法政大学学術機関リポジトリ HOSEI UNIVERSITY REPOSITORY

限界ひずみと降温プロセス効果との関係

著者	中村 大輝	
出版者	法政大学大学院理工学研究科	
雑誌名	法政大学大学院紀要.理工学・工学研究科編	
巻	60	
ページ	1-4	
発行年	2019-03-31	
URL	http://doi.org/10.15002/00021975	

限界ひずみと降温プロセス効果との関係

RELATIONSHIP BETWEEN LIMIT STRAIN AND EFFECT OF TEMPERATURE DESCENT

中村大輝

Hiroki NAKAMURA 指導教員 大澤泰明

法政大学大学院理工学研究科機械工学専攻修士課程

Owing to fixated interest of global environmental problems, the use of metals increases with light-weighting and recyclability and abundance of resources taken into consideration. Especially, nonferrous metal sheets such as Al, Mg, Ti, or Zn alloys attract attention as practical metal and the expansion of the demand is anticipated as alternative of ferrous material. However, these materials are inferior in the formability at cold press working in comparison with ferrous metals. Therefore, the need of improvement of the formability on these metal sheets is widely-recognized. Investigations with respect to the improvement of formability by temperature descent during working consciously in tensile test have been reported. However, there are ambiguity in the definition of limit strain and uniform strain which regarded as the end of stable deformation region. This paper focuses on the effect of temperature descent by determining these values experimentally and computationally.

Key Words : Temperature descent, Limit strain, Uniform strain, A6061-O

1. 緒論

近年,地球環境問題への関心の高まりから,軽量化やリサ イクル性、資源の豊富さ等を考えた金属材料の使用が増 加している.特に、Al、Mg、Ti合金などの軽量合金が頻 繁に使用される機会が増加し, 航空機産業, 自動車産業等, 多くの分野になくてはならない金属材料として重要な役 割を果たしている.しかし、Al、Mg、Ti あるいは Zn 合 金などの非鉄金属板材は、冷間のプレス加工における成 形性が鉄鋼材に比して確実に劣っている. これら軽量非 鉄合金は鉄の代替として需要の拡大が見込まれているも のの, 難加工性の改善に対する研究・開発努力の必要性が 広く認識されている.実際,加工時の温度を高く設定する ことで、延性の増加や成形性の向上が期待できることが 古くから考えられ、特に加工中の意識的な温度降下(降温 プロセス)によって安定変形領域の増大が可能であること が、研究成果の中で紹介されている.一方,安定変形領域 の終わりとされる一様ひずみの定義には曖昧な点があり, 同時に限界ひずみに対してもその定義・算定に曖昧な点 が指摘され、その値は信頼性に欠けるところが認められ る.

本研究では、アルミニウム合金 A6061-O 材を温度降下 の下引張試験を行い、実験と計算の両方の視点から降温 プロセス効果に関する考察を述べる.

2. 構成方程式

ー般的に金属の流動応力は、ひずみ、ひずみ速度,温度, 平均結晶粒径など、様々な関数として扱うことができる.

$$\sigma = \sigma \left(\varepsilon, \dot{\varepsilon}, \mathsf{T}, \mathsf{L}, \ldots \right) \tag{1}$$

冷間加工中において,加工硬化のみを考慮した構成方程 式(2.5)と考えるなら不安定開始までの一様ひずみは(2.6) となる.また Swift の拡散くびれ条件においても同様に 表せる.

$$\sigma = K\varepsilon^n \tag{2}$$

$$\varepsilon_u = n$$
 (3)

次に,ひずみ速度感受性が無視できない場合の構成方 程式及び不安定開始までの一様ひずみεuを(4),(5)に示す.

$$\sigma = \mathbf{K} \dot{\varepsilon}^m \varepsilon^n \tag{4}$$

$$\varepsilon_u = \mathbf{n} + \bar{\gamma}m \tag{5}$$

さらに温度依存性をある温度域で考えた場合,構成方 程式及び不安定開始までの一様ひずみ式 ε u は(6),(7)とな る.

$$\sigma = \mathbf{K}\dot{\varepsilon}^m \varepsilon^n \exp\left(\frac{A}{T}\right) \tag{6}$$

$$\varepsilon_u = \mathbf{n} + \bar{\gamma}m + \mathbf{A}\,\delta$$
 (7)

$$n = \frac{\partial ln\sigma}{\partial ln\varepsilon}, m = \frac{\partial ln\sigma}{\partial ln\varepsilon}, \bar{\gamma} = \frac{dln\acute{\varepsilon}}{dln\varepsilon}, A = \frac{\partial ln\sigma}{\partial (\frac{1}{T})}, \delta = \frac{d\left(\frac{1}{T}\right)}{dln\varepsilon}$$
(8)

材料特性値 n,m,A が正の値をとり、変形中に変化しな いものとすれば、 ϵ_u は加工変数 \bar{p} と δ に依存し、変形速 度の増加及び変形中の低下によってくびれ発生時を遅ら せることが可能となり、成形性の向上となる.

3. 実験

(1) 供試材

供試材には降温プロセスによる効果が報告されている A1-Mg 合金 A6061-0 材を用い,1mm 厚の板材から圧延方向 と引張方向が平行となるよう試験片を切り出した.試験 片表面には,ひずみ測定用の正方格子(各2mm)をスタンプ した.チャック間距離は110mm である.試験条件は,クロ スヘッドスピード(C.H.S.)を5mm/min に設定し,定常試 験と非定常試験の2種類を行った.単軸引張試験より得 られたデータを基に式(6)に対して回帰計算を行うこと で材料定数が算出される.各温度に対する材料定数を Table.1^[11]に示す.また、試験片形状は温度分布の違いに よるチャック部分での破断を防ぐため、Fig.1に示す試験 片形状を採用した

Table 1 Material constants						
Temperature	Κ	n	m	$\bar{\gamma}$	А	
298K	223	0.241	0.0059	0.540		
373K	200	0.190	0.0136	0.798		
473K	148	0.135	0.1074	0.355		
573K	38	0.011	0.1183	0.840		
298K~573K	51	0.499	0.0431	0.329	725	

Fig.1 Geometries of tensile testing specimen

(2)実験方法

試験は定常試験,非定常試験ともに単軸引張試験で行った.定常試験,非定常試験における詳細を以下に示す.

a)定常試験(Isothermal Test)

恒温槽で試験片を温め,目標温度到達後に試験を開始 する.その際,ガラス窓から試験の一部始終を観察す る.

試験温度: 298K, 373K, 423K, 473K, 523K

b)非定常試験(Natural Cooling Test) 恒温槽が目標温度に到達した後,試験開始と同時に恒 温槽のドアを開くことにより,炉内の自然冷却を行い ながら引張試験を行う. 試験温度:523K(初期温度)

4. 公称応カー公称ひずみ線図

定常試験(298K, 373K, 423K, 473K, 523K)と非定常試験 での公称応力-公称ひずみ線図を Fig.2 に示す. 定常試 験においては,成形温度が高温になるにつれ,変形抵抗の 低下,延性によるひずみの増加が確認できる.また,473K 以降の高温試験においては,著しい破断伸びの増加が現 れ始めた.最高荷重点におけるひずみに関しては,大きな 変化はないものの,高温になるにつれて減少していく傾 向を示した.一方,非定常試験では最高荷重点が右に移動 していることが確認できる.破断に至るまでの伸びは,定 常試験のものより小さくなっていることも確認できる.

Fig.2 Nominal stress-nominal strain

5. 破断伸びのゲージ長依存

デジタルビデオカメラで観察した引張試験の試験開始 から破断までを10分割し,各段階におけるひずみ測定用 格子の変化量を画像解析ソフトによって測定することで, 軸方向の軸ひずみειを算出が算出できる.ひずみ分布を Fig.3に示す.ひずみ分布の面積は伸びであり,横軸のゲ ージ長と縦軸の軸ひずみを掛け算した値をとる.よって, 不安定変形している間のひずみ分布が山なりになる場合 は,ひずみの平均値を計算に用いる.だからこそ勾配が急 な破断時のひずみ分布においては,ゲージ長の大小がひ ずみに大いに影響を及ぼすのである. 定常試験だけでな く,非定常試験においてもひずみ分布からゲージ長依存 が適用すると考えられる.

Fig.3 Strain Distribution

6. 一様ひずみの認定

引張試験における一様伸び(εω)は伸びの一形態であ る.最初は単軸応力で一様変形するが、ある時を境に不 安定変形へと移行し拡散くびれを生じる.このくびれの 発現が公称応力・ひずみ線図において公称応力が最大にな る時とほぼ同じ時点に起こることから、くびれ発現の1 つの条件として公称応力が最大に達することが主張され ている.しかし、その定義は曖昧さを含んでいる.

そこで、ひずみ分布を基に各変形段階での軸ひずみの 平均値 ε μ及び標準偏差Sを算出しグラフ化した.ひず み分布の標準偏差は一様変形の逸脱度を表しており、S が大きくなれば変形が局所化したことになる.一様ひず みの認定として、Sをひずみの三次曲線とし、その変曲 点を一様ひずみの終わりと捉える方法を行った.定常試 験(298K, 523K)及び非定常試験(初期温度523K)での試 験を基に算出した値をグラフと共にFig.4~6に示す.

Fig.4 Identification on uniform strain

Fig.5 Identification on uniform strain (523K)

Fig.6 Identification on uniform strain (523K, Natural Cooling)

最大荷重点をU.T.S.とした場合の一様ひずみと比べる と、標準偏差を用いて認定した一様ひずみは298K(定常 試験)及び523K(非定常試験)の試験共に約2倍の値を取っ た.

7. 限界ひずみ

一般的な延性評価基準値は破断伸びである.一方,降 温プロセスは最大荷重点が右に移動することにより,安 定変形領域の増大としているため,最大荷重点に注目し なければならない.そこで,U.T.S.でのひずみを限界ひ ずみとし,非定常試験において以下の方法で計測を行っ た.

Table 2から, U.T.S.でのひずみにおいてもゲージ長 の違いにより, 算出される限界ひずみが異なることが確 認できる.

(1) くびれを挟むゲージ長(G.L.)

破断時のひずみ分布から,軸方向の軸ひずみ*ɛl*は明らか にゲージ長依存が認められる.ゲージ長が小さくなれ ばなるほど*ɛl*は大きくなり,ゲージ長が大きくなればな るほど*ɛl*は小さくなる.本実験では,くびれを含む1格 子,3格子,5格子,7格子にて計測を行った.

(2) くびれの最近接格子(M-K)

くびれが発現し平面ひずみ変形へ移行した箇所の、くびれに最も近い格子を測定する方法を用いた.

(1) くびれを挟むゲージ長依存 (GL)

(2) くびれの最近接格子計測(M-K)Fig.7 Gage length and M-K

Table 2 Limit strain by each method of measurement

温度	測定方法	限界ひずみ
523K (Natural	G. L. 2	0. 296
	G. L. 6	0. 269
	G. L. 10	0. 251
Gooting Test	G. L. 14	0. 247
	M-K	0. 245

構成方程式における ε u と U.T.S. における ε u の比較

材料特性値を構成方程式(5),(7)に適用することで算出さ れる ε_u と,応力-ひずみ線図上の U.T.S.における ε_u を 比較したグラフを Fig.8 に示す.定常試験・非定常試験と もに理論値における ε_u は,U.T.S.における ε_u に比べ 4~5 倍ほどの値を取り、大きく異なった.使用した材料特性値 は Table.1 の通りである.ただし,表外で用いる特性値 は,温度と特性値を内挿し求めた値を使用した.

9.結論

降温プロセスの効果として最大荷重点の移動は確認で きたものの,最大荷重点でのひずみと理論値、標準偏差で 算出した一様ひずみは大きく異なっていた。また、限界ひ ずみも定常試験と同様に計測方法によって変動しており、 最大荷重点を一様ひずみの終焉と認定する場合は曖昧さ が残る.そのため,降温プロセス効果による安定変形領域 の増大を評価するためには,適切な評価基準や定義を設 ける必要があり,材料開発においては特にこれらの取り 扱いに留意する必要があると考えられる.

謝辞

本研究遂行にあたり、様々なご指導ならびに助言を頂 いた法政大学大学院,指導教員である大澤泰明教授に深 く感謝致します.また多くのご指摘とご協力頂いた加工 工学研究室の皆様,機械工学専攻の同期の皆様にも深く 感謝いたします.

参考文献

- 宮武康:ひずみ速度と温度を含む構成方程式中の材料定数の算定,法政大学大学院工学研究科修士論文, 2011
- 2) 茂木寛:金属板材の成形性に及ぼす降温プロセスの 効果,法政大学大学院工学研究科修士論文,2007
- 3) 吉澤宗晴・大澤泰明, 機論, 60-575, A(1994), pp.1597-1603
- 長谷川堅士:単純な応力状態化における金属板材の 延性評価,法政大学理工学部卒業論文,2016
- 5) 坂根昇:金属板材の面内二軸試験における限界ひず みの計測と評価,法政大学大学院工学研究科修士論 文,2017