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Abstract—In this paper we studied the mechanics and 

physiology occurring during the contraction of a 2D syncytium  

made of rat cardiomyocytes by carrying out numerical 

simulations of an electromechanical model for its cell and tissue 

components. Our model was qualitatively compared with 

experimental results taken from literature and it gave us 

optimistic outputs providing a tool for future studies into cardiac 

mechanisms and contraction even in a 3D environment.     

Keywords—Cardiac modelling, Rat syncytium, Mechanics, 

Physiology. 

I. INTRODUCTION 

 large amount of experimental data is almost available 

for researchers focused on studying heart movements at 

different time and spatial scales from genomic description up 

to whole-organ context. Mathematical modelling may help 

them to unify biological data. New and more detailed models 

can be built from simpler ones, which can be available on an 

online database like CellML 1.1. In particular, we took three 

different models describing rat cardiac phenomena at the cell 

scale, which had already been corrected and integrated into 

the so-called PHN (Pandit-Hinch-Niederer) model: Pandit et 

al. electrical activity model [1], Hinch et al. calcium 

dynamics model [2] and Niederer et al. active tension (or 

contraction force) generation model [3]. Actually a full 

cardiac cell electromechanical model is composed of at least 

two components: a bioelectrical model describing the 

development of the action potential and a model for the 

excitation-contraction coupling focusing on the way the 

electrical stimulus is converted into the contraction of the 

cardiomyocyte, i.e. a model describing how calcium moves 

across different intracellular compartments and a model 

describing the mechanisms underlying the generation of the 

contraction force. Then, in order to simulate the 

electromechanical response of our 2D layer of cardiac tissue, 

we added a monodomain model [4] to allow the propagation 

of the action potential and a quasi-static finite elastic model 

[5][6] to simulate biomechanical aspects at the tissue scale. 

At last we planned a set of simulations changing the values of 

some relevant parameters in order to better match the 

experimental results we found from literature [7][8][9]. 

II. METHODS 

A. The electrophysiological model 

Electrophysiology was modelled by the monodomain 

representation of cardiac tissue [4] coupled with the PHN  

model giving: 

 (1) 

where V is the transmembrane potential, w and c are vectors 

containing gating variables or ionic intracellular 

concentrations respectively belonging to the PHN model 

together with their initial conditions on the last line, cm is the 

membrane capacitance, J is the determinant of the 

deformation gradient tensor F for mechanics, D is the bulk 

conductivity tensor and it accounts for myocardium electrical 

anisotropy, iion is the total ionic current and iapp is the applied 

current stimulus. The fourth equation is a zero Neumann 

boundary condition because we assumed that our 

myocardium layer was electrically isolated. This evolution 

system referred to tissue initial (not deformed) configuration 

Ω0 as it is usually required by solid deformation analysis. 

B. The mechanical  model 

In a quasi-static regime without body external forces the 

equilibrium condition is given by [5]: 

                (2) 

 where S is the symmetric second Piola-Kirchhoff stress 

tensor. S contained both an active component S
act

 related to 

cell active tension Ta and a passive component S
pas

, whose 

equation depended on a suitable myocardium strain energy 

function W and on a quasi-incompressibility term S
vol

 [6]. 

Assuming a 2D layer of tissue made up with parallel fibers, 

the full expression of S was: 

           (3) 

where C is the Cauchy-Green deformation tensor, δM1δN1 

ensures that the force acted only along the x-axis of fiber 

direction and E is the Lagrange-Green strain tensor. For the 

function W we adopted the Guccione exponential law [5], 

which treats the cardiac material as mechanically anisotropic: 

                          (4) 

where a, b1, b2 and b3 are fixed parameters. 

C. Geometry of tissue and model implementation 

Simulations were carried out in Matlab on a 1 cm × 1 cm 

square layer of tissue. The left edge was fixed during all time 
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of simulations (T = 10000 ms). External stimuli were 

delivered near the central part of the lowest edge to generate 

action potentials that spread throughout the layer. For 

electrical components we used a uniform fine mesh of 64 × 

64 Q1 finite elements (giving us a nodal spacing of 0.015625 

cm) and a time step of 0.05 ms. For mechanical components 

we limited to a uniform coarser mesh of 8 × 8 Q1 finite 

elements (giving us a nodal spacing of 0.125 cm) and to a 

time step of 1 ms because tissue contraction is often much 

slower than electrical propagation. The discretization of the 

complete model was performed by finite elements in space 

and semi-implicit finite differences in time [4]. 

III. RESULTS AND DISCUSSION 

We chose nine equidistant nodes belonging to a 3 × 3 

square grid central to the fine mesh as markers for simulation 

results. We saved their (x,y) coordinates and their 

corresponding values for active tension Ta, intracellular 

calcium concentration [Ca]i and deformation λ every 0.05 

ms. Fig. 1 shows some frames and the superimposed markers 

grid of a sample simulation movie for our square layer. All 

previous values were processed in Matlab again to give us the 

following results for mechanics and physiology. 

A. Trajectories 

Fig. 2 displays the trajectory described by a sample marker 

during a simulation. A typical contraction/relaxation cycle 

was characterized by four phases [7]. In phase 1 the marker 

velocity was minimum but the acceleration became higher 

and higher and the marker started to move. During phase 2 

the marker reached its maximum contraction velocity and its 

minimum acceleration. At the end of its contraction in phase 

3, the marker velocity became minimum again whereas its 

deceleration got the maximum value and the marker reached 

its farthest position from its starting point. At last, during 

phase 4, the marker first gained its maximum relaxation 

velocity and then came back to its original position where its 

velocity was minimum. During its movement the marker 

described a typical hysteresis cycle because paths in phases 2 

and 4 were not the same.   

B. Force-Frequency Relationship 

In Fig. 3 and Fig. 4 we analysed the FFR (Force-Frequency 

Relationship), also called rate staircase, which represents an 

important intrinsic mechanism for cardiac contractility [8]. 

Fig. 3 shows this phenomenon as an average among all 

marker values for maximum steady-state active tension Ta 

with an extracellular calcium concentration [Ca]o = 1 mM. 

We found a first positive phase between 0.625 Hz and 0.83 

Hz, where the higher the frequency f was the more active 

tension raised, a second flat phase between 0.83 Hz and 1.6 

Hz, where a frequency increase did not alter active tension 

and a third negative phase between 1.6 Hz and 2.5 Hz, where 

frequency raised but active tension decreased. Instead by 

increasing [Ca]o to 4 mM we observed approximately an 

opposite response as shown in Fig. 4. 

C. Frank-Starling law 

In Fig. 5 we studied another important intrinsic cardiac 

mechanism, i.e. the Frank-Starling law, according to which 

the more cardiomyocytes are initially stretched the more they 

develop contractile force Ta within a physiological range [9]. 

Our model gave us these results because the peak active 

tension in time during the last beat increased if values for 

deformation  λ were higher but were still physiological 

(maximum λ was set to 1.1 corresponding to sarcomere length 

of about 2.1 μm). 

IV. CONCLUSION 

Our model for a 2D rat cardiac tissue layer gave us results 

in agreement with most of experimental features though our 

modelling exhibits various limitations, which might be 

overtaken in future studies. Pandit et al. model is affected by 

saturation phenomena when frequencies are higher than 3 ÷ 4 

Hz, so we were not allowed to study the cardiac behaviour 

near rat physiological frequencies (between 5 Hz and 9 Hz). 

Moreover all PHN parameters were calibrated at room 

temperature (22
◦
C), so we could not compare our results with 

the experimental ones at physiological temperature (37
◦
C). 

However our 2D model may be a first step to better explain 

cultured cardiomyocytes movement on Petri dishes. It could 

be turned into a 3D one, which would take into account 

culture thickness too, since layers contract in different ways 

according to their depth. Moreover the same framework could 

be applied to the study of human cardiac tissue by replacing 

the rat cell model with a human one (if possible, already 

available on CellML 1.1) and changing the values of the 

parameters belonging to the electrophysiological and 

mechanical models. This initial estimation procedure and the 

final validation of our model results may benefit from 

electrical and mechanical in vitro experiments on cardiac 

fibers that beat under conditions similar to those simulated. 
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Fig. 1.  Movie frames of a sample simulation with beat frequency f = 2.5 Hz 

and extracellular calcium concentration [Ca]o = 1 mM. Different colours 

stand for more or less depolarized fine mesh nodes (more positive 

transmembrane potential V values tending to red and more negative ones 

tending to blue), black lines that split colours are the equipotential lines and 

white dots are the nine markers of the superimposed grid. 

 

 
Fig. 2.  Trajectory in the plane x-y described by an example marker with beat 

frequency f = 0.625 Hz and extracellular calcium concentration [Ca]o = 1 

mM. Numbers point out the four phases of a contraction/relaxation cycle.  

 

 
Fig. 3.  Maximum steady-state active tension Ta values averaged over all 

markers for different values of beat frequency f with extracellular calcium 

concentration [Ca]o = 1 mM. Circles stand for mean values and vertical bars 

for standard deviations. 

 

 
Fig. 4.  Maximum steady-state active tension Ta values averaged over all 

markers for different values of beat frequency f with extracellular calcium 

concentration [Ca]o = 4 mM. Circles stand for mean values and vertical bars 

for standard deviations.  

 

 
Fig. 5.  Time evolution of active tension Ta for different values of 

deformation λ at steady state for an example marker with beat frequency f = 

0.5 Hz and extracellular calcium concentration [Ca]o = 1 mM.  


