
A SME-oriented extension of Agile development process

Gianmario Motta1, Daniele Sacco2, Thiago Barroero3

Dipartimento di Ingegneria Industriale e dell’Informazione

University of Pavia, Via Ferrata 1, Pavia, Italy
1motta05@unipv.it, 2daniele.sacco01@ateneopv.it, 3thiago.barroero@unipv.it

Abstract. This work intends to contribute on Agile i.e. an agile approach to the

software development cycle. Agile is already popular in many organizations

and our work intends to define an Agile methodology for small businesses ex-

tended by a customer-driven and goal oriented approach to requirements analy-

sis. Our objectives are (a) an overview of Agile adoption and its basic charac-

teristics, (b) a discussion of the possible issues in Agile practices that may af-

fect small businesses, (c) an extension of the Agile methodology by Goal Ori-

ented Analysis, (d) explanation by an example from a case study of real small

business implementing our methodology.

Keywords: Requirement Engineering, Software Development Process, Soft-

ware Lifecycle, Software Delivery Model, Small Business Needs

1 Introduction

Several researches suggest that the size of a business and its level of adoption of IT

are related. These studies reveal that IT coverage increases with the size of business

(more than 20 employees, almost 100% of adoption) [1],[2],[3]. However, in front of

the exponential growth of IT, the rate of the adoption by small businesses is still low.

This gap may be explained by the unique characteristics of small businesses, that can

be defined as ‘natural barriers’ [4],[5],[6]: (a) small business generally have limited

access to the market information, (b) management techniques are rarely used by small

business, (c) small business relies on short term planning, uses both informal and

dynamic strategies, and does not use standard operating procedures, (d) small busi-

ness controls less resources than large organizations.

Furthermore, IT adoption belongs to ‘cultural barriers’, which typically depend on

management vision, that may include lack of [7]: (a) IT knowledge combined with

difficulties to find useful and impartial advice, (b) use of external consultants and

vendors, (c) understanding of the benefits that IT can provide, and how to measure

them. However, small businesses have a great advantage: they can be flexible. They

are able to preserve work relationships, bring a ‘personal touch’ to operations, reach

niche markets. The constant pressure also persuades them to be inventive and innova-

tive in their operations [7].

Given these characteristics, we assume that software development process should

be agile to support small businesses. In 2001, the Manifesto for Agile Software De-

velopment was published to define a new approach by providing adaptive planning,

evolutionary development and delivery, and rapid and flexible response to change.

The Agile Manifesto states that the “highest priority is to satisfy the customer through

early and continuous delivery of valuable software” [8]. Agile has been one of the

first approaches summarizing new perspectives in software development; for instance

in 1999 Truex, Baskerville and Klein [9] already identified new emergent goals in

information systems development, such as (a) always analysis, (b) dynamic require-

ments negotiations, (C) incomplete, usefully ambiguous specifications, (d) continuous

redevelopment. Indeed, Agile development follows the same way by facing uncertain

and changing situations. Management and customers can review and change the pro-

ject thanks to the short iterations of development process; in this way, every feature is

kept up to date; this overcomes the traditional waterfall model where requirements are

defined at the beginning and the customer is not involved until the final user ac-

ceptance tests. There are many Agile methodologies and their complete overview

would be out of scope, but in summary, an agile approach differs from the classic

waterfall development of custom software by these characteristics:

 Requirements are defined gradually, step by step

 Requirements are defined and implemented on a partial, abridged version of the

target software system

 Each provisional implementation is reviewed by users and requirements are re-

fined

 Such iterations continue until the users’ needs are satisfied and the system is com-

plete.

The structure of the Agile delivery model focuses on project execution and adapta-

tion. The model we refer to was first described by Highsmith [10], where he describes

the departure from traditional software development phase names - Initiate, Plan,

Define, Design, Build, Test – by replacing them with: (a) Envision, to indicate the

criticality of vision, (b) Speculate, to indicate that it is of no use to “plan” uncertainty

away but actually to face it step by step. (c) Explore, with its iterative delivery, (d)

Adapt, to adapt to current conditions and start again with Speculate phase, (e) Close,

whose primary objective is knowledge transfer. Basic design elements of Agile are (a)

user stories, (b) development tasks that implement a single user story, (c) features

realized by user stories, (d) capabilities as collections of features; typically a set of

user stories is developed in one or more iterations and a capability must be completed

by a milestone [10, 11].

Agile is used increasingly, moving from high-tech companies to mature industries

as insurance, telecom and financial services. Actually, companies need an iterative

process that enables small teams to build software functionalities in an environment

that is responsive to business change, to improve time to market, development costs,

and quality [12]. A study by Forrester Research [13] shows that enterprises are rapid-

ly moving to Agile development: almost 35 % of the surveyed 1,298 developers and

IT professionals use Agile methods. In large and small companies, adoption of Agile

is almost the same [14]. Agile implementation has positive feedbacks: accelerated

time-to-market, enhanced ability to manage changing priorities, increased productivi-

ty, enhanced software quality and improved alignment between IT and business ob-

jectives [15]. A survey [16] confirms Agile benefits: flexibility and quality software

that meets customer needs. Other substantial benefits are knowledge sharing and low-

er risk of project failure [16]; Version One survey [15] reveals that 22% of respond-

ents did not experience a failed Agile project.

Thus, Agile development benefits organizations. The continuous testing, instead of

a final testing phase, is an effective practice. Short iterations and sprint reviews im-

prove organizational commitment. Such constructive and frequent feedback helps to

keep teams engaged in the project. An agile process, finally, approaches customers to

development; customers feel more satisfied and involved in decisions.

2 The Agile issues

Agile is very demanding both on overall organization of the development and on

analysis techniques.

On the organizational side, Agile can be constrained by organizational and mana-

gerial resistances. Lack of skills and project complexity are also barriers. In an Agile

development, customer collaboration is a must, and a heavy customer involvement is

critical. Difficult communication between customers, managers and developers leads

to the failure of the whole Agile process.

On the analysis side, Agile requires a responsive requirement elicitation technique.

In a classic Agile approach, requirements are elicited by user stories : “A user story is

a brief statement of intent that describes something the system needs to do for the

user” [17]. The description used by user stories is understandable to all project stake-

holders. User stories do not consider only the functional perspective, but also the val-

ue defined by the user. In fact, user stories are very different from use cases on sever-

al aspects [17]. User stories are helpful to fill the gap between developer and user, but

sometimes more precision is required . They may have some limits:

 It is hard to split business requirements into independent user stories, so dependen-

cies may be introduced without appropriate modeling or architecture.

 Systems cannot be only described by using words, that may have different mean-

ings to different people. Thus, interpretation may mislead if a model is not used.

 User stories are only functional. The customer cannot understand all non-

functional requirements.

Thus, user stories should be replaced by a more robust technique. This is precisely

our purpose. In order to understand needs, an analyst should explicit their vision and

diverse viewpoints [18]. Traditionally, requirements elicitation is accomplished by

conceptual modeling techniques which propose an abstract view about what the sys-

tem should do [19]. Traditional conceptual modeling allows to understand the seman-

tics of information, but it often fails in enabling acceptance by users. Researches show

that many large projects fail because of an inadequate understanding of the require-

ments. Davenport stated: “IT is an effective implementation vehicle of innovation, but

only when coupled with the approach, enablers, and other implementation factors”

[20].

In order to get participative and effective requirements elicitation a possible way is

to focus on the goals of stakeholder classes. The concept of goal is prominent in re-

cent approaches to requirements elicitation and GORE1 approaches emerged in this

research area. Goals are prescriptive statements of intent whose satisfaction requires

the cooperation of actors in the software environment. According to Pohl “goals rep-

resent the objectives an actor wants to achieve when requesting a certain service and

it is used to describe an objective to be achieved in the macro-system, e.g. business

goal, personal goal etc.” [21]. GORE uses goals for eliciting, elaborating, structuring,

specifying, analysing, negotiating, documenting, and modifying requirements [22].

GORE works at different level of granularity: the analyst identifies goals and refines

them until they are reduced to alternative collections of requirements. In particular,

requirements should be specific to each class of stakeholders since different stake-

holders have different needs and goals.

3 Extension of Agile

For requirements identification we propose GOA2, a technique for requirements

engineering described by Bolchini and Paolini. GOA is a lightweight and intuitive

methodology [23]. In contrast to the task analysis that focuses on what users do on the

system, GOA identifies the objectives of all stakeholders, facilitating the exploration

of design alternatives and leading to a more comprehensive set of requirements [24].

GOA doesn’t belong to a particular software development methodology and our pur-

pose is to use it in the Agile methodology.

GOA is useful at the initial stage of requirements analysis and task analysis is ap-

propriate in the later stages of design, such as the detailed design of the interaction.

GOA identifies seven categories of requirements: content (labeled with C), structure

of content (S), access paths to content (A), navigation (N), user operation (U), system

operation (O), presentation (P). In this way it provides a solution to user stories criti-

cal points.

Table 1. A comparison between user stories and goal oriented analysis

User Stories Goal Oriented Analysis

Customer on site Low customer commitment

Customer participates in the elicitation Customer confirms the analysis

Requirements are uncertain because they are
not modelled and use only plain words

Requirements are well-defined in a model

They collect functional requirements
It collects functional and non-functional re-
quirements

1 Goal Oriented Requirements Engineering
2 Goal Oriented Analysis

Furthermore, GOA helps to specify non-functional requirements (typically system

operation taxonomy). In this way, designers are facilitated in their work: “they receive

functional requirements organized according to a useful taxonomy; for each require-

ments category, they can assess the quality of the design solutions (deriving from the

functional goal-analysis) by respecting the non-functional requirements” [23]. Thus,

GOA and user stories show different characteristics that we summarize in Table 1.

To explain our technique we illustrate a case study on a small company (10 work-

ers) that manages job proposals for graduated students across Europe. Their aim was a

virtual work environment in order to have one job scouter in each European country

and to manage from any place the information about proposals, students and compa-

nies. To achieve this, a KMS3 solution was planned to organize and facilitate collabo-

rative creation of documents. We have identified 4 stakeholders: directors, marketing

employees, host companies, applicants. Here are the main steps performed:

1. Definition of goals-requirements diagrams: goals represent the long-term needs

and expectations of the stakeholders of the system and they can be decomposed in

sub-goals in order to specify more accurate needs. Each goal is detailed and refined

in requirements. Finally, requirements are classified by a label that indicates the

design dimensions they have implications on. Fig. 1 shows the diagram for direc-

tors.

Director

Add documents

Upload
document

O

Work on documents

Set permissions

Define metadata

C

Knowledge base
access

Access by
browser

A

Access wherever
you are

A

Search documents Knowledge base
navigation

Full text search

O

Advanced search

O

Document details
view

P

Browse
documents

P

Check out
documents

O

Preview online

O

Create work
groups

O

Define
permissions

depending on
user role

O

Access to
personal info

(RSS, activities…)

P

Add workflow

O

Add links

O

Change workflow
state

O

Update documents

Fig. 1. An example of goals-requirements diagram

2. Definition of mock-ups: graphical user interfaces provide an idea of the new sys-

tem by illustrating features and layout. Fig. 2 shows an example of mock-up for

search feature, by illustrating the fields that must be shown in the search results.

3 Knowledge Management System

Fig. 2. An example of mock-up

3. Interviews definition and submission: after designing the proposals to be presented

to the stakeholders, it is necessary to write an interview for each class of stake-

holders. By this interview they validated and confirmed mock-ups and goals-

requirements diagrams, suggesting changes depending on their needs.

These steps conclude the participation of stakeholders; afterwards they will be in-

volved in acceptance tests at the end of each development iteration. Identified re-

quirements are classified in functional or non-functional requirements according to

their taxonomy. User stories extend functional requirements that we have identified;

they describe in plain words the steps that compose each requirement. Since Agile

process is mainly user-centric, we also introduced cards that describe non-functional

requirements: we named them technical occurrences. Their functionality is to provide

constraints during the development iterations; in this way developers consider every

detail of the feature to develop. Fig. 3 shows some examples.

Name Upload document

Taxonomy User story

Description

1. Access to the knowledge base
2. Select the folder where the user

wants to upload a document

3. Press «upload document» button

4. Choose the document to be upload-
ed

5. Complete metadata

6. Define document type

7. Upload document

Priority High

Exploration factor High

Name Full text search

Taxonomy Technical occurrence

Description

- Measuring concept: find keywords
within a document

- Measuring method: time to com-
plete the task

- Current level: Tmanual = The user
must open each document and look

for the keywords within the docu-

ment

- Planned level: Tautomatic = ‘full text
search’ shall provide the documents

in few ms

- Worst case: Tworst = Tautomatic +

Tmanual

- Best case: Tbest = Tautomatic
Worst case is tolerable because the

probability of no indexing of a

document is very low

Priority High

Exploration factor Medium

Fig. 3. Examples of user story card and technical occurrence card

A feature is composed by user stories and is constrained by specific technical oc-

currences; moreover a feature shall satisfy mock-ups identified in the requirements

elicitation phase. The output of this phase is a backlog that lists all features and sto-

ries that the production team has identified. This backlog data is mainly used for next

release planning in order to identify priorities, risks and estimates. Class diagram in

Fig. 4 summarizes relationships among all these entities.

-

Goal

-taxonomy

RequirementMock-up

1..*

-realized by

1 0..1

-son of0..*

0..1

-satisfied by

1..*

Functional Requirement Non-functional requirement

User Story Card Technical Occurence Card

Feature

0..*

-realized by0..1

Backlog Item

1

-inspired by

1

0..*

-constrained by

0..1

Fig. 4. Class diagram supporting our Agile extension

4 Conclusions

We have discussed an approach to enhance the agile development approach for

small businesses. The enhancement consists in replacing the easy but loose user sto-

ries by a more structured technique that captures both functional and non-functional

requirements while keeping an effective user involvement. A field validation on an

actual project shows many benefits and we gave an example in section 3.

 The roadmap in Fig. 5 illustrates the core of the methodology we have identified.

The main target are small projects: customers commitment is not heavy and their

satisfaction is high. Moreover, our requirement elicitation method demonstrated to be

particularly effective on functional domains (i.e. those application domains where the

customer focuses on the goals to be reached by the functions of the system). The

quadrant in the right corner of Fig. 5 summarizes the results: our reference model is

conceived to describe function-oriented solutions that respond to real needs of agility

in small companies. Future works include a complete proof of concept and the im-

provement of the reference model by providing new extensions.

Goals

Mock-ups

REQUIREMENTS
ELICITATION

Confirmed
Goals

Confirmed
Mock-ups

Functional
Requirements

Non-Functional
Requirements

REQUIREMENTS
ANALYSIS

User
Stories

Technical
Occurrences

Features

STORIES
IDENTIFICATION

Iterations RELEASE
PLANNING

Backlog
Items

SPECULATE

ADAPT

EXPLORE

HIGH

H
IG

H

LOW

LO
W

Functional Domain

P
ro

je
ct

 S
iz

e

GOA + User Stories

SIRE
GOA

User Stories

JRD

Prototypes

Use Cases

Fig. 5. Methodology and positioning

References

1. McDonagh, P., Prothero, A.: Euroclicking and the Irish SME: Prepared for e-commerce

and the single currency?. Irish Marketing Review, 13(1), 21-33 (2000)

2. Telstra Corporation and the National Office for the Information Economy. Small Business

Index: Survey of Computer Technology and E-Commerce in Australian Small and Medi-

um Businesses. Pacific Access Pty. (2000)

3. Duxbury, L., Decady, Y., Tse, A.: Adoption and Use of Computer Technology in Canadi-

an Small Businesses: A Comparative Study. In S. Burgess (Ed.), Managing IT in small

business: challenges and solutions, pp. 19-47 (2002)

4. Madrid-Guijarro, A., Garcia, D., Van Auken, H.: Barriers to innovation among Spanish

manufacturing SMEs. Journal of Small Business Management, 47(4), 465-488 (2009)

5. Dibrell, C., Davis, P. S., Craig, J.: Fueling innovation through information technology in

SMEs. Journal of Small Business Management, 46(2), 203-218 (2008)

6. Thong, J. Y. L., Yap, C. S., Raman, K. S.: Environments for information systems imple-

mentation in small businesses. Journal of organizational computing and electronic com-

merce, 7(4), 253-278 (1997)

7. Pollard, C. E., Hayne, S. C.: The changing faces of information systems issues in small

firms. International Small Business Journal, April-June, 16(3), 70-87 (1998)

8. Agile Alliance. Manifesto for Agile Software Development. http://agilemanifesto.org/

9. Truex, D. P., Baskerville, R., and Klein, H. K.: Growing Systems in an Emergent Organi-

zation. Communications of The ACM, 42 (8), 117-123 (1999)

10. Highsmith, J.: Adaptive Software Development: A Collaborative Approach to Managing

Complex Systems. Dorset House. (2000)

11. Hass, K. B. (2007). The Blending of Traditional and Agile Project Management. PM

World Today, Vol. IX, Issue V

12. Richards, K.: Early mainstream: Agile develops in the enterprise. Application Develop-

ment Trends (2006)

13. Forrester Research. Dr. Dobb’s Global Developer Technographics Survey (2009)

14. West, D., Grant, T.: Agile Development: mainstream adoption has changed agility (2010)

15. VersionOne Research. State of Agile development survey (2010)

16. Vijayasarathy, L. R., Turk, D.: Agile Software Development: A Survey Of Early Adopters.

Journal of Information Technology Management, 19(2), (2008)

17. Leffingwell, D.: Agile Software Requirements: lean requirements practices for teams, pro-

grams, and the enterprise, First Edition. Addison-Wesley. (2010)

18. Motta, G., Pignatelli, G.: Designing business processes for business performance: a

framework, BAI, Seoul, 7-9 (2008)

19. Goguen, J.A., Linde, C.: Techniques for requirements elicitation, Requirements Engineer-

ing, 93, 152-164 (2003)

20. Davenport, T. H.: Process innovation: reengineering work through information technology.

Harvard Business School Press, (1993)

21. Pohl, K., Haumer, P.: Modelling contextual information about scenarios, REFSQ, Barce-

lona, 187-204 (1997)

22. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour, RE, Toron-

to, 249-262 (2001)

23. Bolchini, D., Paolini, P.: Capturing web application requirements through goal-oriented

analysis. WER, 16-28 (2002)

24. Bolchini, D., Mylopoulos, J.: From task-oriented to goal-oriented web requirements analy-

sis. WISE, (2003)

http://agilemanifesto.org/

