
Automated Visualization of Input / Output for
Processes in SOFL Formal Specifications

著者 CHEN Yu
出版者 法政大学大学院情報科学研究科
journal or
publication title

法政大学大学院紀要. 情報科学研究科編

volume 14
page range 1-6
year 2019-03-31
URL http://doi.org/10.15002/00021916

Automated Visualization of Input / Output for
Processes in SOFL Formal Specifications

CHEN Yu
Graduate School of Computer and Information Sciences

Hosei University
Tokyo, Japan

yu.chen.58@stu.hosei.ac.jp

Abstract—While formal specification is regarded as an
effective means to capture accurate requirements and design,
validation of the specifications remains a challenge.
Specification animation has been proposed to tackle the
challenge, but lacking an effective representation of the input /
output data in the animation can considerably limit the
understanding of the animation by clients. In this paper, we put
forward a tool supported technique for visualization of the input
/ output data of processes in SOFL formal specifications. After
discussing the motives of our work, we describe how data of each
kind of data type available in the SOFL language can be
visualized to facilitate the representation and understanding of
input / output data. We also present a supporting tool for the
technique and a case study to demonstrate the usability and
effectiveness of our proposed technique.

Keywords—Visualization, SOFL, Formal specification, Data
type, Formal methods

I. INTRODUCTION
Formal specification has proved to be effective to help

capture accurate requirements and design in software
development if used properly together with practical
engineering approaches [1]. While this can considerably
contribute to the communication between the developers in a
software project, it may not effectively facilitate the
communication between the developer and the client due to
the fact that mathematical expressions in the formal
specification can be difficult for the client to understand in
general. Therefore, a potential risk that the formal
specification may not correctly and completely define what
the client really wants will eventually affect the reliability of
the software.

To tackle this problem, formal specification animation has
been proposed [2]. The common characteristic of the existing
animation techniques is to use test data (also called animation
data) to dynamically demonstrate the input-output relation for
operations defined in the specification. Compared to the
reading and understanding technique, animation is proved to
be more effective in validating formal specifications against
the client’s requirements [3][4]. However, our experience and
study suggest that the effect of specification animation is
rather limited due to the fact that input and output data with
complex structures can be difficult to comprehend during
animation. Without resolving this limitation, specification
animation would be difficult to be transferred to industry for
realistic software developments.

In this paper, the researchers put forward a tool supported
visualization of input and output data of operations in formal
specifications. The proposed visualization technique can be
widely applicable to model-based formal notations, such as
VDM-SL, Z, and Event-B, SOFL has been chosen, standing
for Structured Object-Oriented Formal Language, as the

formal notation in our discussions, partly because SOFL has
been used in various joint software projects with industry and
partly because SOFL offers a comprehensible way to use
formal specifications in practical software development.

Our major contributions in this paper are twofold. One is
the design of a visualized representation of each type of data
provided in the SOFL language. Such a visualization aims to
facilitate the expression of the data in a graphical user
interface (GUI). The other is the implementation of a software
tool supporting the visualization and animation of a single
operation called process in SOFL.

The remainder of this paper is organized as follows.
Section II and section III briefly introduce the background and
related work. Section IV discusses the design of visualized
representation of various data types. Section V discusses the
system logic design of the tool. Section VI presents the tool
researchers have built to support the proposed technique.
Section VII briefly explain how the visualized representation
can be utilized in a single process animation and gives a small
case study to demonstrate its usability. Finally, in Section VIII,
we conclude the paper and introduce the future work.

II. BACKGROUND AND RELATED RESEARCH
In SOFL, a process performs an action, task, or operation

that takes input and produces output. Fig. 1 shows a simple
form of a process. The process is composed of five parts: name,
input port, output port, pre-condition and post-condition. The
name of the process always puts in the center of the box. The
input port in the left part of the box receives the input data
flows and the output port in the right part of the box used to
connect output date flows. The pre-condition in the upper part
of the box is a condition which the inputs are required to meet,
and the post-condition in the lower part of the box is a
condition which the outputs are required to satisfy [1].

Process

Pre-condition

Post-condition

Input
Port

Output
Port

Fig 1. A simple process

Briefly, the process transforms the input data flows to the
output data flows. The animation of the process will show the
procedure of how the input data flows could transform to
output data flows. But in the visualization process, input and
output data flows are often composed of a number of complex
data types which is difficult for user to understand. Therefore,
the effect of animation is quite limited. Without solving this

problem, the animation of a process in SOFL formal
specifications will be difficult to put into use in industry.

III. RELATED WORK
Formal specification animation attracts a few developers

since it provides an effective way to help people especially for
simple users to understand the features defined by formal
specifications. It helps people to verify whether the
specification is consistent with their intended requirements. In
this section, we introduce some related work on formal
specification animation.

The most common idea of animation is, transforming the
specification into one kind of program language. Several
animation tools are built based on the specification
transformation. PiZA [5] is an animator for Z formal
specification. It translates Z specifications into Prolog to
generate output variables.

Tim Miller and Paul Strooper introduced a framework for
animating model-based specification by using testgraphs [6].
The framework provides a testgraph editor for users to edit
testgraphs, and then derive sequences for animation by
traversing the testgraph. Gargantini and Riccobene proposed
an automatic driven approach to animating formal
specifications in Parnas’ SCR tabular notation [7]. An
important feature of this work is the adoption of a model
checker to help find counter-examples that contain a state not
satisfying the property to be established by animation.

Liu and Wang introduced an animation tool called SOFL
Animator for SOFL specification animation [8]. It provides
syntactic level analysis and semantic level analysis of a
specification. When performing animation, the tool will
automatically translate the SOFL specification into Java
program segments, and then use some test case to execute the
program.

Li and Liu proposed a novel animation approach called
Automatic Functional Scenarios-based Animation. This
approach uses data as connection among independent
operations involved in a specific behavior to “execute”
specifications, and does not translate them to program.
Researchers explain how to generate necessary data for
animation by modifying an automatic operation function
scenario-based test case generation method, and present a case
study of applying this animation approach to SOFL
specification [9].

IV. DESIGN IN DATA TYPES
Data types are essential for specifications because they

provide a notation for defining data structures used in
specifications [1]. It is crucially important to show a variety of
data types with proper kinds of visual interface to make the
user understand the input and output accurately. Different data
types usually represent data with different structure, quantity,
and meaning. For the user, the operators defined on the data
types are not interesting, the research team therefore decide to
ignore them and focus on the structures and values of the data
of various types. Researchers design a visual expression for
each of the data types in SOFL to facilitate the user in
understanding the structure and meaning for each data type
accurately and rapidly. Below the definition of each data type
will be presented and then its best manifestations will be
explored.

A. Numeric, Character and Boolean Types
Numeric, Character and Boolean types are basic data types

in SOFL. Numeric types contain nat0, nat, int and real
representing natural numbers including zero, natural numbers
without zero, integers and real numbers, respectively. The
character type is the atomic unit for constructing identifiers,
operators and delimiters for separating different parts in a
specification and contains all characters of the SOFL character
set. The boolean type contains only two values: true and false.

Those basic data types are also very easy to read just by
their values. So, in the design of visualization researchers
suggest to directly show the value of each types.

B. Enumeration Type
An enumeration type is a data type consisting of a finite

set of special values called elements, members, enumeral or
enumerators of the type, usually with the feature of describing
a systematic phenomenon [10]. A variable that has been
declared as having an enumeration type can be assigned any
of the enumerators as a value. For example, the seven days of
a week can be seven enumerators named Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday and Saturday,
belonging to an enumerated type named Week. Here is an
example of an enumeration of Week in SOFL:

Week = {<Sunday>, <Monday>, <Tuesday>,
<Wednesday>, <Thursday>, <Friday>, <Saturday>}

Actually, an enumeration looks like a finite set, so
showing the value by a list in visualization is quite convenient.
In view of this idea, the Week can be showed like Fig. 2.

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Fig 2. Visualization style for enumeration Week

C. Set Type
A set is an unordered collection of distinct objects where

each object is known as an element of the set, without any
particular order, and no repeated values. In SOFL, a set value
of a set type used for process animation is usually finite. For
example, a set of programing language names can be:

{“Java”, “Pascal”, “C”, “C++”, “Fortran”}.

Similar to the Enumeration Type, researchers also show
the value by a list in visualization as shown in Fig. 3. In the
design of visualization, researchers focus on the two
restrictions: no repeated values and finite quantity. User must
give the exact quantity of the items while defining the set, and
the tool could remove the repeated values entered by users
automatically.

D. Sequence and String Type
A sequence is an ordered collection of objects that allows

duplications of objects. The difference between sequence and

Java

Pascal

C

C++

Fortran

Fig. 3. Visualization style for set type

set is that items in a sequence is ordered and allowing element
duplication.

Here is an example showing a sequence of natural
numbers:

[5, 15, 15, 5, 35]

The visualization of sequence is shown in Fig. 4.
Researchers add a number at the beginning of each line to
show its order.

5

15

15

5

35

2

1

3

4

5

Fig. 4. Visualization style for numeric sequence

String is a type which classify all sequences composed of
characters. For example, the following is a string value:

“university”.

Although a string is a sequence, it is better to display it
directly as a whole, from the user-friendly point of view.

E. Composite and Product Type
A composite type is a data type which can be constructed

using the primitive data types and other composite types [11].
In SOFL, the general format of a composite type is:

composed of
 f_1: T_1
 f_2: T_2
 …
 f_n: T_n
 end

where f_i (i=1…n) are variables called fields and T_i are
their types.

Each field is intended to represent an attribute of a
composite object of the type. For example, Account can be
declared as a composite type of three fields:

Account = composed of
 account_no: nat
 password: nat
 balance: real
 end

Unlike those previous data types, using only values or lists
is not sufficient to present an intuitive visualization that is
easily accepted by the user. In this respect researchers learn
from the concept of many UI design called tab, with different
tabs to show different components. So no matter it is simple
type or composed type, all can be composed into a compound
data of a composed type with perfect visualization as shown
in Fig. 5.

account_no

12345678

password

1234

balace

123.45

Fig. 5. Visualization style for Composite type: Account

A product type defines a set of tuples with a fixed length.
A tuple is composed of a list of values of possibly different
types. In SOFL, a product type could be defined as:

T = T_1 * T_2 * … * T_n,

where T_1, T_2, …, T_n are n types.

For example, type Date is declared as

Date = nat0 * nat0 * nat0.

The same visualization can be used as in composed type
to present, and for simple types like Date, it can be designed
as shown in Fig. 6.

2018 0101

Year DayMonth

Fig. 6. Visualization style for Product type: Data

In this case, it is no need to use tabs since all composed
type in Date are non-composed types.

F. Map Type
A map, associative array, symbol table, or dictionary is an

abstract data type composed of a collection of (key, value)
pairs, such that each possible key appears at most once in the
collection [12]. A map describes a mapping between two sets.
In SOFL, a map is represented with a notation similar to the
set notation but use a symbol -> to connect two sets:

{a_1 -> b_1, a_2 -> b_2, …, a_n -> b_n}.

In SOFL, there are two restrictions in map types. One is
that all the keys cannot be identical; another is that sets of keys
and values are finite. The map type emphasizes the association
or correspondence from key to value, and can be considered
as a set for each association. So researchers use arrows to
represent each set of associations in visualization, while
associations use a list similar to set. For example, a map could
be defined from twelve months to numbers like:

{January -> 1, February -> 2, March -> 3, April -> 4,
May -> 5, June -> 6, July -> 7, August -> 8, September -> 9,
October -> 10, November -> 11, December -> 12}.

And it can designed as Fig. 7.

G. Union Type
A union is a value that may have any of several

representations or formats within the same position in memory;
or it is a data structure that consists of a variable that may hold
such a value [13]. In other words, a union type definition will

January

1

February

2

...

Fig. 7. Visualization style for map type

specify which of a number of permitted primitive types may
be stored in its instances, e.g., “float or long integer”. Contrast
with a record (or structure), which could be defined to contain
a float and an integer; in a union, there is only one value at any
given time. In SOFL, a union type constituted of types could
be declared as:

T = T1 | T2 | … | Tn

where T1, T2, …, Tn denote n types.

Since union types are constituted from other different
types, they can presented by using visualizations in those
types.

H. Class Type
Class types are common in most object-orient

programming languages as extensible types for creating
objects, providing initial values for state (member variables)
and implementations of behavior (member functions or
methods) [14]. In SOFL, a class is a user-defined type, which
defines a collection of objects with the same features. The
features of objects include attributes, describing their data
resources, and operations offering the means for manipulating
their data resources and providing functional services for other
objects.

In computer science, Unified Modeling Language (UML)
is often used to express classes, but users usually merely treat
a class as a composite type, so researchers design its visual
expression the same as that of composite types.

V. DESIGN IN SYSTEM LOGIC
This system is designed to develop a tool that visualizes

the processes in SOFL. The processes in SOFL mainly include
input modules, output modules, preconditions and
postconditions. For the four modules, the system can solve the
following problems in a targeted manner: First, the simple and
complex data types in the input module and the output module
are visualized, so that the user can intuitively feel the actual
meaning of the data. The second is to animate the process and
establish an animation process from data input, pre-condition
verification, process execution, post-condition verification,
and data output.

This topic is mainly aimed at the formal method of SOFL
language formal specification is difficult to be understood by
the general user, so design the automated visualization tool to
display it with graphics and animation, so that customers fully
understand the formal specifications and software developers
correctly understand the needs of customers To improve the
reliability of software development. It mainly includes the
following three points:

•Visualize the data and data types of the input module and
output module;

•Verify the user’s input and output data and pre-conditions
and post-conditions to determine the validity of the data;

•Animate the execution of the process from specifications
to input / output port and data with suitable types.

For input and output data, ports are used to store the data
flows. Each of the ports has a number of variables, and each
variable takes a data type. The number of ports and variables
in each port is not fixed and could be defined by user. User
can also add, remove or edit the number or value of those ports
and variables in each port. After user defined or edit the input
/ output port, the result could be saved.

Focusing the import parts in single process, we consider
the similar structure of a process as in CDFD and put data in
two ports at each side of the process which could be shown or
edited by users, as illustrated in Fig. 8.

Fig. 8. Main interface

In the real processes in software engineering,
programmers could write SOFL formal specifications after
reading those requirements in informal styles like nature
language. The tool should transfer the SOFL formal
specifications to visualized mode. That is, the tool could
recognize the SOFL formal specifications and fill in the input
/ output port in the interface automatically. Here we use the
way of lexical analysis to implement this feature. First, the
specifications could be divided to three parts: input / output
port, pre-condition and post-condition. In the input / output
port, each port could be separated by symbol ‘|’, and in each
port, different variables could be separated by symbol ‘,’,
then the name and type of a variable could be separated by
symbol ‘:’. After we separated all the variables, we fill them
into the interface of this tool.

Since the space of the main surface are limited, it only
shows the concept of input / output data. When the user clicks
on the items, the details will be shown in a pop-up box (Fig.
9). For input port, the user could add or remove the quantity,
types of data and view or edit the values of them. Output port
is similar, but the user could only view the values. In the pop-
up box, multiple variables are listed, and those composed
types will be folded. User could see the detail when clicking
to unfold (Fig. 10).

VI. TOOL IMPLEMENTATION
In the design of network applications, there are mainly two

kinds of system architecture. One is called Client-Server (C/S)
model which is a distributed application structure that
partitions tasks or workloads between servers and clients. The
other one is the called Browser-Server (B/S) model which
relies on the web technique and is widely used in many
systems. By using the browser, users can send requests to
server and get response from server by web pages [15].

For a software system, whether choosing B/S or C/S
mainly depends on the scene of the user. C/S model is more
suitable for those frequently used, complex software programs.

B/S model is more suitable for those who are lightweight, for
ordinary users of the application. For this tool, researchers
choose B/S model to implement since the features for users
are simple and publishing for developers are convenient.
Software using C/S model always takes long steps for
installation or updating which brings terrible user experience.
In addition, software using B/S model could be executed in
more platforms than C/S model.

The tools utilized for the implementation of our tool could
be divided into front-end tools and back-end tools. In front-
end, webpack was used for package management and
bootstrap for style designing. In back-end, Django was used
for data communication and feature realization.

Fig. 9. Details of a port

Fig. 10. Unfold the enumeration after clicking

A. Webpack
Webpack is a static module bundler for modern JavaScript

applications. When webpack processes your application, it
recursively builds a dependency graph that includes every
module your application needs, then packages all of those
modules into one or more bundles [16]. It is an open-source
JavaScript module bunder and takes modules with
dependencies and generates static assets representing those
modules [17].

B. Bootstrap
Bootstrap is a free and open-source front-end library for

designing websites and web applications. It contains HTML-
and CSS-based design templates for typography, forms,
buttons, navigation and other interface components, as well as
optional JavaScript extensions. Unlike many web frameworks,
it concerns itself with front-end development only [18].

VII. CASE STUDY
In order to show the effect of our solution, a simple process

of bank transfer system was designed to show its animation.
The main feature is transferring money from one account to
another. The structure of an account is defined as:

Account = composed of
 account_no: nat
 password: nat
 balance: real
 end

In this process, two accounts have been created, one is for
transferor named transfer_out, and another is for transferee
named transfer_in. Then a transfer process has been created,
include the account number of transferor, the account no of
transferee, the password and the amount. The process is
specified as:

After we entering the SOFL Formal Specifications, the

tool will analyze the input / output data in each port and fill
into the webpage. While the analysis is finished, we could see
the user interface. Then we entered each of the ports. After
clicking each port, we entered the test values. We get a user
interface shown in Fig. 11 – 13.

After finishing all the input data, we could run the script to
animate the process. Then we can check the result from the
output port. In the case study, we could see the ports like Fig.
14 – 16.

Let’s briefly analyze the implementation process. First, the
password in tranfer_session is the same as the password in
transfer_out, and the transfer_amount is lower than the
balance of transfer_out, so the process begins to execute the
transferring steps. We can see the differences between Fig. 13
and Fig. 16 that the balance of account transfer_out has been
reduced and between Fig. 14 and Fig. 17 that the balance of
account transfer_in has been increased. Then from Fig. 18 we
get the transfer_result, the transferring has been successfully
executed.

Fig 11. The user interface of the input port: transfer_out

VIII. CONCLUSION AND FUTURE WORK
In this paper, researchers provided an approach to

animating the data types in formal specifications. Researchers
focus on single process and try to show all its ports and
variables in an intuitive user interface. Researchers analyzed
and design the suitable styles to display the data contained in
variables. Users could understand what the process is doing
by tracking the changes of the values. In the meanwhile, users

process Transfer (transfer_out: Account | transfer_in: Account |
 transfer_out_account_no: nat, transfer_in_account_no: nat,
 transfer_out_password: nat0, transfer_amount: real)

transfer_out: Account | transfer_in: Account | transfer_result: bool

 pre (transfer_out_password = transfer_out.password and
transfer_amount <= transfer_out.balance)

 post (transfer_out.balace = ~transfer_out.balance - transfer_amount and
 transfer_in.balance = ~transfer_in.balance + transfer_amount)
 end_process

Fig 12. The user interface of the input port: transfer_in

Fig 13. The user interface of the input port: transfer_session

Fig 14. The user interface of the output port: transfer_out

Fig 15. The user interface of the output port: transfer_in

Fig 16. The user interface of the output port: transfer_session

could enter their own test cases to observe the executing
results. This could help user to validate the specification
against the user’s requirements accurately.

IX. CONCLUSION AND FUTURE WORK
In this paper, researchers provided an approach to

animating the data types in formal specifications. Researchers
focus on single process and try to show all its ports and
variables in an intuitive user interface. Researchers analyzed
and design the suitable styles to display the data contained in
variables. Users could understand what the process is doing

by tracking the changes of the values. In the meanwhile, users
could enter their own test cases to observe the executing
results. This could help user to validate the specification
against the user’s requirements accurately.

As a visualization tool, it is difficult to evaluate its
performance because it does not output a fixed result as a basis
for evaluation. In the meanwhile, the level of understanding
for the input / output data will vary depending on the user’s
own situation.

In the future, researchers will continue to finish the module
of verification of pre-condition and post-condition. This could
help people to verify whether their inputs meet the pre-
condition and the outputs satisfy the post-condition. After
completing this functionality, the automatic animation of
processes will be more integral. Simultaneously, we can also
add the feature to collect the users’ feedback and score in the
tool for the evaluation of the system performance.

REFERENCES
[1] Shaoying Liu, “Formal Engineering for Industrial Software

Development Using the SOFL Method, Springer-Verlag”, ISBN 3-
540-20602-7, 2004.

[2] Tim Miller, and Paul Strooper. “Animation Can Show Only the
Presence of Errors, Never Their Absence”, Proceedings of 2011
Australian Software Engineering Conference. IEEEE CS Press, pages
76-88. 2001.

[3] M. Hewitt, C. O’Halloran, and C. Sennett, “Experiences with PiZA: an
Animator for Z”, in ZUM’97. 1997, vol. 1212 of LNCS, pp. 37-51,
Springer.

[4] Tim Miller and Paul Strooper, “A Framework and Tool Support for the
Systematic Testing of Model-Based Specications”, ACM TOSEM, vol.
12, no. 4, pp. 409-439, 2003.

[5] M. Hewitt, C. O’Halloran, and C. Sennett, “Experiences with PiZA, an
animator for Z. ZUM ’97: The Z Formal Specification Notation”, pages
37-51. 1996.

[6] Tim Miller, and Paul Strooper. Model-Based Specification Animation
Using Testgraphs. The 4th International Conference on Formal
Engineering Methods (ICFEM 2002). pages 192-203. 2002.

[7] Gargantini, A., and Riccobene, E. Automatic model driven animation
of SCR specifications. Fundamental Approaches to Software
Engineering, 6th International Conference (FASE 2003). pages 294-3.
2003.

[8] Shaoying Liu, and Hao Wang. An automated approach to specification
animation for validation. The Journal of Systems and Software, No.80.
pages 1271-1285. 2007.

[9] Mo Li, Shaoying Liu, “Automated Functional Scenarios-based Formal
Specification Animation”, 2012 19th Asia-Pacific Software
Engineering Conference, 2012.

[10] Enumerated type. (2018, May 09). Retrieved from
https://en.wikipedia.org/wiki/Enumerated_type

[11] Composite data type. (2018, April 10). Retrieved from
https://en.wikipedia.org/wiki/Composite_data_type

[12] Associative array. (2018, May 11). Retrieved from
https://en.wikipedia.org/wiki/Associative_array

[13] Associative array. (2018, May 11). Retrieved from
https://en.wikipedia.org/wiki/Associative_array

[14] Kim B. Bruce, Foundations of Object-oriented Languages: Types and
Semantics, ISBN 0-262-02523-X, 2002.

[15] Xin Wang, Qijun Chen, “Design and Implementation of Real-time
Building Energy Visualization Platform Based on Mixed Model of B/S
and C/S”, 2014.

[16] Concepts, webpack documentation, (n.d.). Retrieved from
https://webpack.js.org/concepts/

[17] Webpack. (2018, May 19). Retrieved from
https://en.wikipedia.org/wiki/Webpack

[18] Bootstrap (front-end framework). (2018, May 17). Retrieved from
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)

	I. Introduction
	II. Background and related research
	III. Related Work
	IV. Design in data types
	A. Numeric, Character and Boolean Types
	B. Enumeration Type
	C. Set Type
	D. Sequence and String Type
	E. Composite and Product Type
	F. Map Type
	G. Union Type
	H. Class Type

	V. Design In System Logic
	VI. Tool Implementation
	A. Webpack
	B. Bootstrap

	VII. Case Study
	VIII. Conclusion And Future Work
	IX. Conclusion And Future Work
	References

