
Integrating Functional and Security
Requirements Analysis using SOFL for Software
Security Assurance

著者 Busalire Onesmus Emeka
出版者 法政大学大学院情報科学研究科
journal or
publication title

法政大学大学院紀要. 情報科学研究科編

volume 14
page range 1-6
year 2019-03-31
URL http://doi.org/10.15002/00021928

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hosei University Repository

https://core.ac.uk/display/226439985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Integrating Functional and Security Requirements

Analysis using SOFL for Software Security Assurance

Busalire Onesmus Emeka

Graduate School of Computer and Information Sciences

Hosei University

Tokyo, Japan

busalire.onesmus.39@stu.hosei.ac.jp

Abstract— Formal methods have been applied to define

requirements for safety and/or security critical software

systems in some industrial sectors, but the challenge is the

lack of a systematic way to take security issues into

account in specifying the functional behaviors. In this

paper, we propose a formal approach to expressing and

explicitly interweaving security and functional

requirements. With this approach, the functional

behaviors of the system are precisely specified using the

Structured Object Oriented Formal Language (SOFL), the

security rules are systematically explored, and the result is

properly incorporated into the functional specification as

constraints. The resultant specification then defines the

system functionality that implies the conformance to the

security rules. Such a specification can be used as a firm

foundation for implementation and testing of the

implementation. We discuss the principle of interweaving

security rules with functional specifications and present a

case study to demonstrate the feasibility of our approach

Keywords—SOFL, Security Requirements Engineering,

Formal methods, Secure by design, Attack Tree Analysis

I. INTRODUCTION

Software systems are becoming ubiquitous with software
applications being used in the fields of finance, education, and
transport and logistics e.t.c. With this widespread use of
software applications, the security of the data handled and
stored by these applications has become more and more
important. This has made software security to be one of the
most crucial and necessary features of high integrity software
systems. However, most software engineering methodologies
have a bias of taking the standard approach of analysis, design
and implementation of software system without considering
security, and then add security as an afterthought [1].A review
of recent research in software security reveal that such
approach may lead to a number of security vulnerabilities that
are usually identified after system implementation. Fixing such
vulnerabilities calls for a “patching” approach since the cost
associated with redevelopment of the system at such a point

may be too high. However, the “patching” approach is an anti-
pattern in the development of high risk software systems. To
solve the challenge of integrating security attributes into
software system requirements, we have developed a
requirement engineering methodology that promotes a
systematic integration of security requirements into the
software design process. Our approach pushes for: 1.) Availing
to the developer a variety of security methods and their
tradeoffs. 2.) Providing a systemic methodology for integrating
security requirements into the software design process. This
methodology advocates for a security aware software
development process that combines a selected standard
software development methodology, formal methods
techniques, and standard security functions[2].

Our proposed methodology works by adopting the secure
by design[3] software development approach through provision
of a formal model for interweaving security and functional
requirements. We achieve this by integrating process trees and
attack trees[4] security analysis methodologies with a formal
design process of functional requirement analysis and
specification using Structured Object Oriented Formal
Language (SOFL)[5] [6]. The process tree offers the benefit of
a bounded scope, enabling the traversal of all the application`s
processes from the root node to the forked child processes at
the sub-nodes and end-nodes. While traversing through the
nodes of the process tree, we conduct an attack tree analysis at
each process node to identify potential vulnerabilities and
define their mitigation strategies as additional security
requirements.

The main contributions of this paper are:

 Provide a formal verifiable model for integrating
security and functional software requirements.

 Mitigate security threats [7] with proper security
mechanisms by formally identifying, defining and
expressing potential software vulnerabilities and
their related countermeasure strategies.

 The rest of the paper has the following organization.
Section II focuses on related existing research on secure by
design security requirement engineering approaches. Section III

mailto:busalire.onesmus.39@stu.hosei.ac.jp

provides the basic concepts of our proposed methodology for
interweaving functional and security requirements. To
demonstrate the feasibility of our proposed approach, we
present in section IV a case study through which we used the
framework to generate, analyze and integrate security and
functional requirements of an online banking application.
Finally, section V concludes the paper by sharing our
experience of the case study, lessons learnt and the future
direction of our research.

II. RELATED WORKS

A number of researchers have worked on models targeting
the integration of software security attributes at the
requirements levels. Epstein et.al [8], proposed a framework for
network enterprise utilizing UML notations [9] to describe
Role Based Access Control model (RBAC). Shin et.al [10]
offered a similar proposal focusing on the representation of
access control such as MAC and RBAC using UML. Jurjens
[11] proposed an extension of UML, called UMLsec which
focusses more on multi-level security of messages in UML
sequence and state interaction diagrams. Similarly, Lodderstedt
et.al [12] introduce a new meta-model components and
authorization constraints expressed for Role Based Access
Control. These attempts leveraged on extending UML to
incorporate security concerns into the functionalities provided
by the software system.

Logic based approaches[14] have also been proposed for
security aware requirement engineering techniques. They offer
an expressive methodology for the specifications of security
properties and security functions.

 Mouratidis et.al [15] proposed the Secure Tropos
methodology, which is based on the principle that security
should be given focus from the early stages of software
development process, and not retrofitted late in the design
process or pursued in parallel but separately from functional
requirements. However, to the best of our knowledge, the
existing security requirement engineering approaches address
different security concepts and take different viewpoints on
matters security. Each modeling approach can express certain
aspects but may lack conceptual modeling constructs to
interweave security requirements with their associated
functional requirements from the early stages of requirements
engineering.

 This paper seeks to contribute to this gap by presenting and
discussing the application of a software engineering
methodology, which supports the idea of secure by design
approach by analyzing software vulnerabilities and
incorporating recommended security considerations at the
requirements engineering phase.

III. OUR PROPOSED METHODOLOGY

Our methodology for interweaving security requirements
with functional requirements works by integrating functional
requirements written in SOFL [6] and standard security
requirements drawn from the Common Criteria for Information
Technology Security Evaluation [16], the AICPA’s generally
accepted privacy principles and the BITS Master Security

Criteria [16]. We elicit these standard security requirements
using SQUARE [17] methodology. SQUARE encompasses
nine steps, which generate a final deliverable of categorized
and prioritized security requirements. The outcome of the
SQUARE methodology is a set of standard security
requirements, broadly be classified into: Identification
requirements, Authentication requirements, Authorization
requirements, Security auditing requirements, Confidentiality
requirements, Integrity requirements, Availability
requirements, Non-repudiation requirements, Immunity
requirements, Survivability requirements, System maintenance
security requirements and Privacy requirements. Table I below
showcases a sample identification requirement for preventing
backdoors in authentication systems, elicited using SQUARE
methodology.

TABLE I. SAMPLE STANDARD SECURITY REQUIREMENT

Req ID: SR-IDEN-010 Category: Security

Subcategory(ies)/Tags Identification, User ID, Login,

Backdoor

Name Backdoor Prevention

Requirement All interfaces of software that are

accessed for performing any action shall

have the capacity to recognize the user

ID

Use Case(s) Initial login to the system, batch jobs,

API calls, network interface

Rationale Identification must be applied across all
system interfaces. In the event that a

“backdoor” exists through which access

is granted with no identification, the
security of the system would be

compromised.

Priority Critical/High/Medium/Low

Constraints N/A

Comments The term “interface” refers to the point
of entry into a system. It can be a

network interface, user interface, or

other system interface, as appropriate

Test Case Ref # STC-IDEN-010-1

 Our key focus is to provide a framework that can
holistically integrate functional and security requirements of a
system software, and eventually yield software requirements
that satisfy the required security requirements. The principle of
integration is a basic conjunction between a functional
requirement and its associated security requirement, expressed
as follows.

S’ = F ˄ S (1)

Where S’ is the defined software requirement, F the functional
requirement and S the standard security requirement related to
the functional requirement. Fig 1 below highlights a conceptual
schema of our proposed framework.

Fig. 1. Proposed framework conceptual schema

A. The Proposed Framework in Details

 Fig 2 below shows a conceptual meta-model of our
proposed framework. It illustrates the process through
which we intertwine standard security requirements with
functional requirements specification written in SOFL
formal language given by the following steps:

Fig. 2. A meta-model framework for interweaving security and functional

requirements specifications

First, we generate the software’s functional requirement
specification by expressing the requirements as a SOFL module
alongside its associated Conditional Dataflow Diagram. Our
key goal here is to define and formerly express all the
functional behaviors as a complete set of functional
requirements. After defining the functional requirements, we
generate relevant standard security requirements based on
client specifications and application`s operating environment.
We achieve this by applying the SQUARE methodology. We
then express the general standard security requirements as
SOFL module invariants thereby achieving the first integration
of security and functional requirements.

The next step focusses on generating the application`s
process tree. A process tree provides a hierarchical organization
of parent processes and child processes spawned from the
parent process. The generation of the process tree is achieved
by converting the top level CDFD process of our SOFL module

into a root process and the decomposed CDFD`s processes into
child processes.

Fig. 3. An Example of a parent and child process tree

Next, we convert the parent and child processes into one or
more System Functional Scenario forms. A System Functional
Scenario form is a sequence of operations given by:

di[OP1,OP2,…OPn]do (2)

Where di is a set of input variables of the system behavior, do

is the set of output variables and each OPi(i ∈{1,2,3,…n})
defines an operation. This System Functional Scenario defines

a behavior that transforms the input data item di into the output

data item do through a sequence of operations OP1,OP2,…OPn.

contained in a parent process or a child process at any given
node of the process tree.

We then derive Operation Scenarios for the generated System
Scenarios. We achieve this by transforming the pre- and
postcondition of an operation into Operational Functional
Scenario form consisting of operations such as

(OPpre∧ C1∧ D1) ∨ (OPpre ∧ C2 ∧ D2) ∨… (OPpre∧ Cn ∧ Dn)

Where Ci (i=1, … n) is called a guard condition containing
only input variables and Di (i=1, … n) is known as defining
condition containing at least one output variable.

 Based on the derived Operational Functional Scenario, the
final step focusses on eliciting potential vulnerabilities for each
of the derived Operational Functional Scenario. We employ
attack tree analysis [17] as a technique for identifying the
potential vulnerabilities exhibited by each Operational
Functional Scenario and further define a mitigation strategy for
each of the identified potential vulnerabilities as part of the
Operation Function Scenario guard condition Cn or as an

invariant of the SOFL module.

 These mitigation strategies qualify as additional security
requirements that are intertwined with their related functional
requirements.

B. Attack Tree Analysis

We conduct attack tree analysis through a goal oriented
approach where we first identify a primary goal X
representing a set of system assets or resources that may be
targeted by an attacker i.e X = {X1, X2, …, Xn }. Our

Parent process

A

B

D E

C

F

Root process

Child process

interest here is to have an attacker`s mindset by considering
what can make a functional requirement of an application
fail when attacked. We then divide the primary goal into
sub-goals noting that either all or some of them are required
to materialize the primary goal i.e S ⊆ X. We further select
a permutation 𝜶 of S, and based on the sub tree and
permutation 𝜶, we compute the expected outcome

Fig. 4. Attack tree analysis algorithm

IV. CASE STUDY

In this section, we demonstrate a case study from which we
display a practical scenario of how our methodology achieves
the interweaving functional and security requirements.

We consider a typical online banking web application
where a customer can perform several financial transactions.
Figures 5 showcases a decomposed CDFD of the online
banking application.

Fig. 5. Decomposed CDFD of the online banking application

From the decomposed CDFD we can generate a process
tree like the one displayed below.

Fig. 6. Online banking Application Process Tree generated from decomposed

CDFD

For the sake of brevity and clarity, we shall only highlight
how we interweaved a standard authentication requirement for
the SignUp processes whose SOFL formal specifications can be
expressed as shown below.

RecordTransfers

FundsTransfer
BillPayment CheckBalance

Bal_sel

SignUp

Select_transaction

Funds_trans_sel

Output message

Bill_sel

Output message

Output message

Output message

/* Online banking Formal Abstract Design Specifications */

module SYSTEM_ONLINEBANKING;

/* const, var and type declarations omitted for the sake of brevity */

inv

forall[x: CurrentAccount] | not exists [y: CurrentAccount] |
x.account_number = y.account_number;

/* Each customer account is unique */

forall[x: CustomerProfile] | not exists [y: CustomerProfile] |
 x.email_address = y.email_address => x.national_id_num < >

y.national_id_num
/* Each customer has a unique email address and national ID number

and each customer profile is unique */

process SignUp(customer_info: CustomerProfile)

signup_complete:string

 | error_message: string

ext wr customer_details

pre customer_info notin customer_details and not
exists[x:CustomerProfile] | x.email_address =

get(customer_details).email_address and x.national_id_num =

get(customer_details).national_id_num

Comment

 Each customer profile is unique and each customer profile has a unique
email address and national identification number

post if bound(signup_complete)
 then customer_details = union(~customer_details, {customer_info})

 and signup_complete = “Signup Successful”

 else error_message = "Either the provided email or National ID
number already exists in customer records"

end_process;

Fig. 7. SOFL Formal Abstract Specification for the SignUp process of the

online banking application

The above SOFL specifications represent the functional
behavior exhibited by our online banking application during a
user sign up process. The process takes an object of customer
profile information {full_name, username, password,
national_id_num, email_address} and creates a new record of
the customer if and only if the supplied customer information
does not already exist in the external #customer_details
database file where all the records of customer’s profile are
stored. Otherwise, it returns an error message indicating an
existence of a similar record. For the login process, a user
supplies a set of username and password, which are matched
with those stored in the system’s database.

A. Converting the SignUp into its equivalent System

Functional Scenario Form

Given a set of customer information {full_name, username,
password, national_id_num, email_address} as inputs, a
SignUp process and an error_message as output we can
generate a System Functional Scenario Form;

{full_name,username,password,national_id_num,email_addres
s} [SignUp, …]{error_message}

 The next step involves deriving Operation Scenarios from
our generated System Functional Scenario(s).

B. Deriving Operational Scenarios

To derive Operation Scenario(s), we take a Functional

Scenario Process i.e SignUp and express it in the form of a

chain of logical disjunction of a set of its individual

conjunctive elements made up of a precondition, a guard

condition containing only the input variables, and a defining

condition containing at least one output variable i.e

(∃x ∈ current_accounts | x not inset current_accounts ∧

(dom(x).full_name = full_name ∧ dom(x).username =

username ∧ dom(x).password = password ∧

dom(x).national_id_num = national_id_num ∧
dom(x).email_address = email_address) ∧ signup_complete

= "Signup Successful")

 OR

(∃x ∈ current_accounts | x inset current_accounts ∧ (dom(

x).full_name = full_name ∧ dom(x).username = username ∧

dom(x).password = password ∧ dom(x).national_id_num =

national_id_num ∧ dom(x).email_address = email_address)

∧ error_message = "Similar Records exist in the database

already")

 This formalized SignUp expression checks for the existence

of similar user records before signing up a new user with the

same set of record inputs. Otherwise, it returns an error

message depicting the existence of a similar record with the

provided set of inputs.

C. Eliciting potential vulnerabilities for each of the derived

Operational Scenarios

Eliciting potential vulnerabilities that may be associated

with our derived Operational Scenarios, involves conducting

an attack tree analysis on a behavior depicted by the SignUp

process node in our process tree. To figure this out, we

identify a goal or resource that is part of our derived

Operational Scenario and may be a subject of an attack as well

as consider a standard security requirement for the same.

 A typical attack tree analysis on the SignUP process aimed at

obtaining the stored username and password or identities of

their equivalent yields 4 different paths i.e direct access to the

database, brute force login, threatening the user or shoulder

surfing. Whereas paths such as threatening the user or

shoulder surfing can be mitigated through management

controls, gaining direct access to database and brute force

login may not be effectively mitigated through management

controls.

Fig. 8. Attack tree analysis showcasing paths that can be manipulated to

obtain customer’s personal information

To eliminate brute force login attack path, we need to

interweave an authentication requirements with the functional

requirements responsible for user credentials creation and

storage.

Table 1 below describes a standard authentication requirement

for credentials security [18]

TABLE II. CREDENTIAL SECURITY

Req. ID: SR-OBA-001 Category: Security

Subcategory(ies)/Tags
Authentication, Credentials, Password,
Hashing

Name Credential Security

Requirement

The system shall store the information
used for authentication in a secure manner,

using public and widely accepted crypto

algorithms

Use Cases Password Storage

Rationale

Authenticating information must be stored
in such a way so that a third party without

authorization to do so cannot easily obtain

it. For example, static passwords should

Get user personal

information

Log in as target

user

Steal User

Credentials

Shoulder

Surf

Obtain

User name
Obtain User

password

Threaten

User

Obtain User

password

Obtain

User name

Brute

force

Login

Gain direct access

to database

Exploit a “hole”

in the application

Obtain User

password

Obtain

User name

Req. ID: SR-OBA-001 Category: Security

be passed through a one-hash function and

only the hash should be stored.

Priority Critical/High/Medium/Low

Constraints N/A

Comments

Per-user salting is recommended for

storing password hashing to provide
additional level of security.

Test Case Ref Number TC-OBA-001

We achieve this by formally defining a secure way of
storing the user password such as a one way hashing function

given by f(r, h(P`)) which we express as part of the SignUP

Operarion Scenario where, r = random number, h(P`) =
Password hashing function, P` = Stored User Password

Our strengthened Operation Scenario post-condition bearing
functional and security requirements can therefore can be re-
written as follows:

(∃x ∈ current_accounts | x not inset current_accounts ∧

(dom(x).full_name = full_name ∧ dom(x).username =

username ∧ dom(x).password = password ∧

dom(x).national_id_num = national_id_num ∧
dom(x).email_address = email_address) ∧ signup_complete

= "Signup Successful") ∧ dom(x).password = f(r,

h(~dom(x).password))))
 OR

(∃x ∈ current_accounts | x inset current_accounts ∧ (dom(

x).full_name = full_name ∧ dom(x).username = username ∧

dom(x).password = password ∧ dom(x).national_id_num =

national_id_num ∧ dom(x).email_address = email_address)

∧ error_message = "Similar Records exist in the database

already")

V. DISCUSSIONS AND CONCLUSIONS

Our experience with the proposed framework can be
summarized as follows: The methodology require some
software security expertise in addition to requirement
engineering skills since it focusses towards achieving the
integration the integration of security analysis into the software
requirement engineering process. Moreover, knowledge and
skills of applying SOFL specification language in writing
software requirements is a prerequisite. Even though our
proposed methodology cannot guarantee the development of a
completely secure system, we are confident that the application
of our methodology can assist in the development of a system
that is more secure compared to a system whose SRE process
were done in an ad hoc manner.

This paper presents our experiences from the application of

a methodology that interweaves functional and security

requirements. We document our experience by applying the

methodology in the development of an online banking

application. Our findings indicate that the use of our approach

supported the development of a software system that meets its

security requirements and offers an early focus on security.

Our experience on the other hand also indicated some issues

for consideration, such as potential complexity of using formal

notations in generating readable security requirements as well

development of a supporting tool for the methodology.

Resolving these issues is our main concern for future works.

REFERENCES

[1] Mouratidis, H., & Giorgini, P. (Eds.). (2006). Integrating security

and software engineering: Advances and future visions. Hershey, PA:

Idea Group. doi:10.4018/978-1-59904-147-6

[2] Khaled M Khan. Developing and Evaluating Security-Aware Systems,

ISBN 978-1-4666-2483-2.

[3] Haralambos Mouratidis, Integrating Security and Software Engineering:
Advances and Future Visions, ISBN 1-59904-149-9 pg 14-24.

[4] V. Nagaraju, L. Fiondella, and T. Wandji, “A survey of fault and attack

tree modeling and analysis for cyber risk management,” in 2017 IEEE
International Symposium on Technologies for Homeland Security

(HST), 2017, pp. 1–6.

[5] F. Nagoya, S. Liu, and K. Hamada, “Developing a Web Dictionary
System Using the SOFL Three-Step Specification Approach,” in 2015

5th International Conference on IT Convergence and Security (ICITCS),

2015, pp. 1–5.
[6] Shaoying Liu, Formal Engineering for Industrial Software Development

using SOFL method, ISBN 3-540-20602-7 Springer-Verlag Berlin
Heidelberg New York.

[7] H. C. Huang, Z. K. Zhang, H. W. Cheng, and S. W. Shieh, “Web

Application Security: Threats, Countermeasures, and Pitfalls,”
Computer, vol. 50, no. 6, pp. 81–85, 2017.

[8] Epstein, P., & Sandhu, R. (1999). Towards a UML based approach to

role engineering. Proceedings of the 4th ACM Workshop on Role-based
Access Control, (pp. 75-85). ACM Press.

[9] M. P. Huget, “Agent UML notation for multiagent system design,”

IEEE Internet Comput., vol. 8, no. 4, pp. 63–71, Jul. 2004.

[10] Shin, M., & Ahn, G. (2000). UML-based representation of role-based

access control.Proceedings of the 9th International Workshop on

Enabling Technologies: Infrastructure for Collaborative
Enterprises,(pp. 195-200). IEEE Computer Society.

[11] F. Kammüller, J. C. Augusto, and S. Jones, “Security and privacy

requirements engineering for human centric IoT systems using
eFRIEND and Isabelle,” in 2017 IEEE 15th International Conference on

Software Engineering Research, Management and Applications (SERA),

2017, pp. 401–406.
[12] Lodderstedt, T., et al. (2002). SecureUML: A UML-based modeling

language for model-driven security. In Proceedings of UML, LNCS, Vol.

2460, (pp. 426-441). Springer.
[13] Swamy, N., Corcoran, B., & Hicks, M. (2008). FABLE: A language for

enforcing user-defined security policies. In Proceedings of the IEEE

Symposium on Security and Privacy, Oakland.1.
[14] M. Amini and R. Jalili, “Multi-level authorisation model and framework

for distributed semantic-aware environments,” IET Inf. Secur., vol. 4,

no. 4, pp. 301–321, Dec. 2010.
[15] M. Ouedraogo, H. Mouratidis, D. Khadraoui, and E. Dubois, “An

Agent-Based System to Support Assurance of Security Requirements,”

in 2010 Fourth International Conference on Secure Software
Integration and Reliability Improvement, 2010, pp. 78–87.

[16] “Common Criteria Part 2: Security Functional Requirements,” The

Common Criteria Portal, accessed March 20, 2018,

https://www.commoncriteriaportal.org/cc/; “Security Criteria,”

BITS/Financial Services Roundtable, accessed March 22, 2018,
http://www.bitsinfo.org/security-criteria/

[17] R. Kumar and M. Stoelinga, “Quantitative Security and Safety Analysis

with Attack-Fault Trees,” in 2017 IEEE 18th International Symposium
on High Assurance Systems Engineering (HASE), 2017, pp. 25–32.

[18] Mark S. Merkow and Lakshmikanth Raghavan, Secure and Resilient
Software, Requirements, Test cases and Testing Methods, pg 71.

