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Abstract—SysML activity diagrams are often used as models 

for software systems and its correctness is likely to significantly 

affect the reliability of the implementation. However, how to 

effectively verify the correctness of SysML diagrams still remains 

a challenge. In this paper, we propose a testing-based formal 

verification (TBFV) approach to the verification of SysML 

diagrams, called TBFV-M, by creatively applying the existing 

TBFV approach for code verification. We describe the principle of 

TBFV-M and present a case study to demonstrate its feasibility 

and usability. Finally, we conclude the paper and point out future 

research directions. 
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I.  INTRODUCTION  

Model-Based Systems Engineering (MBSE) [1] is often 
applied to develop large scale software systems in order to 
effectively ensure their reliability and to reduce the cost for 
testing and verification. The systems modelling language 
SysML [2, 3] can support effective use of MBSE due to its well-
designed mechanism for creating object-oriented models that 
incorporate not only software, but also people, material and 
other physical resources. In MBSE, SysML models are often 
used as the design for code. Therefore, its correctness in terms 
of meeting the users’ requirements becomes critical to ensure the 
high reliability of the code. Unfortunately, to the best of our 
knowledge from the literature, there are few tools to support the 
verification of SysML models [4, 5] in particular rigorous ways 
of verification. 

Testing-Based Formal Verification (TBFV) proposed by Liu 
[6-8] shows a rigorous, systematic, and effective technique for 
the verification and validation of code. Its primary characteristic 
is the integration of the specification-based testing approach and 
Hoare logic for correctness proof of code to guarantee the 
correctness of all the traversed program paths during testing. The 
advantage of TBFV is its potential and capability of achieving 
full automation for verification through testing. However, the 
current TBFV is mainly designed for sequential code in which 
all of the details are formally expressed, and there is no research 
on applying it to verify SysML models yet. In this paper, we 
discuss how the existing TBFV can be applied to SysML models 
for their verification and we use TBFV-M (testing-based formal 
verification for models) to represent the newly developed 
approach. Since SysML Activity Diagrams can model the 
systems dynamic behavior and describe complex control and 

parallel activities, which are similar to code but with additional 
constructs such as parallel execution, our discussion in this paper 
focuses on the activity diagrams. 

The essential idea of TBFV-M is as follows. All of the 
functional scenarios are first extracted from a given formal 
specification defining the users’ requirements where each 
functional scenario defines a meaningful functional behavior of 
the system. Meanwhile, test paths are generated from 
corresponding SysML Activity Diagrams waiting to be verified. 
Then, test paths are matched with functional scenarios by 
comparing the collection of decision condition of each test path 
and the guard condition of the functional scenario. After this, the 
pre-condition of the test path is automatically derived by 
applying the assignment axiom in Hoare logic based on the 
functional scenario. Finally, the implication of the pre-condition 
of the specification in conjunction with the guard condition of 
the functional scenario to the derived pre-condition of the path 
is verified through automatic proof or testing to determine 
whether the path contains bugs. The details of this approach will 
be discussed from Section 5. 

The remainder of the article will detail the TBFV-M method. 
Section 2 presents related work we have referenced. Section 3 
introduces the Testing-Based Formal Verification technique for 
the verification and validation of code. Section 4 mainly details 
the whole development process of using Model-Based Systems 
Engineering and the application scenarios of TBFV-M method. 
Section 5 describes the principle of TBFV-M, showing the core 
technology of TBFV-M. Section 6 uses one case study to present 
the key point of TBFV-M. Finally. The details of the 
implementation of the algorithm are presented in Section 7. 
Section 8 characterizes the evaluation part. Section 9 concludes 
the paper. 

II. RELATED WORK 

In this section, we briefly review the existing work related to 
our study. For the sake of space, we focus on those we have 
referenced during our research. We divide the related work into 
four different parts, including testing-based verification, 
requirements verification, verification using Hoare Logic and 
test case generation. 

Considering the shortcoming of formal verification based on 
Hoare logic being hard to automate, Liu proposed the TBFV 
(Testing-Based Formal Verification) method by combining 
specification-based testing with formal verification [6]. This 



 

method not only take the advantage of full automation for testing, 
but also the efficiency of error detection with formal verification. 
Liu also designed a group of algorithms [9] for test cases 
generation from formal specification written in SOFL [10]. A 
supporting tool [8] is also developed. These efforts have 
significantly improved the applicability of formal verification in 
industrial settings. 

Franco Raimondi [11] addressed the problem of verifying 
planning domains written in the Planning Domain Definition 
Language (PDDL). First, he translated test cases into planning 
goals, then verified planning domains using the planner. A tool 
PDVer is also generated. In this paper, testing is also used during 
verification and the effectiveness and the usability is improved. 

Stefano Marrone [12,13] designed a Model-Driven 
Engineering approach, in which formal models are constructed 
and test cases are generated from UML model, utilizing UML 
profiles and model transformation algorithms, automatically. As 
they claimed, formal models can be used for quantitative 
analysis of non-functional properties, while test cases can be 
used for model checking. A railway signaling example is shown 
to introduce its integration, usability and reduction of manual 
activities. 

Feng Liang [14] proposed a vVDR (Virtual Verification of 
Designs against Requirements) approach for verifying a system 
with its requirement. In his research, the system is modeled in 
Modelica, and requirement verification scenarios are specified 
in ModelicaML, an UML profile and a language extension for 
Modelica. vVDR approach guarantees that all requirements can 
be verified by running this scenario automatically. However, the 
deficiency appears when the number of requirements and 
scenarios increase. 

Inspired by Liu’s work, we apply and extend the TBFV 
approach to models and propose the TBFV-M. A model is more 
intuitive than a formal specification because it requires less 
relevant background knowledge and is easier to communicate 
with customers. TBFV approach shows the treatment of code, 
while TBFV-M approach deals with SysML Activity Diagrams. 
And different with Feng Liang’s work, TBFV-M approach do 
not use other supporting tools, like Modelica, we merely use 
Hoare Logic to do the verification. Referring to test case 
generation, TBFV- M approach can deal with unstructured 
diagrams, which may have stronger processing power than 
existing approaches. 

III. INTRODUCTION OF TBFV FOR CODE 

TBFV is a novel technique that makes good use of Hoare 
logic to strengthen testing. The essential idea is first to use 
specification-based testing to discover all traversed program 
paths and then to use Hoare logic to prove their correctness. 
During the proof process, all errors on the paths can be detected. 

TBFV is a specific specification-based testing approach that 
takes both the precondition and post-condition into account in 
test case generation [15]. To precisely describe this strategy, we 
first need to introduce functional scenario. Spre and Spost denote 
the pre- and post-conditions of operation S. Let: 

Spost = (G1 ∧ D1) ∨ (G2 ∧  D2) ∨  … ∨ (Gn ∧ Dn)      (1) 

Gi and Di (i=1,…, n) are two predicates, called guard 
condition and defining condition, respectively. The definition of 
functional scenarios and FSF (functional scenario form) are list 
below: 

Functional Scenario =  Spre ∧ Gi ∧  Di              (2) 

In the definition of functional scenario, Spre ∧ Gi ∧  Di is 
treated as a scenario: when Spre ∧ Gi is satisfied by the initial 
state (or intuitively by the input variables), the final state (or the 
output variables) is defined by the defining condition Di.  

FSF =  (Spre ∧  G1 ∧  D1)  ∨  (Spre ∧  G2 ∧  D2)  
∨  …          ∨  (Spre ∧  Gn ∧ Dn)                 (3) 

A systematic transformation procedure, algorithm, and 
software tool support for deriving an FSF from a pre-post style 
specification written in SOFL have been developed in our 
previous work [16]. First, generate test cases from specification. 
Second, form path triple and the definition are below:  

{Spre ∧  Gi}  P { Di}                             (4) 

P is called a program segment, which consists of decision 
(i.e., a predicate), an assignment, a return statement, or a printing 
statement.  

Finally, repeatedly apply the axiom for assignment to derive 
a pre-assertion, denoted by Ppre. The correctness of the specific 

path is transformed into the implication Spre ∧ Gi → Ppre. If the 

implication can be proved, it means that no error exists on the 
path; otherwise, it indicates the existence of some error on the 
path. 

IV. TBFV-M IN MBSE 

Model-Based Systems Engineering (MBSE) combines 
process and analysis with architecture. In the development 
process using MBSE, as shown below, the users’ requirements 
are obtained first and the requirement document is usually 
written in natural language.  

 

Fig. 1. TBFV-M usage scenario 

To obtain requirements without ambiguities, we may 
generate a SysML Model. During the model-driven 
development process, we use the SysML Model Diagram to 
communicate with the user, because it does not contain many 
mathematical symbols and syntax.  

During the Model-Driven process, model is an important 
medium for the Model based system engineering development. 



 

The TBFV-M method is mainly used to verify whether SysML 
Activity Diagram model meets the user's requirements written in 
SOFL (Structured-Object-oriented-Formal Language). 

V. PROCEDURE OF TBFV-M 

The TBFV-M method takes the specification describing the 

users’ requirements and the SysML Activity Diagram model as 

input and verifies the correctness of the SysML model with 

respect to the specification. The procedure of TBFV-M is 

illustrated in Fig.2. 

 

 
 

Fig. 2. TBFV-M usage scenario 

From this figure, we find that functional scenarios are 

derived from the specification, while test paths are generated 

from the Activity Diagram and the data constraints can be 

extracted from each test path. Then, the extracted data 

constraints are used to match with functional scenarios. A 

matching algorithm is defined by us. We will verify the 

successful matched the test path according to the requirements 

represented in specification.  

The verification part can be separated into three parts: first, 

create a path triple, and then use the axiom of Hoare Logic to 

derive pre-assertion for each test path. Finally, prove the 

implication of the pre-condition in the specification and pre-

assertion. If we can prove all the implication of pre-assertion of 

all the test paths of the model and the matching pre-condition, 

then the model is to meet the requirements. 

A. Unified Formal Expression 

Using a unified formal expression can reduce the ambiguity 

between communications, we establish the unified formal 

expression and we chose SOFL to describe formal specification. 

An example specification written in SOFL is given below. It 

describes that if a person is smaller than 6, he will be free; 

otherwise, he should buy the normal price for $10. 

 

 

B. Functional Scenarios Derivation 

The overall goal of functional scenario derivation is to extract 

all functional scenarios completely in "Spre ∧ Gi ∧Di" form 

(FSF), as mentioned above in TBFV section. Because this part 

is not our main topic and has been researched before. In our 

work, we assume that an FSF of the specification has been 

available somehow. The below segment of the process buy 

ticket, mentioned previously, shows the FSF generated from the 

specification described in the last one. 

 

 

C. Test Path Generation 

A test path auto-generation tool based on the SysML Activity 

Diagram model takes the model as input and generates test 

cases as outputs automatically. First, we use transformation 

algorithm to compress the input Activity Diagram, which may 

contain unstructured module. The transformation is a cyclic 

process, dealing with loop module, concurrent module and the 

problem of multiple starting nodes separately. After 

compressing, we transform this unstructured activity diagram 

into an intermediate representation form Intermediate Black 

box Model (IBM). IBM consists of one basic module and a map 

from black box to the corresponding original actions. The third 

phase of our approach is test path generation based on IBM. 

Details of automated test paths generation algorithm and 

implementation of unstructured SysML Activity Diagram has 

been developed in our previous work [19]. 

The Loop module in the SysML activity diagram can be 

considered as a node collection, and these nodes in the 

collection can be cycled multiple times, as shown in Fig.3. 

 

 

Fig. 3. Classification of loop modules 

The first step in the transformation algorithm of the Loop 

module is to identify the loop module, the second step is to 

compress it into a black box node loop, and finally reinsert it 

into the original SysML activity diagram. Fig.4 shows the 

process. 



 

 

Fig. 4. The transformation of loop module 

In the SysML activity diagram, the most common form of a 

concurrent module is a pair of fork node and join node and all 

actions between these two nodes, as shown in Fig.5 (a). The 

logical representation is AND. However, the synchronization 

stream can also be the logical relationship OR, as shown in 

Fig.5 (b). Depending on how many concurrent streams can be 

synchronized by the join node, the parallel modules can be 

divided into partJoin concurrent and noJoin concurrent, as 

shown in Fig.5 (c) and (d) below, respectively. 

On the test path generation algorithm for concurrent modules, 

the first step is to identify the concurrency module, the second 

step is to compress it into a black box node FJ (Fork-Join), and 

finally reinsert it into the original SysML activity diagram, as 

shown in the following Fig.6. 

 

Fig. 5. Classification of concurrent modules 

For concurrent modules, we can use the Concurrent module 

path generation algorithm and generate the test path 

automatically. For the compressed basic path, the test path 

generation algorithm of the basic module can be applied. Once 

the basic path is generated, replace the FJ black box with the 

test path generated from the concurrency module. 

 

 

Fig. 6. The process of transformation of concurrent modules 

The test case generation with IBM needs to deal with three 

types of modules, which are basic modules, concurrent modules 

and loop modules. For basic module, without considering the 

concurrent module and the loop module, we can transform the 

SysML activity diagram model into a directed acyclic graph, 

using the idea of DFS (Depth First Search) algorithm. While for 

unconstructed module, we can use corresponding generation 

algorithm and generate the test path automatically. After the 

basic path is created, the black box can be replaced with the test 

path generated by the unconstructed module. 

D. Matching Algorithm 

Matching the test path with functional scenario is very 

important for verification. In order to verify the correctness of 

one path in Activity Diagram, we need to match it with 

corresponding functional scenario. The constraints of test path 

can be extracted from edges of each path, which are used to 

compare with Spre ∧ Gi part of functional scenario. If unmatched 

test paths or functional scenarios appears, it means some errors 

may be existed in this model. And the model needs to be 

modified. The matching algorithm is given below. 

 

 
 

After completing the initialization step, find a matching 

functinal scenario for each element in edge list. The specific 

operation is: the edge after the integration compares with Spre  

Gi in the functional scenario, if exactly the same, then we find 

the edge with the matched functional scenario. If there is no 

exact matched functional scenario, then there is an inaccurate 

modeling problem and needs to be refined. Therefore, 

immediately terminate the program, the problem of the edge 

will also be returned. After traversing all the edge_list, we also 

need to check whether each in FS_list has been visited. If there 

is an unvisited functional scenario, then it means that there is a 

requirement that the model fails to be represented in the 

specification, and the model needs to be refined. 

E. Path Triple Establishment 

Establish Path Triple and apply each node with the axiom in 

Hoare Logic. “(Spre ∧ Gi ∧ Di) (i = 2, …, n)” denote one 

functional scenario and P = [node1; node2; …; nodem] be a 

program path in which each nodej(i = 2, … , n) is called a 

functional node, which is a DecisionNode, ActionNode, or 

others.  

To verify the correctness of P with respect to the functional 

scenario, we need to construct Path Triple: {Spre} P {Gi ∧ Di}. 



 

Each node has different processing approach, and the details are 

listed in the form below. 

TABLE I.  PROCESSING APPROACH OF AD NODE 

Node Type Approach 

ActionNode(assignment) The axiom for assignment 

ActionNode(input/output) SKIP 

Others node SKIP 

F. Implication 

Prove the implication. Finally, the correctness of one path 

whether it meets the corresponding requirement is changed into 

the proof of the implication “Spre ∧  Gi →  Spre” . If the 

implication can be proved, it means that the path can model one 

part of the requirement; otherwise, it indicates the existence of 

some error on the path. 

Formally proving the implication “Spre ∧ Gi → Spre” may 

not be done automatically, even with the help of a theorem 

prover such as PVS, depending on the complexity of Spre and 

Ppre. Our strategy is as follows: if the complexity of data 

structure is not high, we will transform the problem into solver, 

which can achieve full automation. Otherwise, if achieving a 

full automation is regarded as the highest priority, as taken in 

our approach, the formal proof of this implication can be 

"replaced" by a test. That is, we first generate sample values for 

variables in Spre and Ppre, and then evaluate both of them to see 

whether Ppre is false when Spre is true. If this is true, it tells that 

the path under examination contains an error. 

VI. SUPPORTING TOOL  

We have developed a prototype software tool to support the 

TBFV-M method. Specifically, it provides five major functions, 

which are functional scenario generation, test path generation, 

matching function scenarios to test paths, pre-condition 

derivation, verification of test paths, and output of verification 

result. The tool interface is shown in Fig.7. 

 

 

Fig. 7. The process of transformation of concurrent modules 

VII. CASE STUDY  

Now we show a motivation example to detail the process of 

MBSE and TBFV-M method described in the article above. 

First, we will get a requirement from the user, which consists of 

inform the description. 

 
 

According to the specification, we can construct a set of 

SysML model and the Activity Diagram is shown below. 

 

Fig. 8. Activity Diagram 

We can find the expression is described with SOLF. After 

getting ready with all the input, specification and Activity 

Diagram, we will start the TBFV-M method process. First, 

derive Functional Scenarios from specification and generate 

test paths from Activity Diagram. The result is shown as below. 

 

 
 

 
 

At the same time, we can extract data constraints from each 

test scenario, which is used for matching with functional 

scenario. Then, the matching process is shown below. If it does 

not exist a matched functional scenario, then it means that it 

exists a problem in the model, exactly in this unmatched test 

path. This path is not established accurately according to the 

requirements described in specification in the activity diagram 

model. If the match succeeds, it indicates that the test path is 

designed for the matched test scenario. 

 

 



 

We will do the verification of test scenario according to the 

successfully matched functional scenario. First, we establish 

Path Triple and then apply the axiom of Hoare Logic to derive 

Ppre, pre-assertion of one path for the corresponding test path. 

The blow figure chose the forth path and matched the first 

functional scenario as an example and shows the substitution 

process, from bottom to up. So, the top one “~c b AND c =~c 

AND b-r =~b-r" is the Ppre. 

 

 
 

Finally, we turn this verification problem into proving 

whether the pre-condition of specification can imply Ppre. If it 

can be proved, means that the path satisfies the requirement. If 

not, there is a problem existing in the model, exactly in this 

unmatched test path. If the matched pre-condition can imply the 

corresponding Ppre of all the test paths in the model, then the 

model is satisfied with the user’s requirements. 

From the above segment, we can see the implication (~c > 0 

AND b ≥ 0 AND ~p = FALSE AND ~c ≤ ~b) → (~c ≤~ b 

AND c =~c AND b - r =~b - r) is true. This it means that the 

test path is satisfied with the corresponding functional scenario. 

We have proved all the test paths, due to the space limit, we 

omit further details.  

VIII. EVALUATION 

After finishing the supporting tool, we established 20 

example cases to test our system. These test cases include 5 

correct ones and the others include errors. All the incorrect 

Activity Diagrams fail to express the needs fully and correctly, 

such as missing some logic branch or having mistaken on some 

logic branch.  

And the result is that the supporting tool has the ability to 

figure out these mistakes, as our expectation. 

IX. CONCLUSION 

 We have presented an approach, known as TBFV-M 
(Testing-Based Formal Verification for Model), for requirement 
design error detection in SysML Activity Diagrams by 
integrating test cases generation and Hoare Logic. The principle 
underlying TBFV-M is first to derive functional scenarios from 
specifications and generate test scenarios from Activity 
Diagrams. Then match them and verify each test scenario 
according to the corresponding functional scenario. Hoare logic 
is used during the verification process. TBFV-M method solve 
the limitation of TBFV, not concerning about models and solved 
the problem of inconsistent, incomplete, and inaccurate models. 
It has advantage in reducing the probability of system error and 
shortening the developing time. 
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