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Abstract—In the field of the noise suppression, method 

combining hardware devices with DSP chips is widely used to 

suppress noise and can achieve excellent performance when the 

cost of devices is not limited and the recording site could be 

contacted. Besides, deep learning is applied to process audio and 

image gradually with the rapid development of deep learning and 

many algorithms for noise suppression using deep learning arisen. 

These algorithms are not relied on hardware devices any more but 

they need lots of training data which is crucial for the performance. 

Therefore, a noise suppression method is proposed with good 

generalization. Firstly, a classifier based DBSCAN is implemented 

and identify the proportion of various noise according to the 

MFCC characteristic. Then for each noise, a 5-layer RNN is used 

to estimate gain. Finally, applying gain and the proportional which 

is obtained by the classifier to the corresponding frequency bands 

in order to eliminate noise. 

Keywords— noise suppression, multi-noise, deep learning, 

DBSCAN 

I. INTRODUCTION  

In recent years, the speech signal processing is widely used 
in the field of human-computer interaction such as 
communication, intelligent terminal, robot assistant and so on. 
And the noise suppression is an important and popular research 
direction of the speech signal processing. Although the noise 
could be avoided by providing a quite recording environment, 
the noise is inevitable in most cases. Sometimes the noise is a 
part of data, but it is a kind of interference at other times. For 
example, it is necessary to suppress the noise in sites for 
collecting and monitoring sounds such as classrooms and 
interview locations. 

Traditional methods for noise suppression are mature, and 
they are mainly divided into two categories. The first is when 
the noise spectrum cannot be obtained, using the strong and 
weak relationship between speech and noise, attenuating signals 
of low decibels and amplifying signals of high decibels, but it is 
only suitable for cases where the distance between the sound 
source and devices for recording is close, or when the Signal-
noise Ratio(SNR) is low the sound will be suppressed together. 
The second needs at least two audio equipment (microphones), 
and one is close to the speaker used to record sounds clearly 
while the another one is closer to the noise source for recording 
the noise. It can achieve the noise suppression according to using 
the signal of the human sound subtracting the signal of the noise 
with some certain rules and it is not limited by SNR and can 

obtain good performance. However, this way needs high 
requirements such as the matching degree should within the 

range of ±0.5dB for hardware devices which are costly and 

inflexible. 

If the spectrum can be obtained, Mapping from noisy signals 
to no-noise signals is good method [1, 2]. With the development 
of deep learning recently, it shows superior performance in high 
dimension data such as picture and audio processing with its 
good self-organization and self-adaptability. Automatic speech 
recognition (ASR) as an important direction of deep learning 
applications, many methods for the noise suppression that serve 
ASR are emerging [3, 4, 5, 6]. However, most methods based on 
deep learning require a large amount of computing resources and 
training data while computing resources limit the efficiency of 
the algorithm in small devices such as the hearing aid, and the 
amount of training data limits the effectiveness of the algorithm 
directly. In order to eliminate above limitations, I propose a 
model for the noise suppression aiming at the environment with 
various noise. Firstly, a classifier is designed based on DBSCAN 
to extract acoustic features of the noise, refine the class of the 
noise on the basis of these features and extend classes for 
training data. Then a gain estimation which is constructed by a 
5-layer RNN network is used to reduce and suppress the signal 
in the frequency domain for each noise of each class. 

II. RELATED WORK 

A. MFCC 

 MFCC [7] (Mel-scale Frequency Cepstral Coefficients) is a 
widely used speech feature model in speech processing tasks. 
The Mel scale describes the nonlinear characteristics of the 
human ear frequency, and its relationship with Hertz can be 
approximated by the following expression: 

                         𝑀𝑒𝑙(𝑓) = 2595𝑙𝑜𝑔10 (1 +
𝑓

700
)                (1) 

Where, f is hertz and Mel is mel. As Fig 1. shows.  

 The Mel spectrum is obtained by passing the spectrum 
through a set of triangular overlapping  filters that are evenly 
distributed on the Mel Scale. After taking the logarithm on the 
Mel spectrum, a Discrete Cosine Transform (DCT) is performed 
to obtain the MFCC. The MFCC contains the physical signal 
information of a frame of audio. Performing this process on each 
frame to get their MFCC which can be regarded as the feature 
vector of the frame. 
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Fig. 1. Mel Scale. 

B. DBSCAN 

The density-based clustering algorithm is widely used in 
data mining technology. DBSCAN [8] (Density-Based Spatial 
Clustering of Applications with Noise) is one of the 
representative ones. As shown in Fig. 2, the algorithm will 
divide the locations where the data density is high enough into 
the same cluster, and it can discover any shape of cluster base 
on  a noisy database. 

 

Fig. 2. An example of DBSCAN irregular clusters. 

DBSCAN gives Eps-neighborhood 𝑁𝐸𝑝𝑠(p)  which is 

defined by: 

               𝑁𝐸𝑝𝑠(p) = { 𝑞 ∈ 𝐷 | 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠 }                (2) 

Where, Eps is density distance. According to Eps-neighborhood, 
As shown in Fig. 3 (a), there are three types of point in dataset 
𝐷: Core Point (CP), Border Point (BP) and Outlier Point (OP). 
Their definition is as follows: 

             𝐶𝑃(𝑞) = {𝑞 ∈ 𝐷||𝑁𝐸𝑝𝑠(𝑞)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠}                (3) 

        𝐵𝑃(𝑝) = {𝑝 ∈ 𝑁𝐸𝑝𝑠(𝑞)||𝑁𝐸𝑝𝑠(𝑞)| < 𝑀𝑖𝑛𝑃𝑡𝑠}          (4) 

          𝑂𝑃(𝑜) = { 𝑜 ∈ 𝐷 | 𝑜 ∉ 𝐶𝑃(𝑞), 𝑜 ∉ 𝐵𝑃(𝑝)}               (5) 

   

(a)                                                (b) 

Fig. 3. (a) An example of core point - q, border point - p and outlier point - o.                    

(b) Clustering process. 

As shown in Fig. 3 (b), starting from a core point, there is a 
chain consisting of the core points with the distance between 

each other less than Eps and the border points within all points 
𝑁𝐸𝑝𝑠(p) on the chain form a cluster, and all the points in the 

same cluster are density-connected. Based on this feature, unlike 
traditional clustering methods such as K-means, DBSCAN does 
not need to specify the number of clusters in advance, and the 
number of clusters is also uncertain. 

C. RNNoise 

For audio data, using neural network to estimate speech 
waveform on frequency dimension directly needs great power 
of compute resource [3]. RNNoise is a hybrid DSP/deep 
learning approach to real-time full-band speech enhancement [9]. 
It consists of a traditional pitch filter and a four hidden layers 
deep neural network. This approach has an acceptable 
complexity. So it can run on a machine which do not have 
powerful hardware. 

Fig. 4 gives traditional noise suppression structure, a noise 
spectral estimator is driven by a Voice Activity Detector (VAD) 
algorithm. Once voice activity detector gives a signal that the 
current frame is a noisy frame. The noise spectral estimator will 
work and estimate the noise’s frequency spectral. Then a simple 
subtract algorithm will try to remove the noise spectral from 
speech spectral. 

  

Fig. 4. High-level structure of traditional noise suppression algorithms. 

RNNoise uses a three-layer recurrent neural networks 
instead of the three parts of the traditional framework. The input 
of the network is the frequency spectrum features of each frame, 
and the output is the frequency bands gain. The gain is defined 
as follows: 

                                    𝑔𝑎𝑖𝑛 = √
𝐸𝑠(𝑏)

𝐸𝑥(𝑏)
                                 (6) 

Where, 𝐸𝑠(𝑏) and 𝐸𝑥(𝑏) are the ground truth speech’s energy 
and the noisy speech’s energy o frequency band 𝑏. 

                                    𝐸𝑠
′ = 𝑔𝑎𝑖𝑛′𝐸𝑥                                 (7) 

 𝑔𝑎𝑖𝑛′  is an estimate of the gain obtained by the RNN. 
Multiply it by the frequency spectral energy 𝐸𝑥  of speech 
containing noise. The resulting 𝐸𝑠

′  is the frequency spectral 
energy of the expected clean speech. 



In this way, by applying a gain in the range [0, 1] to different 
parts of the audio frequency spectrum, the noise suppression 
process is completed. 

III. THE PROPOSED AMBIENT SOUNDS REDUCTION SYSTEM 

To analysis the audio, converting the audio from the time 
domain to the frequency domain is very necessary. First, the 
samples of signal in time domain is divided to frames. Then 
using Fast Fourier Transform (FFT) algorithm on samples of 
signal during the period of a frame. The Fast Fourier Transform 
algorithm requires the input signal to be smooth and contains 
multiple oscillation periods. Assuming in the duration of a 
morpheme which is about 50~200ms long, samples of signal are 
stable. And a vibration cycle lasts about 5~10ms. So 30ms is 
chosen as the frame length. In order to facilitate the effect of FFT, 
a Hamming window is added to each frame on time domain, so 
that signal on both sides of frame will gradually to 0. the 
definition of Hamming window [10] is as follows: 

                        w(𝑛) = 0.4 (1 − cos (
2𝜋𝑛

𝑁−1
))                             (8) 

Since Hamming windowing weakens the part of signal near 
the sides of a frame, 50% frameshift (15ms) is added to each 
frame. Finally, the frame length is 60ms.  For each frame, after 
doing Fast Fourier Transform, the signal in time domain 
transform to frequency domain. The main processing of the 
method is based on frequency spectrum of 60ms frame. 

As shown in Fig 5, first step is judging the noise category. 
Based on the frequency spectrum of each frame, the MFCC 
feature is extracted as the input of the classifier, and output is 
probability of belonging to noise categories: 

                             𝑃𝑛𝑜𝑖𝑠𝑒 = (𝑝1, 𝑝2 … 𝑝𝑛)                             (9) 

Where, n  is the categories number. 𝑝𝑛  is probability of 
belonging to nth category, and ∑ 𝑝𝑛𝑛 = 1. 

 Then is the gain estimation module which consists of n gain 
estimating RNN. Each of RNN estimators deals with a kind of 
noise. The input is based on the BFCC features extracted by 
Bark Scale from frequency spectrum. And the output is a n*24 
matrix: 

                       𝑔𝑎𝑖𝑛𝑖 = (𝑔𝑖
1, 𝑔𝑖

2, 𝑔𝑖
3, … , 𝑔𝑖

24)                          (10) 

                                    𝐺 = [

𝑔𝑎𝑖𝑛1

𝑔𝑎𝑖𝑛2

⋮
𝑔𝑎𝑖𝑛𝑛

]                                  (11) 

Where, n is the number of categories. 𝑔𝑎𝑖𝑛𝑖  is 24-dimensional 
gain vector of corresponding noise category according to 24 
Bark Scale intervals. 𝐺′ is multiplication result of formula (9) 
and (11): 

                                        𝐺′ = 𝑃𝐺𝑇                                    (12) 

 𝐺′  is same with 𝑔𝑎𝑖𝑛𝑖 , it’s a 24-dimensional vector. 
Interpolate the 𝐺′  to corresponding Bark Scale interval of the 
complete frequency domain and multiply with the frequency 
spectrum of the input signal to obtain the frequency spectrum 
after denoising. Then convert the signal into the time domain by 
Inverse Fast Fourier Transform(IFFT) and add them frame by 
frame to get the denoised output waveform. 

 

Fig. 5. Overview of ambient sounds reduction system. 

IV. DBSCAN BASED NOISE CLASSIFIER 

The effect of training separate estimators for each type of 
noise is better, compared to training the same estimator for all 
noise data. In other words, the classification of noise more 
refined, the noise estimator will more representative, the effect 
of noise reduction is better to the relative noise type [11]. There 
are some method for Ambient sound classification [12,13]. 
There are three types of noise data: white noise, car noise, and 
café noise. Three estimators are trained for these three categories. 
When inputting test data, as long as it is determined that the 
noise category included in the input signal belongs to what kind 
of noise, The denoising result will be better by assigning the 
input to the corresponding noise category gain estimator. 

Fig. 6 shows 300 sample points of noise. The purple points 

are café noise, the green points are car noise, and the yellow 

point are white noise. Each sample point is represented by its 

corresponding 13-dimensional MFCC feature value. The PCA 

method is used to reducing the 13-dimensional MFCC feature 

vector to 2 dimension and then plot the following scatterplot: 

 

Fig. 6. Three hundred samples correctly classified. 



As mentioned before, there are "white, car, café" three types 
of "noise" data. The denoising effect of using three "white, car, 
café" as the categories is better than using one "noise" as the 
category. The "white, car, café" is classification based on human 
understanding, it’s more detailed than "noise". Based on this, I 
propose a more detailed classification method based on the 
DBSCAN clustering classification of signal acoustic feature. 

As described in section 2, MFCC describes the acoustic 
feature of the physics signal. Discarding the “white, car, cafe” 
classification label which is based on human cognition, mix all 
noise data together, and then re-cluster them according to their 
acoustic feature. The clustering method is DBSCAN. DBSCAN 
can divide points close to each other which means that the 
acoustic feature of them are similar into one cluster. Unlike 
traditional clustering methods such as K-means, DBSCAN does 
not need to specify the number of clusters which consistent with 
our request. It’s no use to specify the number of classifications. 
One gain estimator is assigned to the part of the data which in a 
similar acoustic signatures area have sufficient density and 
number of sample points.  

Fig. 7 shows the clustering result of 300 sample points in Fig. 
6 using DBSCAN with clustering conditions as 𝐸𝑝𝑠 = 10 and 
𝑀𝑖𝑛𝑃𝑡𝑠 = 8. Fig. 7 (a) is clustering result bases on the complete 
13-dimensional MFCC, it can be seen that the classification 
result is not good. Because the human speech are mostly 
concentrated in the low frequency band, and the noise 
interference is mostly reflected in the high frequency band. In 
the MFCC feature vector, the more backward the feature is, the 
higher the frequency it represents. After taking the last 6 
dimension MFCC features for clustering, the noise can be 
distinguished very well. As shown in Fig. 7 (b), the noise is 
reclassified into 4 categories by DBSCAN clustering. 

    
(a)                                                       (b) 

Fig. 7. DBSCAN classification of three hundred samples. 

Further, the noise data is divided into four categories based 
on acoustic feature. Comparing Fig. 7 (b) with Fig. 6, the 
classification based on human cognition and the classification 
based on acoustic features are somewhat similar, which shows 
that human cognition is to some extent accord with acoustic 
features. Compared with the previous “white, car, café” human 
cognition based categories, the classification based on acoustic 
features is more generalized. The entire classification process is 
shown in Fig. 8. 

After classifying the noise, the effect of noise reduction is 
more pronounced for each type of noise. In most cases, the audio 
data contains more than one type of noise, but mixed by multiple 
noises. In order to apply the gain corresponding to each type of 
noise to the input signal, all the gains from different gain 
estimator are combined into one group. Therefore, proportion of 

each type of noise is necessary and then use this ratio to match 
the gain calculated by each gain estimator. 

  

Fig. 8. Overview of noise classifier 

This ratio is calculated by a 3-layer neural network. The 
input is also the MFCC feature. The output is a 4-dimensional 
classification vector, ie formula (9). Then calculate the final 
result 𝐺′ by the formula (12): 

                           𝐺′ = (𝑔1
′ , 𝑔2

′ , 𝑔3
′ , … , 𝑔24

′ )                              (13) 

In the actual data, the audio signal contains not only noise 
but also human speech, so when training the classification neural 
network, a category as clean speech data which does not contain 
noise is added to the four categories of noise just mentioned. 
Therefore, in the noise classification stage, there are five 
categories as shown in Fig. 9, and the final output is the formula 
(9) with n=5. 

 

(a)                      (b)                          (c)                              (d) 

Fig. 9. Different categories of noise data.  

V. RNN BASED GAIN ESTIMATION MODULE 

The principle of using gain to eliminate noise is to adjust the 
Signal-noise Ratio (SNR) of each frequency band, the frequency 
band in which the noise is located is appropriately reduced and 
maintain the frequency band without noise as it is. The content 
of this step is completed by a neural network. 

The gain can scale the signal. The gain curve 𝐺(𝑥)  is 
corresponded to the frequency spectrum of each frame (𝐺(𝑥) >
0). The closer the gain is to zero, the stronger the suppression 
effect of the signal at the current frequency position is. Zero 
value means complete suppression, and a value exceeding 1 will 
have amplifying effect on the signal at the current frequency 



position. A value of 1 means keep the original signal as it is. The 
gain range is limited in [0,1]. The effect of suppressing noise can 
be achieved by giving a small gain to the position of the noise, 
and giving a large gain to the position of the human speech. 

If directly estimating all the gains for the full frequency 
spectrum, there will be too many hidden layer units in the neural 
network and the operation speed will be slow. The Bark Scale 
[14] is used to reduce the scale of frequency spectrum and the 
complexity of the neural network. Bark Scale maps frequency 
spectrum to 24 critical bands of psychoacoustics in Hz. As 
shown in Fig. 10, the Bark Scale divides the signal into 24 
consecutive intervals in the frequency domain. Each interval 
calculates an energy: 

                           𝐸(𝑏) = ∑ 𝑤𝑏(𝑘)|𝑋(𝑘)|2
𝑘                              (14) 

Where, 𝑋(𝑘) is signal of frequency 𝑘, 𝑤𝑏(𝑘) is the amplitude 
and ∑ 𝑤𝑏(𝑘) = 1𝑏 . 

 With the Bark Scale, the frequency spectrum of the input 
signal is reduced to 24 bands of energy. The scale of the signal 
in the frequency domain is reduced, which can effectively 
reduce the amount of computation and allow the model to run 
well on low-configuration devices that require real-time 
processing. 

 

Fig. 10. Bark Scale. 

After determining the input, it is necessary to estimate the 
gain for each frame. Since the audio signal is a time series, audio 
processing is a continuous, context-related task, the RNN is a 
network structure suitable for audio processing. RNN can 
remember the information of the previously processed frames. 
The network structure used is shown in Fig. 11. Each noise's 
gain estimator consists of a 5-layer RNN. The input and output 
layers are connected by two full-connected layers with 3 GRU 
layers in between.  

 

Fig. 11. Estimation neural network. 

For one single Estimator, the working process is shown in 
Fig. 12. According to formula (8), the input waveform is divided 
into overlapped windows. Each frame is 60 ms in length. The 
data is converted from time domain to frequency domain by 
using fast Fourier transform. The BFCC feature is extracted in 
the frequency domain and used as an input to the RNN. Each 
RNN gain estimator outputs a 24-dimensional Gain vector as 
formula (10). 

There are five gain estimators corresponding to five noise 
categories, so there are five gain vectors for each frame. They 
form the formula (11). In the gain estimation module, each 
frame input corresponds to a gain matrix output. Calculated with 
the output formula (9) of the Noise Classifier module and 

formula (12), then obtained the final gain formula (13) which is 
corresponds to 24 band intervals of the Bark Scale of each frame. 

 

Fig. 12. The process of the gain estimator. 

There are five gain estimators corresponding to five noise 
categories, so there are five gain vectors for each frame. They 
form the formula (11). In the gain estimation module, each 
frame input corresponds to a gain matrix output. Calculated with 
the output formula (9) of the Noise Classifier module and 
formula (12), then obtained the final gain formula (13) which is 
corresponds to 24 band intervals of the Bark Scale of each frame. 

Then continue to input the feature of the next frame, the gain 
vector of next frame will obtained. Next step is applying the gain 
of each frame to the corresponding frequency band of the frame, 
and doing IFFT conversion signal back from the frequency 
domain to the time domain, After all the frames are spliced 
together, the final output audio is obtained. 

VI. EXPERIMENTS 

The data set used in this paper is based on the THCHS-30 
Mandarin speech data set [15]. THCHS30 is an open Chinese 
speech database published by Center for Speech and Language 
Technology (CSLT) at Tsinghua University. The THCHS-30 is 
acquired through a single carbon microphone in a quiet office 
environment. Total duration is more than 30 hours. Most of the 
people involved in the recording are college students who speak 
fluent Mandarin. Sampling size is 16bits. The THCHS-30 text 
is selected from large-capacity news. 



The THCHS-30 dataset provided three representative noises: 
white noise, car noise, and cafe noise. The additional collected 
rain noise is added for generalized testing. See Table I for a 
description of the dataset.  

TABLE I    AUDIO DATASET 

Data Set SNR Duration 

Speech 

Training 0dB 27.23h 

Test 0dB 6.24h 

Noise 

Café 0dB 5min 

Car 0dB 5min 

White 0dB 5min 

Rain(additional) 0dB 20min 

Training data is constructed set by randomly mixing the 
Speech and Noise data. With both clean and noisy data, accurate 
gains can be calculated to train RNNs. 

Fig. 13. shows the effect of the noise suppression on an 
example. (a) is spectrogram of the clean speech. (b) is 
spectrogram of speech with café noise. (c) is spectrogram of 
audio processed by our approach. (d) is spectrogram of audio 
processed by method which just use one gain estimator for every 
noise type. 

 

 

(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

(d) 

 

 

Fig. 13. Result of noise suppression. 

VII. CONCLUSION AND REMARKS 

In terms of noise suppression, a model that can run in real 
time and has a good effect on a variety of noises will have greater 

practical value. On the one hand, facing complex noise 
environments such as hearing aids, live broadcasts, etc. There is 
no room for large-scale computing units. A small algorithms 
have more chance for development. On the other hand, there are 
many kinds of noise in real situation.  

Multi-noise classification can improve the denoising effect. 
For a certain type of noise, the denoising effect of a dedicated 
gain estimator will be better than a general gain classifier. And 
after simplifying the audio frequency spectrum into 24 segments, 
it can effectively reduce the scale of operations.  

 If the amount of noise training data is relatively small, the 
effect can be improved through classification, but if the training 
data is sufficient and the noise covers a wide range, a very large 
number of noise classifications will be generated, and the 
efficiency of my method will gradually decrease. At this time, 
only training a gain estimator for all situations will be a good 
choice. 
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