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Abstract

In this paper we present a novel Bayesian approach for default probability estimation. The
methodology is based on multivariate contingent claim analysis and pair copula theory. Balance
sheet data are used to asses the firm value and to compute its default probability. The firm
pricing function is obtained via a pair copula approach, and Monte Carlo simulations are used
to calculate the default probability distribution. The methodology is illustrated through an
application to defaulted firms data.
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1 Introduction

Default risk is defined as the risk of loss when in a financial contract a debtor (in our case a
firm) does not fulfil its commitments and a default event takes place. Default probability is the
probability that a default happens.

Following the growing financial uncertainty, there has been intensive research by financial in-
stitutions, regulators and academics to develop models for default risk estimation. Academics and
practitioners increasingly propose new methodologies able to evaluate in a pragmatic way the firm
under examination.

The main differences among the existing methodologies for default risk evaluation depend on
the available information and data used for assessing the firm value and its default probability.
These models can be broadly classified in market data based models and accounting data based
models.

Within the market based models the most popular are the structural models; see Merton (1970,
1974 and 1977) and its extensions. Stocks and bonds are used as structural variables for firm
evaluation and default probability estimation. The asset value is considered to be exogenous and
it is treated as the underlying asset in an option pricing framework. A common assumption is that
the asset value follows a geometric Brownian motion and the drift and volatility coefficients do not
depend on the capital structure of the firm. The Black and Scholes formula is applied to evaluate
the asset value and therefore the probability of default of the firm.

The second class of models use accounting data and financial ratios to evaluate the firm value
and to estimate the probability of default. They origin from the works of Beaver (1966) and Altman
(1968), who developed univariate and multivariate models to predict the default of specific firms
by using a set of financial ratios. In this class another commonly used default prediction model is
based on the use of logistic regression, as proposed by Ohlson (1980).

Default probability estimation has been carried out both in a classical and a Bayesian framework.
For the classical framework see e.g. McNeil et al. (2005), Schuermann (2005), De Giuli et al. (2008),
Su and Huang (2010), and references herein. For the Bayesian analysis see e.g. Kiefer (2009, 2010
and 2011), Park et al. (2010) and Tasche (2011), and references herein.

Whatever the working framework is, one should impose a specific distributional assumption on
the data. For a long time normality has been a standard assumption. However, in most cases a
preliminary exploratory analysis of the data reveals significant departures from normality. A well
known and popular solution to this problem is the use of copulas, introduced by Sklar (1959).
The advantage of copulas is the possibility to combine different marginal distributions via a copula
function. Unfortunately, while there is a wide range of possible alternative copula functions for
the bivariate case, in the multivariate setting the use of distribution different from Gaussian and
Student’s t is rather scarce, due to computational and theoretical limitations. For this reason Joe
(1996) introduces Pair Copula Constructions (PCCs) to represent complex structure of dependence
among multivariate data. Pair Copulas are a collection of potentially different bivariate copulas,
used to construct the joint distribution of interest. Different types and strengths of dependence
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may be easily represented via a Pair Copula model. For this reason, they constitute a flexible
and very appealing tool for financial analysis, see e.g. Vaz de Melo Mendes et al. (2010). In
particular, a very interesting application in this field can be found in a recent work by Bernard
and Czado (2013). The authors focus on contingent claim pricing models, considering multivariate
underlying indices in option contracts and use PCCs to allow for more flexibility in the estimation
of dependencies.

In this paper we propose a novel semi-Bayesian approach for default probability estimation. We
combine the main features of structural and accounting based models. We go beyond structural
models, applying a contingent claim model based on accounting data. The equity of a firm is
obtained via a Pair Copula model based on balance sheet data, and Monte Carlo simulations are
used to calculate the probability of default. To our knowledge this is the first time that pair copulas
are applied in this context.

The plan of the paper is the following. In Section 2 we introduce Copulas and PCCs. In Section
3 we illustrate the contingent claim model based on accounting data. Section 4 is devoted to the
estimation of the marginals and of the PCCs. Section 5 applies the methodology to the stock data
of four famous defaulted companies. Finally, concluding remarks are given in Section 6.

2 Background and Preliminaries

2.1 Copula Function

Copulas are a very popular statistical tools, applicable to a wide variety of fields, such as finance,
economics, risk management and marketing; for a recent review see e.g. Jaworski (2010). Cop-
ulas allow to describe complex multivariate pattern of dependence binding together the marginal
distributions.

By definition, the copula is a multivariate distribution function with marginals distributed
according to a uniform on the interval [0, 1]. This function, once applied to the univariate marginal
distributions, returns their multivariate joint distribution, enclosing all the information about the
dependence structure of the marginals. Thus, the use of copulas allows to split the distribution of a
random vector into its individual marginal components, and the dependence structure is modelled
through the copula function without losing information; for more details see e.g. Joe (1997) and
Nelsen (1999).

The most important result about copula theory is Sklar’s theorem. This theorem states that,
given X = (X1, . . . , Xd), a vector of random variables with d-dimensional joint cumulative distri-
bution function F (x1, . . . , xd) and marginal cumulative distributions Fm(xm) (with m = 1, . . . , d),
there exist a d-dimensional copula C such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

Conversely, according to Nelsen’s corollary, the inversion method allows to express the copula in
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the following way
C(u1, . . . , ud) = F (F−1

1 (u1), . . . , F−1
d (ud))

where F−1
1 , . . . , F−1

d are the generalised inverse functions of the marginals. The joint density func-
tion is therefore

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) · f1(x1) · · · fd(xd)

where c(F1(x1), . . . , Fd(xd)) is the d-variate copula density.
The existing literature on copulas mainly focuses on the bivariate case. In the multivariate case,

the Gaussian and Student’s t copula are the most popular, while the usage of other multidimensional
copulas is rather limited, due to the complexity of their construction, see e.g. Aas and Berg (2007).
However, Gaussian and Student’s t copula are often not flexible enough to represent the dependence
structure (especially the tail dependence) of many financial data. Hence, multivariate extensions
of Archimedean copulas were proposed in the form of partially nested Archimedean copulas by
Joe (1997) and Whelan (2004); hierarchical Archimedean copulas by Savu and Trede (2006); and
multiplicative Archimedean copulas by Morillas (2005) and Liebscher (2006). Nevertheless, these
multivariate extensions imply additional restrictions on the parameters that limit their flexibility.

A possible solution to this problem is provided by PCCs. PCCs were originally proposed by Joe
(1996), and later discussed in detail by Bedford and Cooke (2001 and 2002), Kurowicka and Cooke
(2006) and Aas et al. (2009). For some recent works see Czado (2010), Min and Czado (2010) and
Nikoloulopoulos et al. (2012). A PCC represents the complex pattern of dependence of multivariate
data via a cascade of bivariate copulas, and permits to construct flexible high-dimensional copulas
by using only bivariate copulas as building blocks, see Aas et al. (2009). Therefore, the joint
distribution is obtained on the basis of bivariate pair copulas, that may be conditional on a specific
set of variables, allowing to model the dependence among the marginals.

2.2 Pair Copula Constructions

We now briefly introduce PCCs, the related notation and terminology; for more details see e.g.
Czado (2010).

It is well known that the distribution f(x1, . . . , xd) of a random vector X = (X1, . . . , Xd) can
be factorized through conditional densities as follows

f(x1, . . . , xd) = fd(xd)× fd−1|d(xd−1|xd)× . . .× f1|2···d(x1|x2, . . . , xd). (1)

The factorisation in (1) is unique up to re-labeling of the variables, and it can be reexpressed in
terms of a product of bivariate copulas.

By Sklar’s theorem, in fact, the joint distribution of the subvector (Xd, Xd−1) can be expressed
in terms of a copula density

f(xd−1, xd) = cd−1,d(Fd−1(xd−1), Fd(xd))× fd−1(xd−1)× fd(xd),
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where cd−1,d(·, ·) is an arbitrary bivariate copula (pair copula) density. Hence, the conditional
density of Xd−1|Xd can be easily rewritten as

fd−1|d(xd−1|xd) = cd−1,d(Fd−1(xd−1), Fd(xd))× fd−1(xd−1). (2)

Through a straightforward generalisation of equation (2), each term in (1) can be decomposed into
the appropriate pair copula times a conditional marginal density.

More precisely, for a generic element X of the vector X we obtain

fx|v(x|v) = cx,vj |v−j (Fx|v−j (x|v−j), Fvj |v−j (vj |v−j))× fx|v−j (x|v−j), (3)

where v is the conditioning vector, vj is an generic component of v, v−j is the vector v without the
component vj , Fx|v−j (·|·) is the conditional distribution of x given v−j , and cx,vj |v−j (·, ·) is the
conditional pair copula density. The d-dimensional joint multivariate distribution function can be
expressed as a product of pair copulas by recursively using equation (3) in equation (1). Since the
conditional distributions of the form Fx|v(·|·) are not directly observable, we calculate them using
Joe’s (1996) result

Fx|v(x|v) =
∂Cx,vj |v−j (F (x|v−j), F (vj |v−j))

∂F (vj |v−j)
. (4)

If the conditioning set v is univariate, v = v and expression (4) can be written as

F (x|v) =
∂Cx,v(x, y,θ)

∂v
= h(x, v,θ),

where θ denotes the set of parameters of the copula, and F (x|v) is named the h function. The
forms of the h functions for the main classes of copulas are given in Aas et al. (2009).

Therefore, a multivariate density can be expressed as a product of pair copulas acting on
several different conditional distributions, obtaining a PCC. It is worth noting that the PCC is
order dependent, and given a specific factorisation there are still many different parameterisations.
We will provide more details about the different parameterisations in section 5.

2.3 D-Vines Distributions and Pair Copulas

For high-dimensional distributions, the number of possible PCCs is very high. Hence a suitable
representation of all of them is necessary. Bedford and Cooke (2001 and 2002) introduced regular
vines as a pictorial representation of PCCs.

Regular vines are a particular type of graphical models, that use a nested set of trees to rep-
resent the decomposition of the joint distribution into its bivariate components, incorporating the
dependence structure of the variables of interest. Within the class of regular vines we consider the
subset of D-vines; for more details about the different classes of vines see Kurowicka and Cooke
(2006).
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A vine V(d) on d variables is a nested set of trees (connected acyclic graphs) T1, ..., Td−1. The
edges of tree Tτ are the nodes of tree Tτ+1, τ = 1, . . . , d− 1. In a regular vine, if two edges of tree
Tτ share a common node, they are represented in tree Tτ+1 by nodes joined by an edge. Finally,
a D-vine is a regular vine where all nodes do not have degree higher than 2, that is each node is
connected to no more than two other nodes. Figure 1 represents a 4-dimensional D-vine.

1 2 3 4
12 23 34

12 23 34
13|2 24|3

13|2 24|3
14|23

T1

T2

T3

Figure 1: The graphical representation of the D-vine with 4 marginals.

Using the D-vine representation, the joint density can be decomposed in terms of conditional
copula densities, identified by the labels of the edges in the considered trees, times the marginal
densities of the examined variables. For the D-vine represented in Figure 1 the joint density is
given by

f(x1, . . . , x4) =

4∏
τ=1

fτ (xτ )× c12 × c23 × c34 × c13|2 × c24|3 × c14|23.

Note that in the previous equation we have simplified the notation, setting cab = cab(F (xa), F (xb)).
More generally, the density of a D-vine of dimension d takes the form

f(x1, . . . , xd) =

d∏
τ=1

fτ (xτ )

d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1(F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1)),

which is the product of d marginal densities fτ and d(d−1)/2 bivariate copulas ci,i+j|i+1,...,i+j−1(·, ·)
evaluated at the conditional distribution functions F (·|·).

3 An Accounting Firm Value Model

Following De Giuli et al. (2008) and Su and Huang (2010) firm value is modelled via a contingent
claim on the underlings of the observed traded securities (stocks and bonds). The value of a
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contingent claim at time of maturity T can be written as

G(Ss(T )) s = 1, 2

where G(·) is the pay-off function, S1(T ) and S2(T ) are stocks and bonds prices at time to maturity
T . The final value of the firm AT can be expressed as

AT = G(ET ,BT ;T ) = max[(ET + BT ); 0] · I{(ET≥0),(0≤BT≤D)} (5)

= (ET + BT )I{(ET>−BT ),(ET≥0),(0≤BT≤D)},

where ET denotes the equity (stock value) at time of maturity T , BT denotes the bond value, D
denotes the debt value at the maturity and I is the indicator function.

We use the contingent claim representation to calculate the probability of default. The prob-
ability of default at generic time t is given by Pr(Et ≤ 0). At a generic time t the equity can be
computed as P (t, T ) ·E(ET ), where P (t, T ) is the risk free discount factor and E(ET ) is the expected
value of ET .

Rewriting equation (5) as

ET = G1(AT ,BT ;T ) = (AT − BT )I{(AT>0),(AT−BT≥0),(0≤BT≤D)},

the equity at time t is given by

Et = G1(At,Bt; t) = P (t, T )

∫ ∞
0

∫ ∞
0

G1(AT ,BT ;T )g1(AT ,BT )dATdBT , (6)

where G1 and g1(AT ,BT ) are respectively the pay-off function and its density. The firm value and
its return volatility are not directly observable, hence we use balance sheet data, AT (activity)
and BT (liability), as a reliable proxy of the market data, see e.g. Eberhart (2005). Furthermore,
we decompose AT and BT in terms of current (CT ) and long term components (LT ), that is
AT = ACT +ALT and BT = BCT +BLT . Equation (6) can then be rewritten as

Et = G1(ACt , ALt , BCt , BLt ; t) =

= P (t, T )

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0
G1(ACT , ALT , BCT , BLT ;T )×

× g1(ACT , ALT , BCT , BLT )dACT dALT dBCT dBLT .

We now express the 4-dimensional density function g1(ACT , ALT , BCT , BLT ) as a copula obtain-
ing

Et = P (t, T )

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

G1(ACT , ALT , BCT , BLT ;T )c(FAC , FAL , FBC , FBL)×

× fACfALfBCfBLdACT dALT dBCT dBLT , (7)
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where c(·) denotes the 4-dimensional copula density function, FAC , FAL , FBC , FBL are the marginal
cumulative distribution functions, and fAC , fAL , fBC , fBL are the marginal probability density func-
tions.

The previous firm pricing function can be approximated by Monte Carlo method as follows

Ẽt = P (t, T )
1

N4

N∑
ι=1

N∑
k=1

N∑
l=1

N∑
r=1

G1(ÃCTι , ÃLTk , B̃CTl , B̃LTr ;T )

= P (t, T )
1

N4

N∑
ι=1

N∑
k=1

N∑
l=1

N∑
r=1

(ÃCTι + ÃLTk − B̃CTl − B̃LTr)I{Υ}

where

{Υ} = {(ÃCTι + ÃLTk > 0), (ÃCTι + ÃLTk − B̃CTl − B̃LTr ≥ 0), (0 ≤ B̃CTl + B̃LTr ≤ D)},

N is the number of simulations, Ẽt, ÃCTι , ÃLTk , B̃CTl and B̃LTr are the simulated values of the eq-
uity, the current assets, the fixed assets, the current liabilities and the long-term debts, respectively.
The Probability of Default (PD) at time t is therefore estimated by (PD)t = Pr(Ẽt ≤ 0).

4 Model Estimation

The dynamic of the equity value in equation (7) depends on two sets of parameters: the parameters
of the copula and those of the marginal distributions. Let θ denote the parameter vector of
the copula function c(FAC , FAL , FBC , FBL), and let δm denote the vector of the parameters of
the m-th marginal distribution (with m assuming values in the set {AC , AL, BC , BL}). Then,
∆ = (δAC , δAL , δBC , δBL) contains the parameters of the marginals and Ψ = (∆,θ) represents the
full set of parameters associated to (7).

In order to estimate Ψ we follow a two-stage procedure proposed by Joe and Xu (1996) called
Inference Functions for Margins (IFM). The IFM method estimates the marginal parameters ∆ in
a first step, and in a second step estimates the copula parameters θ, given ∆̂IFM .

We will now illustrate in detail the estimation of the parameters in the two steps of the IFM
method.

4.1 Marginal Parameter Estimation

The current and long term assets and liabilities present bi-modal distributions. This behaviour
can find an explanation in the effect of the managerial actions and decisions performed to save
the firm from bankruptcy. These actions and decisions directly impact the dynamic of current
and long term assets and liabilities, and this can intuitively explain the presence of two separated
clusters of data. We estimate each marginal distribution FAC , FAL , FBC , FBL via a two-component
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Gaussian mixture model assuming different means but equal variances (location-shift model). The
cumulative distribution function of the m-th marginal distribution at time t is given by

F (xmt) =

2∑
p=1

ηpΦ(xmt |µp, σ2)

where ηp is the classification probability for component p (ηp ≥ 0 and
∑2

p=1 ηp = 1), x is the

data vector, and Φ(xmt |µp, σ2) is the Gaussian cumulative distribution function with mean µp and
variance σ2. The likelihood can be written

L(xmt) =
n∏
t=1

2∑
p=1

ηpφ(xmt |µp, σ2)

where n is the number of observations, and φ is the probability density function of the Normal
distribution.

Although based on standard distributions, mixture models pose highly complex computational
challenges. In particular, one major obstacle is the difficulty of the estimation of the parame-
ters. The literature about mixture models offers various solutions both in the classicaland in the
Bayesian framework. Considering the classical approach, the most popular method is the EM algo-
rithm, which is a numerical optimisation procedure allowing to calculate the maximum likelihood
estimator. However, as demonstrated for example by Marin et al. (2005), this algorithm may fail
to converge to the major mode of the likelihood. The Bayesian approach constitutes a more flexible
and computationally convenient solution to the estimation of mixture models, allowing complex
structures to be decomposed into a set of simpler structures through the use of latent variables.
For this reason, we decided to adopt the Bayesian approach to estimate the parameters of the
marginals. Following Bayes’ theorem, the posterior distribution for the m-th marginal is given by

π(δm,η|x) ∝

 n∏
t=1

2∑
p=1

ηpφ(xt|δm)

× π(δm,η)

where δm is the vector of parameters of the m-th marginal distribution, η is the vector of clas-
sification probabilities, π(δm,η) is the joint prior distribution, and x is the data vector. The
posterior π(δm,η|x) is computationally intractable to work with; hence, the data augmentation
MCMC algorithm is used to estimate the parameters of the mixture distributions; see Tanner and
Wong (1987). In particular, the MCMC sampling is implemented using JAGS (Just Another Gibbs
Sampler; Plummer, 2003). The data augmentation algorithm introduces a vector of latent vari-
ables z = (z1, . . . , zn), that represents the allocations associated to each observation xt. Hence, the
posterior density can be expressed as

π(δm,η|x) =

∫
Z
π(δm,η|z,x)π(z|x)dz
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where π(z|x) denotes the predictive density of the latent data z given x, with z = (z1, . . . , zn),
and π(δm,η|z,x) denotes the conditional density of the parameters given the augmented data.
Moreover, π(δm,η|z,x) = π(δm|η, z,x)π(η|z,x), and π(η|z,x) = π(η|z), since the distribution
is independent of x. Then, the data augmentation algorithm uses an iterative procedure, em-
ploying the Gibbs Sampler to simulate z fist, then η is generated from π(η|z) and finally δm is
generated from π(δm|η, z,x). This approach is motivated by the fact that the densities π(η|z)
and π(δm|η, z,x), are easier to sample than the original posterior.

In the specification of the model, we assume independency between parameters a priori and we
specify the following prior distributions

zt ∼ Bernoulli(η1)

(η1, η2) ∼ Dirichlet(α1, α2)

µp ∼ Normal(bp, Bp)

σ2 ∼ Γ−1 (ν/2, νS/2) .

where the values of the hyperparameters α1, α2, bp, Bp, ν, S are set in such a way that vague prior
distributions are obtained.

For the implementation of the algorithm, we avoided unidentifiability due to label switching by
specifying the constraint of unique ordering of the segments, with ascending means of the segment
distributions.

4.2 Copula Parameter Estimation

In order to facilitate the estimation process, we reduced the dimensionality of the copula
c(FAC , FAL , FBC , FBL ;θ), using a D-vine pair copula decomposition. The estimation of the copula
parameters θ can be schematised into five phases.

In the first phase a suitable D-vine decomposition is selected. Following the approach suggested
by Aas et a. (2009) for D-vines and later developed by Dißmann et al. (2011) for regular vines, we
applied the maximal spanning tree algorithm to specify the first tree. This algorithm defines a tree
on all nodes (named spanning tree), which maximises the sum of absolute pairwise dependencies.
As a measure of pairwise dependence we used the Kendall’s τ , calculated for each edge connecting
two nodes in the first tree. Therefore, the strongest dependencies are captured in the first tree,
allowing to obtain a more parsimonious model, with more stable parameter estimates.

In the second phase, given the selected tree, we choose pair copulas from a wide range of different
families, in order to increase the flexibility of the model, where the pair copulas do not have to
belong to the same family. The best fitting pair copula for each pair of variables is selected using the
Akaike Information Criterion (AIC), that was chosen among other criteria, like the Vuong (1989)
and Clarke (2007) goodness-of-fit test and Bayesian Information Criterion (BIC), for its good
performance in simulation studies. Note that conditional independence between variables may
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reduce the number of levels of the pair copula decomposition, and hence simplify the construction.
The conditional independence in fact would allow to remove edges in the D-vine graph, as depicted
in Figure (1). In order to check for independence we performed the Genest and Favre (2007)
bivariate asymptotic independence test on each pair of variables of the D-vine, before calculating
the AIC.

In the third phase, the parameters of the copulas in the first tree are estimated. For each
copula there is at least one parameter to be determined. The number of parameters depends on
which copula type is selected in the previous phase. In order to estimate the copula parameters
we employed the maximum likelihood estimation method, using the sequential updating parameter
estimates as starting values; see Aas et al. (2009) for more details.

In the fourth phase, given the results of the first tree, we use formula (4) to compute pseudo-
observations via the conditional distributions F (x|v). These values are then used as input for the
next trees.

In the last phase, the procedure illustrated from phase 1 to phase 4 is repeated for all trees,
which are selected in a similar fashion as the first tree.

5 Analysis of Defaulted Firms Data

We applied our methodology to the analysis of four well known bankruptcy cases: Cirio (1993-2002),
Enron (1997-2000), Parmalat (1990-2003), and Swissair (1988-2000). We used information and
balance sheet data freely available on the World Wide Web. We considered the available semestral
balance sheet, and we converted them into monthly observations assuming uniform distribution in
the semester. For Swissair and Enron the balance sheets of the year of failure were not available.

We now briefly describe the main characteristics of the four examined firms. Enron was an
American energy, commodities, and services company. Before its collapse in 2001 it was one of
America’s leading companies with a solid reputation. At the end of 2001 the real situation of the
company was made public; its apparently solid financial conditions were substantially sustained by
an institutionalised, systematic, accounting fraud.

Parmalat collapse was the biggest case of financial fraud and money laundering perpetrated by a
private company in Europe. Although the catastrophic financial situation was disclosed and became
public only in 2003 (when it collapsed), the company’s financial difficulties were already detectable
in the early nineties. It was the first Italian corporate crash with international implications.

Parmalat and Enron scandals present common features, hence many analysts refer to Parmalat
as “Europe’s Enron”.

Swissair presents a different story from the previous firms. For most of its 71 years, it was one of
the major international airlines with a strong financial stability. It rapidly declined from one of the
major international airlines with the strongest balance into bankruptcy in 2001. This rapid decline
was the consequence of inefficient alliance policies, management inability and economic turndown
following the terroristic attacks of “September 11”.
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Finally, Cirio is an Italian Food company founded in 1856 by Francesco Cirio. During the
nineties it was guided by the Cragnotti Group whose fraudulent financial policy leads the company
to the bankruptcy in 2002.

5.1 Asset and Liability Data Analysis

We now proceed with the analysis of asset and liability data. The two component mixture Gaussian
model described in Section 4.1 is applied to analyze the current/long term assets and liabilities of
the four defaulted firms. The parameter estimates are reported in Table 1.

Table 1: Parameter estimates of the marginal distributions.

Cirio η1 η2 µ1 µ2 σ2

FAC 0.6350 0.3650 40.2800 111.6800 272.9400
FAL 0.5096 0.4904 18.9500 37.8400 26.2610
FBC 0.5012 0.4988 39.5400 106.4300 163.7900
FBL 0.6954 0.3046 16.7000 67.2400 100.8200

Enron η1 η2 µ1 µ2 σ2

FAC 0.9234 0.0766 251.3000 2531.6000 21412.0000
FAL 0.7133 0.2867 556.9000 880.7000 2834.1000
FBC 0.9233 0.0767 260.7000 2367.4000 17062.0000
FBL 0.9223 0.0777 623.7000 1843.9000 56107.0000

Parmalat η1 η2 µ1 µ2 σ2

FAC 0.6150 0.3850 121.9000 386.3000 3852.4000
FAL 0.5375 0.4625 63.7000 175.2000 535.4700
FBC 0.9282 0.0718 194.3000 1587.8000 23362.0000
FBL 0.9278 0.0722 194.0000 1588.8000 23228.0000

Swissair η1 η2 µ1 µ2 σ2

FAC 0.5442 0.4558 162.5000 297.1000 1214.3000
FAL 0.2339 0.7661 90.8300 349.6600 1373.1000
FBC 0.9127 0.0873 176.4000 350.5000 1901.9000
FBL 0.5402 0.4598 163.4000 439.5000 4259.0000

The classification probabilities ηp are quite close to 0.5 for Cirio data, for the asset marginals of
Parmalat data and for the current asset and the long term liabilities of Swissair data, denoting a
balanced number of observations in the two mixture components. On the contrary, Enron data, the
liability marginals of Parmalat data and fixed assets and current liabilities of Swissair data show
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two very different classification probabilities η1 and η2. This means that different proportions of
observations are allocated to the two components of the mixture and that one of the two components
captures the greatest part of the data. The location parameters of the two Normal components
of the mixture µp are well separated, especially for Enron and Parmalat data, denoting that the
mixture model is able to express the mean difference between the two components. Regarding the
dispersion parameter σ2, we can see that it is particularly high for Enron and Parmalat, which are
described by two Normal components with high variability, while it is lower for Cirio and Swissair,
indicating distributions with a lower variability. Therefore, the data with more unbalanced mixture
components are Enron and Parmalat (especially liability marginal data), with very different values
of classification probabilities ηp and normal means µp and very high normal variance values σ2.
The resemblance of the structure of assets and liabilities in Enron and Parmalat may be explained
by the similar behaviour of these two companies during the years before their default. Parmalat in
fact has been referred to as the “Europe’s Enron” by many authors.

Figure 2 shows the Enron histograms of each marginal (grey bars) fitted with the location-shift
model of two Gaussian components (black and grey lines) described in the previous section. In the
Figure, FAC is displayed in top left panel, FAL in the top right, FBC in the bottom left and FBL in
the bottom right. As an example, we focus our attention to the picture related to the fixed assets
marginal (FAL) of Enron data (top right panel of Figure 2). The analysis of the histogram plot
shows a strong bimodality in the distribution and suggests the use of a finite mixture model as
reasonable model for our data. Similar comments arise from the analysis of the fitted histograms
of the remaining marginals.

Figure 3 shows the sampled values of the µ1 parameter on the horizontal axis and of the µ2

parameter on the vertical axis, for the Enron data. In the Figure, FAC is displayed in top left panel,
FAL in the top right, FBC in the bottom left and FBL in the bottom right. It is interesting to note
that our data are not affected by label switching, since the segments are rather well separated for
µ, as there are no points on the diagonal on the µ1 versus µ2 plots.

Focusing on the MCMC results, for lack of space we analyse here the outcomes of the Enron
fixed assets data (FAL), since the results of the other marginals and data series are very similar
to those presented. Figures 4, 5 and 6 depict MCMC sample paths and posterior densities for the
parameters η, µ and σ2, respectively. We run the algorithm for 4000 iterations, discarding the first
1000 iterations, as burn-in period. The sample paths show that the chains are well mixing, exploring
freely the sample space and clearly reaching convergence to the target distribution. Moreover, the
unidentifiability problem due to label switching, that can lead to biased estimates, in our case does
not occur. Finally, the posterior density plots have regular forms and do not show multimodalities.

5.2 Pair Copula Construction for Asset and Liability Data

According to the IFM approach, once estimated the marginal parameters ∆, the second step requires
the estimation of the copula parameters θ (see section 4). However, the data feeding the copula
are required to lie in the interval [0, 1]. These data are named pseudo-observations or u-data and

12
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Location−shift model. Enron current liabilities
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Location−shift model. Enron long term debts

Enron long term debts
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Figure 2: The Enron data fitted with a mixture of two Gaussian components: FAC (top left), FAL
(top right), FBC (bottom left) and FBL (bottom right).
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Figure 3: The Enron data: µ1 versus µ2. FAC is in the top left, FAL is in the top right, FBC is in
the bottom left and FBL is displayed in the bottom right panel.
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Figure 4: Enron fixed assets data: MCMC traces and posterior densities for η.
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Figure 5: Enron fixed assets data: MCMC traces and posterior densities for µ.
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can be calculated via the inverse transformation method. Thus, for each marginal we simulated the
distributions of the mixtures, described in section 4.1, using the Monte Carlo method, and then we
inverted the data using the empirical cumulative distribution functions of each marginal. In this
way, we obtain the so-called u-data, with values lying in the interval [0, 1], that are used as input
to the copula.

In order to select an appropriate pair-copula decomposition for the D-vine, we followed the
phases described in section 4.2. We ordered the marginals so that the copulas to be fitted in tree
1, in the pair copula decomposition, are those corresponding to the strongest pairwise dependence
among the marginals (see Figure 1). We measured the marginal dependences with the Kendall’s
τ and we chose the D-vine that maximizes the pairwise Kendall’s τs in the first tree (Aas et al.,
2009). Therefore, for all the four considered datasets, the order of the nodes in the first tree is:
ACT − BCT − BLT − ALT .

For each of the four defaulted stock data we specified a D-vine copula model. Then, for each vari-
able pair we performed the bivariate asymptotic independence test (Genest and Favre, 2007), where
the rejection of the null hypothesis means a strong dependence between the selected marginals.
Subsequently, we selected the appropriate pair copula family for given bivariate copula data using
the AIC. Finally, we estimated the parameters for each copula and we evaluated the final D-vine
structure.

The parameters of the D-vine are estimated using the approach described in Section 4.2 and
the results are listed in Tables 2, 3, 4 and 5. Each Table displays the list of pair copulas in the
trees of the D-vine, the selected copula family and the copula parameters (they can be one or two
according to the type of copula). From the copula families selected, we see evidence of different
types of asymmetric dependence. This demonstrates that the choice of PCCs was appropriate,
since it guarantees enough flexibility to model the dependence structure of the marginals. Note
that only the Cirio D-vine (Table 2) has none conditional independent variable pairs. For these
data the Genest and Favre (2007) independence test rejected independency for all the copulas
involved. An independent copula has been selected instead for cACT ,BLT |BCT

in the second tree for

Parmalat and Swissair (Tables 4 and 5), while cALT ,BCT |BLT
has been identified as an independent

copula for Enron (Table 3). In these cases the D-vine structure is simplified and we do not need
to estimate the parameters of the copula cACT ,ALT |BCT ,BLT

in the third tree. The presence of
conditional independence in this last case suggests a weak relationship between the current and
fixed assets, given the values of the liabilities. From the unconditional pair copulas, we note an
existing dependence between current and fixed assets or liabilities, and also a dependence between
the two different types of debts. The conditional copulas instead, especially those characterized by
strong dependence, may suggest imbalance, when current assets are financed by long-term debts,
or a serious liquidity problem, when fixed assets are financed by short-term debts. These situations
need particular attention, because they may prelude to the default of the firm.

Figure 7, obtained with the R package CDVine by Brechmann and Schepsmeier (2013), shows
the D-vine tree plot for the Enron data and contains the trees of the D-vine. The blue squares
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represent the nodes, while the grey lines represent the arcs. The names of the nodes can be read in
the blue squares, and the pair copula families and Kendall’s τ values corresponding to pair copula
parameters can be read in the edge labels. The thicker the grey line the higher the dependence
between the variables represented by the nodes. Only the Cirio D-vine contains all the three trees,
while the D-vines of the remaining data contain two trees only, because of simplification derived
by conditional independence.

Table 2: Cirio data: selected copulas and D-vine PCC parameters. SBB1, BB7 and BB8 are,
respectively, the Survival Clayton-Gumbel, the Joe-Clayton and the Joe-Frank copulas, that are
Archimedean copula families with two parameters.

Cirio: Pair Copulas Parameters of the D-Vine

Copulas family parameter 1 parameter 2

cACT ,BCT SBB1 0.0010 3.3814

cBCT ,BLT BB8 1.2579 0.9902

cBLT ,ALT BB7 1.1195 4.7016

cACT ,BLT |BCT
Frank 7.2222 0

cALT ,BCT |BLT
Normal -0.0337 0

cACT ,ALT |BCT ,BLT
Frank -8.9557 0

Table 3: Enron data: selected copulas and D-vine PCC parameters. SBB8 is the Survival Joe-Frank
copula, Archimedean copula family with two parameters.

Enron: Pair Copulas Parameters of the D-Vine

Copulas family parameter 1 parameter 2

cACT ,BCT Student’s t 0.9868 7.6539

cBCT ,BLT SBB8 6.0000 0.3924

cBLT ,ALT BB8 5.9831 0.9979

cACT ,BLT |BCT
Rotated Clayton -1.4730 0

cALT ,BCT |BLT
Independent 0 0

5.3 Probability of Default Estimation

After the estimation of the parameters of the model, we can now calculate the PD for the four
considered defaulted stock data. As illustrated in Section 3, we obtain the equity distribution
by simulation and finally we compute the default probability value. In particular, for each stock
data, we obtain the equity scenario by simulating from the D-vine, that, after the estimation
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Table 4: Parmalat data: selected copulas and D-vine PCC parameters. BB1 is the Clayton-Gumbel
copula, Archimedean copula family with two parameters.

Parmalat: Pair Copulas Parameters of the D-Vine

Copulas family parameter 1 parameter 2

cACT ,BCT BB1 0.4325 4.2015

cBCT ,BLT Gaussian 0.9998 0

cBLT ,ALT Clayton 1.2256 0

cACT ,BLT |BCT
Independent 0 0

cALT ,BCT |BLT
Frank -7.3657 0

Table 5: Swissair data: selected copulas and D-vine PCC parameters.

Swissair: Pair Copulas Parameters of the D-Vine

Copulas family parameter 1 parameter 2

cACT ,BCT BB7 2.4309 5.3880

cBCT ,BLT SBB8 1.0081 1.0000

cBLT ,ALT BB7 1.0010 2.9494

cACT ,BLT |BCT
Independent 0 0

cALT ,BCT |BLT
Rotated Joe -2.3405 0
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Figure 7: Enron data: D-vine PCC tree.
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of the parameters, is completely specified. Then, from the distribution of the equity, the PD is
determined as the probability that the simulated equity is zero or negative. Figure 8 depicts the
equity distributions of Cirio, Enron, Parmalat and Swissair, respectively on the top left, top right,
bottom left and bottom right panel. The value of the PD is written on the relevant distribution
and corresponds to the area under the curve where the equity is zero or negative. The PD values
are very high for all defaulted stocks, but for Enron and Swissair these probabilities are slightly
lower than the remaining two firms. However, we need to point out that the available time series
did not include the last year of activity for Enron and Swissair. This might have affected the final
results, since the inclusion of the last year’s data would certainly have increased the PD values.

6 Summary and Conclusions

The aim of this paper was to propose a new methodology for default risk measurement. Our final
goal was to calculate the default probability of large firms using their balance sheet data. We
measured the firm value via a contingent claim, whose pricing function can be expressed using
copulas. The marginals are given by the current and fixed assets and the short-term and long-term
debts. Hence, the pricing function is expressed by a 4-dimensional copula. To test the performance
of our methodology we applied it to four famous defaulted stocks. In order to estimate the marginals
we employed a Bayesian mixture model, able to model the presence of two clusters in the asset as
well as in the liability data. This structure of the marginals reflects the choices of the management,
trying to balance high and low accounting items during the period before the default. Considering
the copula, we chose to employ PCCs, because they allow for a great flexibility in modelling the
dependence structure of the marginals. As demonstrated by the results, the pair copulas selected
in the D-vines belong to different families and describe various types of dependence. The analysis
of these dependences already reveals substandard loans and situations of serious imbalance due to
liquidity problems, especially when the firm tries to balance fixed assets with current liabilities.
Finally, we calculated the default probability of the four considered firms, simulating from the
D-vines and obtaining the equity distribution. The final results show a high probability of default,
suggesting the forthcoming bankrupt of the firms.

The proposed methodology has proved to be successful in the evaluation of default probability
and would certainly benefit analysts and managers, advising them to take actions against a potential
bankruptcy.

Possible extensions of our work would be the estimation of the whole model in a full Bayesian
framework, the use of balance indicators instead of accounting items, and the use of a similar
methodology to analyze the contagion in sectors of activity.
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Figure 8: Equity distributions of Cirio (top left), Enron (top right), Parmalat (bottom left) and
Swissair (bottom right). The value of the PD is written on the corresponding distribution.
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