to a suitable Hilbert scheme of D × D given as follows: To a point (E, H ′) ∈ X , we
associate the subscheme γ (C) of D × D.

We now compute the self-intersection of γ (C) inside the surface D × D.

Lemma 2.6

γ (C)2 = 8 − 2(g − 1)(p − 2)

Proof Use the genus formula for γ (C) inside D × D, the formula for the canonical bundle
of the product of two curves and the fact that γ (C) · D′ = 2, where D′ = D × {P} since the
degree of the map ρ j : C → D is 2. ��
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A similar computation appears in [4], Proposition 4.1 where the self-intersection is
expressed in terms of characters of the dihedral group.

Proposition 2.7 The map ψ has finite fibers if and only if p ≥ 7, p = 5 and g ≥ 3 or p = 3
and g ≥ 5

Proof If the map ψ has positive-dimensional fibers, then the image of C inside D × D must
move in an algebraic family. This implies γ (C)2 ≥ 0, and so we obtain all the cases in the
statement except for p = 3 and g = 5.

In this case, the curve D is a trigonal curve of genus 4 and C is the graph in D × D of the
trigonal correspondence. Since D has only one or two g1

3, the fiber is finite also in this case.
We show now that for p and g not in the given ranges the fibers are positive dimensional.

Note that Hg,p and M(p−1)(g−1)/2 are irreducible.
When p = 3 and g ≤ 4, we have dimHg,3 > dimMg−1 and so the fibers are positive

dimensional.
The last case is p = 5 and g = 2. In this case, D has also genus 2 so dimH2,5 =

dimM2 = 3. Since J (D) has non-trivial endomorphisms by Theorem 2.2, the curve D is
not a general curve of genus 2 and so the image of ψ has dimension at most 2. ��
Remark 2.8 Let P : Hg,p → A′

(p−1)(g−1) be the Prym map that to (E, H ′) associates
(P, θP ) where P = P(C, E) is the Prym variety of the cover C → E determined by H ′
and θP is the natural polarization induced by J (C). Note that θP in general is not principal
(see [12] for details). On the other hand, composing the map ψ with the Torelli map t , we
obtain a map T : Hg,p → A(p−1)(g−1) given by T (E, H ′) = J (D)× J (D)with the product
polarization.

ByTheorem2.2, the abelian varieties P and J (D)×J (D) are isomorphic. Since theTorelli
map is injective and an abelian variety has at most a countable number of polarizations, the
fibers of ψ have the same dimension as the fibers of the Prym map P .

We close this section noting that the above construction and Theorem 2.2 give families
of curves of genus (p − 1)(g − 1)/2 whose Jacobians have a non-trivial algebra of endo-
morphisms. When the fibers of ψ are finite, these families have dimension 2g − 1. We note
that setting g = 2 and p ≥ 7 we recover (at least in characteristic 0) part (1) of the main
Theorem of [4]. When g = 2 and p = 5, the family has dimension 2.

3 Xiao fibrations

Any subvariety ofMg gives rise to some fibrationwhose general fibers are the genus g curves
belonging to the family (see [7] for a precise statement). We consider here the subvarieties
given by the positive-dimensional fibers of the maps ψ defined in (2.2). In this case, the
corresponding fibrations can be more easily constructed by using the universal family of
appropriate Hilbert schemes.

For X an irreducible component of a fiber of ψ , we consider the morphism α : X →
Hilb(D × D) given above in (2.3). Let Y be the irreducible component of Hilb(D × D)

containing the image α(X) and, if necessary, consider its reduced structure. Let C be the
universal family over Y . Let X be a smooth completion of X . As the Hilbert scheme is
projective, the morphism α extends to a rational map α : X ��� Y , and after blowing up, if
necessary, we get a morphism α : B → Y . The pullback of the universal family over Y gives
a fibration

π : SD → B (3.1)
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whose general fibers are curves C that are cyclic covers of the curves E in the fiber ofψ over
[D] of genus gC = p(g − 1) + 1.

Lemma 3.1 For the general D in the image of ψ , the relative irregularity of SD is 2gD =
(p − 1)(g − 1).

Proof Let π∗ : Alb(S) → J (B) be the map from the Albanese variety of S to J (B) induced
by π and let K be the connected component of the identity of the kernel of π∗. By definition,
the relative irregularity qπ is the dimension of K .

Let Ct = π−1(t) for t ∈ B and let Et be the corresponding hyperelliptic curve. Since the
family {Et } is not constant in moduli, also {Ct } has varying moduli.

The composition J (Ct ) → Alb(S) → J (B) is trivial since Ct is a fiber of π , and hence,
the image of J (Ct ) is contained in K and as in [11], (0.5), one has that the image of J (Ct )

is in fact equal to K .
The embeddings γt : Ct → D × D induce a map S → D × D which is surjective

since the curves Ct do not have non-constant moduli and hence a surjective map Alb(S) →
Alb(D × D) = J (D) × J (D). Moreover, (γt )∗ factors through Alb(S). By Remark 2.5, the
map (γt )∗ is surjective and hence the restriction to K → J (D) × J (D) is surjective. This
shows qπ ≥ 2gD .

Recall now that J (Ct ) is isogenous to J (D)× J (D)× J (Et ) (Corollary 2.3) and so there
is a surjective map J (D) × J (D) × J (Et ) → K . The image of J (Et ) is constant in K . If at
least one curve Et in the family has indecomposable Jacobian, then this image is 0 and so
the relative irregularity is exactly 2gD . ��

By Proposition 2.7, there are four cases in which we obtain a positive-dimensional B.
When B is a curve, the fibration SD is a surface and we may ask if it is a Xiao fibration. This
cannot happen for p = 3, g = 2, but we will see that in the other three cases we obtain Xiao
fibrations. We will study these cases separately.

4 The case g = 2, p = 5

Our first task is to show that the fibers ofψ : H2,5 → M2 have dimension 1. By Remark 2.8,
it is enough to compute the dimension of the fibers of the Prym map.

Let (E, H ′) ∈ H2,5 and f : C → E the associated étale covering. For L a generator

of H ′, we have that C = Spec
(⊕4

i=0 OE (Li )
)
and C is a genus 6 curve. Let KC and KE

be canonical bundles of C and E , respectively. The Chevalley–Weil relations are (see, e.g.,
[10,13]):

f∗KC =
4⊕

i=0

KE ⊗ Li

H0(C, KC ) =
4⊕

i=0

H0(E, KE ⊗ Li )

Let P = P(C, E) be the Prym variety: It is an abelian variety of dimension four and

Ω1
P

∼=
(⊕4

i=1 H0(E, KE ⊗ Li )
)

⊗ OP since these are the 1-forms not invariant under the
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action of the covering group. Hence

H0(P,Ω1
P ) ∼=

4⊕
i=1

H0(E, KE ⊗ Li )

Under the inclusion P ⊂ J (C), the principal polarization of J (C) defines a polarization θP

on P . As in Remark 2.8, sending (E, H ′) to (P, θP ) gives the Prym map P : H2,5 → A′
4.

We have an inclusion H ′ ∼= Z/5Z in AutP , the automorphism group of the polarized vari-
ety (P, θP ). Clearly the image of P is contained in the locusA′

4(5) of abelian fourfolds with
Z/5Z automorphisms. The Zariski cotangent space to A′

4(5) is isomorphic to the invariant
subspace Sym2H0(P,Ω1

P )H ′
of Sym2H0(P,Ω1

P ).
The codifferential of P can be seen as a linear map

dP∗ : Sym2H0(P,Ω1
P )H ′ → H0(E, 2KE ).

since H0(E, 2KE ) is isomorphic to the cotangent space of H2,5. We have that

Sym2H0(P,Ω1
P )H ′ ∼=[

H0(KE ⊗ L) ⊗ H0(KE ⊗ L4)
]⊕[

H0(KE ⊗ L2)⊗H0(KE ⊗ L3)
]

and dP∗ can be identified with the map μ induced by multiplication.

Lemma 4.1 The map μ is injective.

Proof Since h0(KE ⊗ L) = 1, we can write K E ⊗ L = OE (P + Q). The hyperelliptic
involution ι on E acts as −1 on J (E) and hence we haveOE (ι(P) + ι(Q)) = K E ⊗ L−1 =
KE ⊗ L4, since the canonical bundle is invariant under automorphisms. Suppose that μ is
not injective.

We then get an equation: ω1 · ω4 + ω2 · ω3 = 0 ∈ H0(E, 2KE ), where ωi are suitable
generators of H0(E, KE ⊗ Li ). This gives a relation among the divisors:

P + Q + ι(P) + ι(Q) = (ω1) + (ω4) = (ω2) + (ω3).

We can then assume OE (P + ι(Q)) = K E ⊗ L2 and OE (ι(P) + Q) = K E ⊗ L3. It then
follows L = OE (ι(Q) − Q), and since K E = OE (Q + ι(Q)), we have

KE ⊗ L = OE (2ι(Q))

and since h0(KE ⊗ L) = 1 it must be P = Q = ι(Q). But this would give L = OE which
is a contradiction. ��
Proposition 4.2 The map ψ : H2,5 → M2 has fibers of dimension 1.

Proof Look at the Prym map

P : H2,5 → A′
4(5) ⊆ A′

4

The codifferential is injective and so the differential is surjective. Hence, the dimension of
the image is dimA′

4(5) = 2 and so the fibers have dimension 1.
By Remark 2.8, the fibers of ψ have also dimension 1. ��
Let D ∈ ψ(H2,5) a generic curve and let X be an irreducible component of the fiber

ψ−1(D). By the general construction explained in Sect. 3, we obtain a surface SD with a
fibration

π : SD → B

By what we have seen, we get
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Proposition 4.3 The fibration π : SD → B is a Xiao fibration with relative irregularity
qπ = 4 and genus of the general fiber gC = 6.

This is case 1 of Theorem 1.2.

5 The case g = 4, p = 3

We present here an explicit example of a Xiao fibration. Let ψ : H4,3 → M3. In this case,
we can identify an irreducible component of the fiber ψ−1(D) as being simply the curve D
itself.

In fact, let D be a smooth plane quartic, i.e., a non-hyperelliptic curve of genus 3. A point
P ∈ D gives a g1

3 obtained as |K D − P|. Let fP : D → P
1 be the map given by this linear

series and assume that the map fP has simple ramification points, i.e., the point P is not
on any flex tangent to D. Then, the monodromy of fP is the symmetric group S3 and let
CP → D → P

1 be the Galois closure. Let EP be the quotient of CP by the alternating
group A3 = Z3. Then, CP is a curve of genus 10, EP is an hyperelliptic curve of genus 4
and the cover CP → EP is étale and hence gives a point in the fiber ψ−1(D).

Since all g1
3 on D are of this kind, we find a copy of (an open subset of) D inside the

fiber ψ−1(D). We now give a geometric construction of the Galois closure and of a smooth
compactification S of the fibration. This will allow us to describe completely S and compute
all of its numerical invariants.

Let D ⊂ P
2 be a smooth plane quartic curve as above and let S ⊂ D × D × D be defined

as

S = {(P, Q, R) : ∃T ∈ D : P + Q + R + T ∈ |K D|}.
Note that for P , Q, R distinct the condition simply means that the three points are collinear.
We consider the projections πi : S −→ D, i = 1, 2, 3 on the three factors. The map
β = (π2, π3) : S −→ D × D is a surjective 2 : 1 map so that S is a surface. In fact

β−1((P, Q)) = {(R, P, Q), (T, P, Q)}
where R and T are the two other points of intersection of the line P Q with the curve D.

Theorem 5.1 Set π = π1, the first projection, π : S → D. Then, π is a fibration with
general fibers smooth of genus 10 and relative irregularity greater or equal than 6.

This is case 2 of Theorem 1.2.

Proof To compute the genus of the fiber CP = π−1(P) we let k : CP → S be the inclusion.
The restriction of β gives a natural inclusion βP = β◦k : CP → D×D and let X P = β(CP )

be the image. Since CP and X P are isomorphic, we compute the arithmetic genus of X P . To
do this, we determine the class of X P in D × D under numerical equivalence.

Let fP : D → P
1 be the 3 : 1 map obtained by projecting the plane curve D from the

point P . Since CP is given by triples (P, Q, R) ∈ S with P fixed, then X P is the closure of

{(Q, R) ∈ D × D | Q = R, fP (Q) = fP (R)},
Let D1 = {P} × D and D2 = D × {P} and Δ be the diagonal in D × D. The self-

intersection number X2
P can be computed by taking another point Q ∈ D and computing

X P · X Q = {(R, T ), (T, R)}, where R and T are the two other points of intersection of the
line P Q with the curve D. Hence X2

P = 2. Moreover, X P · D1 = X P · D2 = 2 and by the
Hurwitz formula X P · Δ = 10.
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Let now H = 3(D1 + D2) − Δ. One has H2 = H · D1 = H · D2 = 2 and hence
(H − X P ) · (D1 + D2) = 0. Since

X P · H = X P · (3(D1 + D2) − Δ) = 12 − 10 = 2

we have

X2
P = H2 = X P · H = 2

and hence

(H − X P )2 = 0.

Then, by the Hodge index theorem, X P is numerically equivalent to H = 3(D1 + D2) − Δ,
and using the adjunction formula, X P has arithmetic genus 10.

We now show that X P is smooth unless the curve D has a flex Q such that |3Q+P| = K D .
In fact, let Q ∈ D be a simple ramification point for fP . Choose a local coordinate z on D
centered at Q and a local coordinatew on P1 centered at fP (Q) such that in these coordinates
the map fP is given by w = z2. Using the local coordinates on D × D centered at (Q, Q)

induced by z, the points on the curve X P different than (Q, Q) are the pairs (x, y) such
that x2 = y2 and x = y. Then, a local equation for X P is x = −y which is smooth. If
instead |3Q + P| = K D , then there are similar coordinates systems such that locally the
map is given by w = z3 and the above reasoning shows that a local equation for X P is
x2 + xy + y2 = 0, which is singular at the origin.

Since CP is isomorphic to X P , we obtain that the fibers of π : S → D are generically
smooth of genus 10.

ByCorollary 2.3 we know that J (CP ) has a fixed part of dimension 6 isogenous to J (D)×
J (D). SinceCP is big and nef, we can prove that this fixed part is isomorphic to J (D)× J (D)

by showing that there is an inclusion

J (D) × J (D) = Pic0(D × D) ↪→ Pic0(CP ) = J (CP ).

The proof is standard: Ramanujan vanishing gives an injection

H1(D × D,OD×D) → H1(CP ,OCP )

so if L ∈ Pic0(D × D) goes to zero in Pic0(CP ), then L must be torsion. Then, L gives an
unramified cyclic cover X of D × D. Since L is trivial on CP , the pullback of CP to X splits
in a number of connected components. Each component has positive self-intersection and
they do not meet, and this contradicts the Hodge index theorem.

Then, the image of dual map J (CP ) → Alb(S) has dimension ≥6. It follows that the
relative irregularity qπ ≥ 6. ��
Remark 5.2 A similar computation in local coordinates shows that the surface S is smooth
if all the flexes are simple. When there are flexes of order four, the surface is singular.

Remark 5.3 Let ϕ : D × D × D → D(3) be the quotient map to the symmetric product.
Then, the image of the surface S is D1

3, the set of divisors of degree 3 and h0 ≥ 2. D1
3 is a

ruled surface over D and the lines in the ruling are the g1
3 of D.

Remark 5.4 The curves X P can also be constructed in the following way: let ϕ : D × D →
D(2) be the quotient map to the symmetric product and let

DP = {P + Q | Q ∈ D} ⊆ D(2)
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(P is fixed). Let τ : D(2) → D(2) be the canonical involution given by τ(P + Q) = R + T
where P + Q + R + T is a canonical divisor. Then,

X P = ϕ−1 (τ (DP ))

This also shows that X P is an ample divisor in D × D.

Remark 5.5 There is an S4-action on S: one can define

S = {(P, Q, R, T ) : P + Q + R + T ∈ |K D|} ⊂ D × D × D × D

The action is obvious. π : S → D is always a fibration, and there is an S3-action on the
fibers, which are the CP .

We compute now the numerical invariants of S.

Theorem 5.6 For a generic D, the invariants of the surface S are:

1. qS = 9,
2. c2(S) = 96,
3. K 2

S = 216,
4. pg = 34.

Proof We assume that all flexes of D are simple, i.e., there are no points Q ∈ D such that
|4Q| = K D . Under this hypothesis, the surface S is smooth. (cf. Remark 5.2).

By Lemma 3.1, we have qπ = 6 and so qS = qπ + g(D) = 9.
We have seen in the previous proof that the fibration π : S → D has one singular fiber

for each flex of D, so it has 24 singular fibers. Then,

c2(S) = χtop(S) = χtop(D) · χtop(CP ) + 24 = 96.

To compute K 2
S , we study the map β : S → D × D. Let B ⊂ D × D be the branch locus,

so that

B = {(Q, R) ∈ D × D | Q R is tangent to D}
and let R ⊂ S be the ramification locus. Then,

KS = β∗(K D×D) + R

where R is such that

β∗ R = B

We fix some notation: if P ∈ D is a point, we let as before D1 = {P}× D and D2 = D×{P}
as numerical classes. Then

K D×D = 4D1 + 4D2

and so to compute K 2
S it is enough, by the projection formula, to compute the numerical class

of B.
Recall the notation of Remark 5.4: ϕ : D × D → D(2) is the quotient map to the

symmetric product, Δ = {(Q, Q) | Q ∈ D} ⊆ D(2) the diagonal, τ : D(2) → D(2) the
canonical involution given by τ(P + Q) = R + T where P + Q + R + T is a canonical
divisor on D and

DP = {P + Q | Q ∈ D} ⊆ D(2)
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(P is fixed). The class of Δ is divisible by 2 and we let δ = 1
2Δ.

As ϕ has degree 2, from Remark 5.4 we obtain that ϕ∗ X P = 2τ∗ DP and from the proof
of Theorem 5.1 we know that the numerical class of X P in D × D is 3(D1 + D2) − ΔD×D .
Moreover, ϕ∗ D1 = ϕ∗ D2 = DP and ϕ∗δ = ΔD×D .

Hence

τ∗ DP = 1

2
ϕ∗ X P = 1

2
(6DP − Δ) = 3DP − δ

and

K D(2) = 4DP − δ

The basic intersection numbers are

D2
P = 1, DP · δ = 1, δ2 = 1 − gD = −2

Since τ is an automorphism of D(2), we have τ∗K D(2) = K D(2) and so the canonical class
K D(2) is invariant under τ . From this,we obtain τ∗δ = 8DP −3δ and hence τ∗Δ = 16DP −6δ.

Looking at the composition

S
β �� D × D

ϕ �� D(2)

we have ϕ∗(δ) = ΔD×D and observe that ϕ∗(τ (Δ)) = B, the branch locus of β. In fact, if
(P, P) ∈ Δ, then τ(P, P) = Q+ R and the line Q R is tangent to D and hence τ(P, P) ∈ B.
We finally obtain

B = 16(D1 + D2) − 6ΔD×D

and we note that from the genus formula on D × D we have Δ2
D×D = −4.

We now show that B is smooth. From the numerical class, we can compute the arithmetic
genus:

pa(B) = 1 + 1

2
(B2 + B · K ) = 33.

On the other hand, the map B → D sending the point (Q, R) to P ∈ D where Q + R + 2P
is a canonical divisor of D is a double covering, and since all flexes are simple, it is ramified
at the 56 points (Q, Q)where the tangent line is a bitangent. The Riemann–Hurwitz formula
then gives g(B) = 33 and so the geometric genus is equal to the arithmetic genus and hence
B is smooth. This shows again that S is smooth.

We can then use the formula for the invariants of double coverings on page 237 of [3]:

K 2
S = 2K 2

D×D + 4L · K D×D + 2L · L

where L = 1

2
B = 8(D1 + D2) − 3ΔD×D to obtain

K 2
S = 216.

From Noether’s formula, we also get χ(OS) = 26 and hence pg = 34. ��
Remark 5.7 In the formulas given in [3], there is also one for c2(S), expressed in terms of the
intersection product and c2(D × D). Our computation is different since it uses the structure
of S as a fibration.
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6 The case g = 3, p = 3

In this case, the map ψ : H3,3 → M2 has fibers F = ψ−1([D]) of dimension 2. Using the
construction of section 3, a curve X ⊂ F gives a fibration π : S → B. For a general X , the
fibrations do not contradict Xiao’s conjecture since gC = 7 and the relative irregularity is
2gD = 4.We then look for special covers D → P

1 so that the Galois closureC has geometric
genus 6.

Let D be a curve of genus 2, P ∈ D not a Weierstrass point and let fP : D → P
1 be

the map given by the linear series |3P|. Note that this g1
3 is base point free since P is not a

Weierstrass point.We now do a construction similar to the previous case. Define the curveCP

as the closure of

{(Q, R) ∈ D × D | Q = R, fP (Q) = fP (R)}
and the inducedmap ρ : CP → D of degree 2 is given by ρ(Q, R) = T where |Q+R+T | =
|3P|.

As in the proof of Theorem 5.1, we can show that CP has a simple node at the point
(P, P) ∈ D × D. Choose a local coordinate z on D centered at P and a local coordinate w

on P1 centered at fP (P). In these coordinates, the map is given locally by w = z3, and using
the local coordinates on D × D centered at (P, P) induced by z, the points on the curve CP

different than (P, P) are the pairs (x, y) such that x3 = y3 and x = y. Then, a local equation
for CP is x2 + xy + y2 = 0, which has a simple node at the origin.

The curve CP is smooth in all other points Q unless |3P| = |3Q|. Since the 3-torsion
points in J (D) are finite, for P generic there are no such points Q.

In this way, we have a family S1 parametrized by D itself. We can describe this family
explicitly in a way similar to the previous case: Let S1 ⊂ D × D × D defined as

S1 = {(P, Q, R) : ∃T ∈ D : |3P| = |Q + R + T |}.
When P is not a Weierstrass point, the fiber of the projection on the first factor π1 : S1 → D
is the curve CP described above. Moreover, the map π1 has a section s : D → S1 given by
s(P) = (P, P, P).

All the fibers of the fibration π1 : S1 → D are singular, and desingularizing along the
section, we obtain a new fibration π : S → D with general smooth fiber of genus 6 and
relative irregularity (at least) 4 and so we get a Xiao fibration. We note that the numbers are
the same as in the case of p = 5, g = 2.

This is case 3 of Theorem 1.2, which is now completely proved.

Acknowledgments The authors thank Rita Pardini for catching an error in the first draft of this paper.
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