
TBFV-M : Testing-Based Formal Verification for
SysML Activity Diagrams

著者 Yin Yufei
出版者 法政大学大学院情報科学研究科
journal or
publication title

法政大学大学院紀要. 情報科学研究科編

volume 14
page range 1-6
year 2019-03-31
URL http://doi.org/10.15002/00021922

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hosei University Repository

https://core.ac.uk/display/226439971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TBFV-M: Testing-Based Formal Verification for

SysML Activity Diagrams

Yufei Yin

Graduate School of Computer and Information Sciences

Hosei University

Tokyo 184-8584, Japan

yufei.yin.59@stu.hosei.ac.jp

Abstract—SysML activity diagrams are often used as models

for software systems and its correctness is likely to significantly

affect the reliability of the implementation. However, how to

effectively verify the correctness of SysML diagrams still remains

a challenge. In this paper, we propose a testing-based formal

verification (TBFV) approach to the verification of SysML

diagrams, called TBFV-M, by creatively applying the existing

TBFV approach for code verification. We describe the principle of

TBFV-M and present a case study to demonstrate its feasibility

and usability. Finally, we conclude the paper and point out future

research directions.

Keywords—SysML activity diagrams; TBFV; test path

generation; formal verification of SysML diagram;

I. INTRODUCTION

Model-Based Systems Engineering (MBSE) [1] is often
applied to develop large scale software systems in order to
effectively ensure their reliability and to reduce the cost for
testing and verification. The systems modelling language
SysML [2, 3] can support effective use of MBSE due to its well-
designed mechanism for creating object-oriented models that
incorporate not only software, but also people, material and
other physical resources. In MBSE, SysML models are often
used as the design for code. Therefore, its correctness in terms
of meeting the users’ requirements becomes critical to ensure the
high reliability of the code. Unfortunately, to the best of our
knowledge from the literature, there are few tools to support the
verification of SysML models [4, 5] in particular rigorous ways
of verification.

Testing-Based Formal Verification (TBFV) proposed by Liu
[6-8] shows a rigorous, systematic, and effective technique for
the verification and validation of code. Its primary characteristic
is the integration of the specification-based testing approach and
Hoare logic for correctness proof of code to guarantee the
correctness of all the traversed program paths during testing. The
advantage of TBFV is its potential and capability of achieving
full automation for verification through testing. However, the
current TBFV is mainly designed for sequential code in which
all of the details are formally expressed, and there is no research
on applying it to verify SysML models yet. In this paper, we
discuss how the existing TBFV can be applied to SysML models
for their verification and we use TBFV-M (testing-based formal
verification for models) to represent the newly developed
approach. Since SysML Activity Diagrams can model the
systems dynamic behavior and describe complex control and

parallel activities, which are similar to code but with additional
constructs such as parallel execution, our discussion in this paper
focuses on the activity diagrams.

The essential idea of TBFV-M is as follows. All of the
functional scenarios are first extracted from a given formal
specification defining the users’ requirements where each
functional scenario defines a meaningful functional behavior of
the system. Meanwhile, test paths are generated from
corresponding SysML Activity Diagrams waiting to be verified.
Then, test paths are matched with functional scenarios by
comparing the collection of decision condition of each test path
and the guard condition of the functional scenario. After this, the
pre-condition of the test path is automatically derived by
applying the assignment axiom in Hoare logic based on the
functional scenario. Finally, the implication of the pre-condition
of the specification in conjunction with the guard condition of
the functional scenario to the derived pre-condition of the path
is verified through automatic proof or testing to determine
whether the path contains bugs. The details of this approach will
be discussed from Section 5.

The remainder of the article will detail the TBFV-M method.
Section 2 presents related work we have referenced. Section 3
introduces the Testing-Based Formal Verification technique for
the verification and validation of code. Section 4 mainly details
the whole development process of using Model-Based Systems
Engineering and the application scenarios of TBFV-M method.
Section 5 describes the principle of TBFV-M, showing the core
technology of TBFV-M. Section 6 uses one case study to present
the key point of TBFV-M. Finally. The details of the
implementation of the algorithm are presented in Section 7.
Section 8 characterizes the evaluation part. Section 9 concludes
the paper.

II. RELATED WORK

In this section, we briefly review the existing work related to
our study. For the sake of space, we focus on those we have
referenced during our research. We divide the related work into
four different parts, including testing-based verification,
requirements verification, verification using Hoare Logic and
test case generation.

Considering the shortcoming of formal verification based on
Hoare logic being hard to automate, Liu proposed the TBFV
(Testing-Based Formal Verification) method by combining
specification-based testing with formal verification [6]. This

method not only take the advantage of full automation for testing,
but also the efficiency of error detection with formal verification.
Liu also designed a group of algorithms [9] for test cases
generation from formal specification written in SOFL [10]. A
supporting tool [8] is also developed. These efforts have
significantly improved the applicability of formal verification in
industrial settings.

Franco Raimondi [11] addressed the problem of verifying
planning domains written in the Planning Domain Definition
Language (PDDL). First, he translated test cases into planning
goals, then verified planning domains using the planner. A tool
PDVer is also generated. In this paper, testing is also used during
verification and the effectiveness and the usability is improved.

Stefano Marrone [12,13] designed a Model-Driven
Engineering approach, in which formal models are constructed
and test cases are generated from UML model, utilizing UML
profiles and model transformation algorithms, automatically. As
they claimed, formal models can be used for quantitative
analysis of non-functional properties, while test cases can be
used for model checking. A railway signaling example is shown
to introduce its integration, usability and reduction of manual
activities.

Feng Liang [14] proposed a vVDR (Virtual Verification of
Designs against Requirements) approach for verifying a system
with its requirement. In his research, the system is modeled in
Modelica, and requirement verification scenarios are specified
in ModelicaML, an UML profile and a language extension for
Modelica. vVDR approach guarantees that all requirements can
be verified by running this scenario automatically. However, the
deficiency appears when the number of requirements and
scenarios increase.

Inspired by Liu’s work, we apply and extend the TBFV
approach to models and propose the TBFV-M. A model is more
intuitive than a formal specification because it requires less
relevant background knowledge and is easier to communicate
with customers. TBFV approach shows the treatment of code,
while TBFV-M approach deals with SysML Activity Diagrams.
And different with Feng Liang’s work, TBFV-M approach do
not use other supporting tools, like Modelica, we merely use
Hoare Logic to do the verification. Referring to test case
generation, TBFV- M approach can deal with unstructured
diagrams, which may have stronger processing power than
existing approaches.

III. INTRODUCTION OF TBFV FOR CODE

TBFV is a novel technique that makes good use of Hoare
logic to strengthen testing. The essential idea is first to use
specification-based testing to discover all traversed program
paths and then to use Hoare logic to prove their correctness.
During the proof process, all errors on the paths can be detected.

TBFV is a specific specification-based testing approach that
takes both the precondition and post-condition into account in
test case generation [15]. To precisely describe this strategy, we
first need to introduce functional scenario. Spre and Spost denote
the pre- and post-conditions of operation S. Let:

Spost = (G1 ∧ D1) ∨ (G2 ∧ D2) ∨ … ∨ (Gn ∧ Dn) (1)

Gi and Di (i=1,…, n) are two predicates, called guard
condition and defining condition, respectively. The definition of
functional scenarios and FSF (functional scenario form) are list
below:

Functional Scenario = Spre ∧ Gi ∧ Di (2)

In the definition of functional scenario, Spre ∧ Gi ∧ Di is
treated as a scenario: when Spre ∧ Gi is satisfied by the initial
state (or intuitively by the input variables), the final state (or the
output variables) is defined by the defining condition Di.

FSF = (Spre ∧ G1 ∧ D1) ∨ (Spre ∧ G2 ∧ D2)
∨ … ∨ (Spre ∧ Gn ∧ Dn) (3)

A systematic transformation procedure, algorithm, and
software tool support for deriving an FSF from a pre-post style
specification written in SOFL have been developed in our
previous work [16]. First, generate test cases from specification.
Second, form path triple and the definition are below:

{Spre ∧ Gi} P { Di} (4)

P is called a program segment, which consists of decision
(i.e., a predicate), an assignment, a return statement, or a printing
statement.

Finally, repeatedly apply the axiom for assignment to derive
a pre-assertion, denoted by Ppre. The correctness of the specific

path is transformed into the implication Spre ∧ Gi → Ppre. If the

implication can be proved, it means that no error exists on the
path; otherwise, it indicates the existence of some error on the
path.

IV. TBFV-M IN MBSE

Model-Based Systems Engineering (MBSE) combines
process and analysis with architecture. In the development
process using MBSE, as shown below, the users’ requirements
are obtained first and the requirement document is usually
written in natural language.

Fig. 1. TBFV-M usage scenario

To obtain requirements without ambiguities, we may
generate a SysML Model. During the model-driven
development process, we use the SysML Model Diagram to
communicate with the user, because it does not contain many
mathematical symbols and syntax.

During the Model-Driven process, model is an important
medium for the Model based system engineering development.

The TBFV-M method is mainly used to verify whether SysML
Activity Diagram model meets the user's requirements written in
SOFL (Structured-Object-oriented-Formal Language).

V. PROCEDURE OF TBFV-M

The TBFV-M method takes the specification describing the

users’ requirements and the SysML Activity Diagram model as

input and verifies the correctness of the SysML model with

respect to the specification. The procedure of TBFV-M is

illustrated in Fig.2.

Fig. 2. TBFV-M usage scenario

From this figure, we find that functional scenarios are

derived from the specification, while test paths are generated

from the Activity Diagram and the data constraints can be

extracted from each test path. Then, the extracted data

constraints are used to match with functional scenarios. A

matching algorithm is defined by us. We will verify the

successful matched the test path according to the requirements

represented in specification.

The verification part can be separated into three parts: first,

create a path triple, and then use the axiom of Hoare Logic to

derive pre-assertion for each test path. Finally, prove the

implication of the pre-condition in the specification and pre-

assertion. If we can prove all the implication of pre-assertion of

all the test paths of the model and the matching pre-condition,

then the model is to meet the requirements.

A. Unified Formal Expression

Using a unified formal expression can reduce the ambiguity

between communications, we establish the unified formal

expression and we chose SOFL to describe formal specification.

An example specification written in SOFL is given below. It

describes that if a person is smaller than 6, he will be free;

otherwise, he should buy the normal price for $10.

B. Functional Scenarios Derivation

The overall goal of functional scenario derivation is to extract

all functional scenarios completely in "Spre ∧ Gi ∧Di" form

(FSF), as mentioned above in TBFV section. Because this part

is not our main topic and has been researched before. In our

work, we assume that an FSF of the specification has been

available somehow. The below segment of the process buy

ticket, mentioned previously, shows the FSF generated from the

specification described in the last one.

C. Test Path Generation

A test path auto-generation tool based on the SysML Activity

Diagram model takes the model as input and generates test

cases as outputs automatically. First, we use transformation

algorithm to compress the input Activity Diagram, which may

contain unstructured module. The transformation is a cyclic

process, dealing with loop module, concurrent module and the

problem of multiple starting nodes separately. After

compressing, we transform this unstructured activity diagram

into an intermediate representation form Intermediate Black

box Model (IBM). IBM consists of one basic module and a map

from black box to the corresponding original actions. The third

phase of our approach is test path generation based on IBM.

Details of automated test paths generation algorithm and

implementation of unstructured SysML Activity Diagram has

been developed in our previous work [19].

The Loop module in the SysML activity diagram can be

considered as a node collection, and these nodes in the

collection can be cycled multiple times, as shown in Fig.3.

Fig. 3. Classification of loop modules

The first step in the transformation algorithm of the Loop

module is to identify the loop module, the second step is to

compress it into a black box node loop, and finally reinsert it

into the original SysML activity diagram. Fig.4 shows the

process.

Fig. 4. The transformation of loop module

In the SysML activity diagram, the most common form of a

concurrent module is a pair of fork node and join node and all

actions between these two nodes, as shown in Fig.5 (a). The

logical representation is AND. However, the synchronization

stream can also be the logical relationship OR, as shown in

Fig.5 (b). Depending on how many concurrent streams can be

synchronized by the join node, the parallel modules can be

divided into partJoin concurrent and noJoin concurrent, as

shown in Fig.5 (c) and (d) below, respectively.

On the test path generation algorithm for concurrent modules,

the first step is to identify the concurrency module, the second

step is to compress it into a black box node FJ (Fork-Join), and

finally reinsert it into the original SysML activity diagram, as

shown in the following Fig.6.

Fig. 5. Classification of concurrent modules

For concurrent modules, we can use the Concurrent module

path generation algorithm and generate the test path

automatically. For the compressed basic path, the test path

generation algorithm of the basic module can be applied. Once

the basic path is generated, replace the FJ black box with the

test path generated from the concurrency module.

Fig. 6. The process of transformation of concurrent modules

The test case generation with IBM needs to deal with three

types of modules, which are basic modules, concurrent modules

and loop modules. For basic module, without considering the

concurrent module and the loop module, we can transform the

SysML activity diagram model into a directed acyclic graph,

using the idea of DFS (Depth First Search) algorithm. While for

unconstructed module, we can use corresponding generation

algorithm and generate the test path automatically. After the

basic path is created, the black box can be replaced with the test

path generated by the unconstructed module.

D. Matching Algorithm

Matching the test path with functional scenario is very

important for verification. In order to verify the correctness of

one path in Activity Diagram, we need to match it with

corresponding functional scenario. The constraints of test path

can be extracted from edges of each path, which are used to

compare with Spre ∧ Gi part of functional scenario. If unmatched

test paths or functional scenarios appears, it means some errors

may be existed in this model. And the model needs to be

modified. The matching algorithm is given below.

After completing the initialization step, find a matching

functinal scenario for each element in edge list. The specific

operation is: the edge after the integration compares with Spre

Gi in the functional scenario, if exactly the same, then we find

the edge with the matched functional scenario. If there is no

exact matched functional scenario, then there is an inaccurate

modeling problem and needs to be refined. Therefore,

immediately terminate the program, the problem of the edge

will also be returned. After traversing all the edge_list, we also

need to check whether each in FS_list has been visited. If there

is an unvisited functional scenario, then it means that there is a

requirement that the model fails to be represented in the

specification, and the model needs to be refined.

E. Path Triple Establishment

Establish Path Triple and apply each node with the axiom in

Hoare Logic. “(Spre ∧ Gi ∧ Di) (i = 2, …, n)” denote one

functional scenario and P = [node1; node2; …; nodem] be a

program path in which each nodej(i = 2, … , n) is called a

functional node, which is a DecisionNode, ActionNode, or

others.

To verify the correctness of P with respect to the functional

scenario, we need to construct Path Triple: {Spre} P {Gi ∧ Di}.

Each node has different processing approach, and the details are

listed in the form below.

TABLE I. PROCESSING APPROACH OF AD NODE

Node Type Approach

ActionNode(assignment) The axiom for assignment

ActionNode(input/output) SKIP

Others node SKIP

F. Implication

Prove the implication. Finally, the correctness of one path

whether it meets the corresponding requirement is changed into

the proof of the implication “Spre ∧ Gi → Spre” . If the

implication can be proved, it means that the path can model one

part of the requirement; otherwise, it indicates the existence of

some error on the path.

Formally proving the implication “Spre ∧ Gi → Spre” may

not be done automatically, even with the help of a theorem

prover such as PVS, depending on the complexity of Spre and

Ppre. Our strategy is as follows: if the complexity of data

structure is not high, we will transform the problem into solver,

which can achieve full automation. Otherwise, if achieving a

full automation is regarded as the highest priority, as taken in

our approach, the formal proof of this implication can be

"replaced" by a test. That is, we first generate sample values for

variables in Spre and Ppre, and then evaluate both of them to see

whether Ppre is false when Spre is true. If this is true, it tells that

the path under examination contains an error.

VI. SUPPORTING TOOL

We have developed a prototype software tool to support the

TBFV-M method. Specifically, it provides five major functions,

which are functional scenario generation, test path generation,

matching function scenarios to test paths, pre-condition

derivation, verification of test paths, and output of verification

result. The tool interface is shown in Fig.7.

Fig. 7. The process of transformation of concurrent modules

VII. CASE STUDY

Now we show a motivation example to detail the process of

MBSE and TBFV-M method described in the article above.

First, we will get a requirement from the user, which consists of

inform the description.

According to the specification, we can construct a set of

SysML model and the Activity Diagram is shown below.

Fig. 8. Activity Diagram

We can find the expression is described with SOLF. After

getting ready with all the input, specification and Activity

Diagram, we will start the TBFV-M method process. First,

derive Functional Scenarios from specification and generate

test paths from Activity Diagram. The result is shown as below.

At the same time, we can extract data constraints from each

test scenario, which is used for matching with functional

scenario. Then, the matching process is shown below. If it does

not exist a matched functional scenario, then it means that it

exists a problem in the model, exactly in this unmatched test

path. This path is not established accurately according to the

requirements described in specification in the activity diagram

model. If the match succeeds, it indicates that the test path is

designed for the matched test scenario.

We will do the verification of test scenario according to the

successfully matched functional scenario. First, we establish

Path Triple and then apply the axiom of Hoare Logic to derive

Ppre, pre-assertion of one path for the corresponding test path.

The blow figure chose the forth path and matched the first

functional scenario as an example and shows the substitution

process, from bottom to up. So, the top one “~c b AND c =~c

AND b-r =~b-r" is the Ppre.

Finally, we turn this verification problem into proving

whether the pre-condition of specification can imply Ppre. If it

can be proved, means that the path satisfies the requirement. If

not, there is a problem existing in the model, exactly in this

unmatched test path. If the matched pre-condition can imply the

corresponding Ppre of all the test paths in the model, then the

model is satisfied with the user’s requirements.

From the above segment, we can see the implication (~c > 0

AND b ≥ 0 AND ~p = FALSE AND ~c ≤ ~b) → (~c ≤~ b

AND c =~c AND b - r =~b - r) is true. This it means that the

test path is satisfied with the corresponding functional scenario.

We have proved all the test paths, due to the space limit, we

omit further details.

VIII. EVALUATION

After finishing the supporting tool, we established 20

example cases to test our system. These test cases include 5

correct ones and the others include errors. All the incorrect

Activity Diagrams fail to express the needs fully and correctly,

such as missing some logic branch or having mistaken on some

logic branch.

And the result is that the supporting tool has the ability to

figure out these mistakes, as our expectation.

IX. CONCLUSION

 We have presented an approach, known as TBFV-M
(Testing-Based Formal Verification for Model), for requirement
design error detection in SysML Activity Diagrams by
integrating test cases generation and Hoare Logic. The principle
underlying TBFV-M is first to derive functional scenarios from
specifications and generate test scenarios from Activity
Diagrams. Then match them and verify each test scenario
according to the corresponding functional scenario. Hoare logic
is used during the verification process. TBFV-M method solve
the limitation of TBFV, not concerning about models and solved
the problem of inconsistent, incomplete, and inaccurate models.
It has advantage in reducing the probability of system error and
shortening the developing time.

X. ACKNOWLEDGEMENTS

 This work was supported by JSPS KAKENHI Grant Number
26240008, and Defense Industrial Technology Development
Program JCKY 2016212B004-2.

REFERENCES

[1] A. W. Wymore, Model-based systems engineering: an introduction to the
mathematical theory of discrete systems and to the tricotyledon theory of
system design. CRC Press, 1993.

[2] S. Friedenthal, A. Moore, and R. Steiner, “A practical guide to sysml,”
San Francisco Jung Institute Library Journal, vol. 17, no. 1, pp. 41-46,
2012.

[3] T. Weilkiens,”Systems engineering with sysml/uml,” Computer, no. 6, p.
83, 2006.

[4] M. Shah, L. Chrpa, F. Jimoh, D. Kitchin, T. Mccluskey, S. Parkinson, and
M. Vallati, “Knowledge engineering tools in planning: State-of-the-art
and future challenges,” Computer, 01 2013.

[5] T. S. Vaquero, J. R. Silva, and C. J. Beck, \A brief review of tools and
methods for knowledge engineering for planning scheduling," Computer,
pp. 7-14, 2011.

[6] S. Liu, “Utilizing hoare logic to strengthen testing for error detection in
programs,” Computer, vol. 50, no. 6, pp. 1-5, 2014.

[7] S. Liu and S. Nakajima, Combining Specification-Based Testing,
Correctness Proof, and Inspection for Program Verification in Practice.
Springer International Publishing, 2013.

[8] S. Liu, “A tool supported testing method for reducing cost and improving
quality,” in IEEE International Conference on Software Quality,
Reliability and Security, 2016, pp. 448-455.

[9] S. Liu, Testing-Based Formal Verification for Theorems and Its
Application in Software Specification Verification. Springer International
Publishing, 2016.

[10] S. Liu, A. J. Ofiutt, C. Hostuart, Y. Sun, and M. Ohba, “So: A formal
engineering methodology for industrial applications,” IEEE Transactions
on Software Engineering, vol. 24, no. 1,pp. 24-45, 1998.

[11] F. Raimondi, C. Pecheur, and G. Brat, “Pdver, a tool to verify pddl
planning domains,” Computer, 2009.

[12] S. Marrone, F. Flammini, N. Mazzocca, R. Nardone, and V. Vittorini,
“Towards model-driven v&v assessment of railway control systems,”
International Journal on Software Tools for Technology Transfer, vol. 16,
no. 6, pp. 669-683, 2014.

[13] F. Flammini, S. Marrone, N. Mazzocca, R. Nardone, and V. Vittorini,
“Model-driven v&v processes for computer-based control systems: A
unifying perspective," Computer, vol. 7610, pp. 190-204, 2012.

[14] F. Liang, W. Schamai, O. Rogovchenko, S. Sadeghi, M. Nyberg, and P.
Fritzson, “Model-based requirement veri_cation : A case study,” in
International Modelica Conference, Munich,Germany, 2012.

[15] S. Liu and S. Nakajima, “A decompositional approach to automatic test
case generation based on formal specifications,” in International
Conference on Secure Software Integration Reliability Improvement,
2010, pp. 147-155.

[16] S. Liu, T. Hayashi, K. Takahashi, K. Kimura, T. Nakayama, and S.
Nakajima, “Automatic transformation from formal specifications to
functional scenario forms for automatic test case generation," in New
Trends in Software Methodologies, TOOLS and Techniques Proceedings
of the Somet 10, September 29 October 1, 2010, Yokohama City, Japan,
2010, pp. 383-397.

[17] Kent and Stuart, Model Driven Engineering. Springer Berlin Heidelberg,
2002.

[18] M. Broy, K. Havelund, R. Kumar, and B. Steffen, Towards a Unified
View of Modelling and Programming (Track Summary). Springer
International Publishing, 2016.

[19] Y. Yin, Y. Xu, W. Miao, and Y. Chen, \An automated test case generation
approach based on activity diagrams of sysml," International Journal of
Performability Engineering, vol. 13, no. 6, pp. 922-936, 2017.

