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Abstract. We present a short overview on the strongest variational formulation for gradi-
ent flows of geodesically λ-convex functionals in metric spaces, with applications to diffusion
equations in Wasserstein spaces of probability measures. These notes are based on a series of
lectures given by the second author for the Summer School “Optimal transportation: Theory
and applications” in Grenoble during the week of June 22-26, 2009.

Introduction

These notes are based on a series of lectures given by the second author for the Summer School
“Optimal transportation: Theory and applications” in Grenoble during the week of June 22-26,
2009.

We try to summarize some of the main results concerning gradient flows of geodesically λ-
convex functionals in metric spaces and applications to diffusion PDE’s in the Wasserstein space
of probability measures. Due to obvious space constraints, the theory and the references presented
here are largely incomplete and should be intended as an over-simplified presentation of a quickly
evolving subject. We refer to the books [3, 68] for a detailed account of the large literature available
on these topics.

In the first section we collect some elementary and well known results concerning gradient flows
of smooth convex functions in Rd. We selected just a few topics, which are well suited for a
“metric” formulation and provide a useful guide for the more abstract developments.

In the second section we present the main (and strongest) notion of gradient flow in metric spaces
characterized by the solution of a metric evolution variational inequality : the aim here is to show
the consequence of this definition, without any assumptions on the space and on the functional
(except completeness and lower semicontinuity): we shall see that solutions to evolution variational
inequalities enjoy nice stability, asymptotic, and regularization properties. We also investigate the
relationships with two different approaches, curves of maximal slope and minimizing movements,
and we discuss a first stability result with respect to perturbations of the generating functional
with respect to Γ-convergence.

The third section is devoted to some fundamental generation results for gradient flows of geodesi-
cally λ-convex functionals: here we adopt the method of minimizing movement to construct suit-
able families of discrete approximating solutions and we show three basic convergence results.

Apart from Sections 2.6 (stability of gradient flows with respect to Γ-convergence of the func-
tionals) and 3.1 (existence of curves of maximal slope), we made a substantial effort to avoid any
compactness argument in the theory, which is mainly focused on purely metric arguments. So
we will present a slightly relaxed version of the minimizing movement scheme, which is always
solvable by invoking Ekeland’s variational principle, and the main existence and generation results
for λ-gradient flows rely on refined Cauchy estimates and crucial geometric assumptions on the
distance of the metric space.

The last section is devoted to applications of the metric theory to evolution equations in the
so called “Wasserstein spaces” P2(X) of probability measures. We recall a few basic facts about
such spaces, the characterization of geodesics and absolutely continuous curves, and some geo-
metric properties of the Wasserstein distance. Three basic examples of (or, better, displacement-)
λ-convex functionals in P2(Rd) are presented, together with the evolutionary PDE’s they are
associated with. A short account of possible extensions of the theory to measure-metric spaces
concludes the notes.
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1. Gradient flows for smooth λ-convex functions in the Euclidean space

In this section we recall some simple properties of the gradient flow of a C
2 function ϕ : Rd → R

satisfying the global lower bound D2
ϕ ≥ λI for some λ ∈ R. We will focus on those aspects which

rely just on the “metric” structure of Rd and therefore could make sense in more general metric
spaces. We denote by d(u, v) = |u−v| the Euclidean distance on Rd induced by the scalar product
�·, ·�.

Remark 1.1 (A few basic facts about λ-convex functions). We will extensively use the following
well known equivalent characterizations of a λ-convex function ϕ : Rd → R (here x, x0, x1 are
arbitrary points in Rd)

Hessian inequality:

D2
ϕ(x) ≥ λI i.e. �D2

ϕ(x)ξ, ξ� ≥ λ|ξ|2 for every ξ ∈ Rd
. (1.1a)

λ-monotonicity of ∇ϕ:

�∇ϕ(x0)−∇ϕ(x1), x0 − x1� ≥ λ|x0 − x1|2. (1.1b)

λ-convexity inequality:

ϕ(xθ) ≤ (1− θ)ϕ(x0) + θϕ(x1)−
λ

2
θ(1− θ)|x0 − x1|2 xθ := (1− θ)x0 + θx1, θ ∈ [0, 1]. (1.1c)

Sub-gradient inequality:

�∇ϕ(x1), x1 − x0� −
λ

2
|x1 − x0|2 ≥ ϕ(x1)− ϕ(x0) ≥ �∇ϕ(x0), x1 − x0�+

λ

2
|x1 − x0|2. (1.1d)

Notice that

ϕ is λ-convex if and only if ϕ̃(x) := ϕ(x)− λ

2
|x|2 is convex. (1.1e)

In particular, there exist constants a ∈ R, b ∈ Rd such that

ϕ(x) ≥ a + �b, x�+
λ

2
|x|2. (1.1f)

Definition 1.2 (Gradient flow). The gradient flow of ϕ is the family of maps

St : Rd → Rd
, t ∈ [0,+∞),

characterized by the following property: for every u0 ∈ Rd
, S0(u0) := u0 and the curve ut := St(u0),

t ∈ (0,+∞), is the unique C
1

solution of the Cauchy problem

d
dt

ut = −∇ϕ(ut) in (0,+∞), lim
t↓0

ut = u0. (1.2)

By the standard Cauchy-Lipschitz theory and the a priori estimates we will show in the next
theorem, for every initial datum u0 ∈ Rd equation (1.2) admits a unique global solution so that
the family St, t ∈ [0,+∞), is a continuous semigroup of Lipschitz maps, thus satisfying

St+h(u0) = St(Sh(u0)), lim
t↓0

St(u0) = S0(u0) = u0 for every u0 ∈ Rd
. (1.3)

1.1. Basic estimates.

Theorem 1.3 (Basic differential estimates). Let us assume that ϕ ∈ C
2(Rd) is λ-convex; if

u : [0,+∞) → Rd
is a solution of (1.2) then

d
dt

1
2
|ut − v|2 +

λ

2
|ut − v|2 = e−λt

d
dt

�
eλt

1
2
|ut − v|2

�
≤ ϕ(v)− ϕ(ut) for every v ∈ Rd

, (EVIλ)

d
dt

ϕ(ut) = −|u�
t
|2 = −|∇ϕ(ut)|2 ≤ 0, (EI)

d
dt

�
e2λt |∇ϕ(ut)|2

�
=

d
dt

�
e2λt |u�

t
|2

�
≤ 0; (SIλ)
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moreover, if v is another solution to (1.2) then

d
dt

�
eλt |ut − vt|

�
≤ 0. (Contλ)

Proof. We sketch here the easy calculations.
For the evolution variational inequality (EVIλ):

d
dt

1
2
|ut − v|2 = �u�

t
, ut − v� (1.2)

= �∇ϕ(ut), v − ut�
(1.1d)

≤ ϕ(v)− ϕ(ut)−
λ

2
|ut − v|2.

The energy identity (EI):
d
dt

ϕ(ut) = �∇ϕ(ut), u�t�
(1.2)

= −|∇ϕ(ut)|2
(1.2)

= −|u�
t
|2.

The slope inequality (SIλ):

d
dt

|∇ϕ(ut)|2 = 2�D2
ϕ(ut)∇ϕ(ut), u�t�

(1.2)

= −2�D2
ϕ(ut)∇ϕ(ut),∇ϕ(ut)�

(1.1a)

≤ −2λ|∇ϕ(ut)|2.

The λ-contraction property (Contλ):

d
dt

|ut − vt|2 = 2�u�
t
− v

�
t
, ut − vt�

(1.2)

= −2�∇ϕ(ut)−∇ϕ(vt), ut − vt�
(1.1b)

≤ −2λ|ut − vt|2. �

In order to write in a simple way suitable integrated versions of the previous inequalities, we
set

Eλ(t) :=
�

t

0

eλr dr =

�
e

λt−1

λ
if λ �= 0,

t if λ = 0.
(1.4)

Corollary 1.4 (Pointwise and integral inequalities). If u : [0,+∞) → Rd
is a solution to (1.2)

then

eλt

2
|ut − v|2 + Eλ(t)

�
ϕ(ut)− ϕ(v)

�
+

�
Eλ(t)

�2

2
|∇ϕ(ut)|2 ≤

1
2
|u0 − v|2 for every v ∈ Rd

, (1.5)

ϕ(ut) +
1
2

�
t

0

�
|u�

r
|2 + |∇ϕ(ur)|2

�
dr = ϕ(u0), (1.6)

|∇ϕ(ut)| ≤ e−λt|∇ϕ(u0)|; (1.7)

moreover, if v is another solution to (1.2) then

|ut − vt| ≤ e−λt|u0 − v0|. (1.8)

In particular, when λ > 0, ϕ admits a unique minimum point ū and

λ

2
|ut − ū|2 ≤ ϕ(ut)− ϕ(ū) ≤ 1

2λ
|∇ϕ(ut)|2 (1.9)

|ut − ū| ≤ e−λt|u0 − ū|, ϕ(ut)− ϕ(ū) ≤ e−2λt
�
ϕ(u0)− ϕ(ū)

�
. (1.10)

Proof. We have just to check (1.5): if At denotes the quantity in the left-hand side, we show that
At is nonincreasing. A differentiation in time yields

d
dt

At = eλt

�
λ

2
|ut − v|2 +

d
dt

1
2
|ut − v|2 + ϕ(ut)− ϕ(v) + Eλ(t)|∇ϕ(ut)|2

�

+ Eλ(t)
d
dt

ϕ(ut) +
�
Eλ(t)

�2

2
d
dt

|∇ϕ(ut)|2
�

(EVIλ)

≤ Eλ(t)
�
eλt|∇ϕ(ut)|2 +

d
dt

ϕ(ut) +
Eλ(t)

2
d
dt

|∇ϕ(ut)|2
�

(EI)

= Eλ(t)
��

eλt − 1
�
|∇ϕ(ut)|2 +

Eλ(t)
2

d
dt

|∇ϕ(ut)|2
�

(SIλ)

≤ Eλ(t)
��

eλt − 1− λEλ(t)
�
|∇ϕ(ut)|2

�
(1.4)

= 0. �
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In terms of the maps St, (1.8) yields the λ-contraction estimate

d(St(u0),St(v0)) ≤ e−λtd(u0, v0) for every u0, v0 ∈ Rd
, t ≥ 0, (1.11)

thus showing the Lipschitz property of St and the uniqueness and continuous dependence w.r.t.
the initial data of the solutions of (1.2).

1.2. Approximation by the Implicit Euler scheme. One of the simplest but very useful
ways to construct discrete approximations of the solution to (1.2) (and to show its existence by a
limiting process) is given by the implicit Euler scheme.

For a given time step τ > 0 we consider the associated uniform partition of [0,+∞)

Pτ := {0 = t
0

τ
< t

1

τ
< ... < t

n

τ
< ...}, t

n

τ
:= nτ, (1.12)

and we look for a discrete sequence (Un

τ
)n∈N whose value U

n

τ
should provide an effective approxi-

mation of u(tn
τ
). U

n

τ
are defined recursively, starting from a suitable choice of U

0
τ
≈ u0, by solving

at each step the equation of the Euler scheme

U
n

τ
− U

n−1
τ

τ
= −∇ϕ(Un

τ
) n = 1, 2, · · · , (1.13)

or, equivalently,
U

n

τ
= Jτ (Un−1

τ
), Jτ := (I + τ∇ϕ)−1

. (1.14)

Existence of a discrete approximating solution can be easily obtained by looking for the minimizers
of the function

U �→ Φ(τ, Un−1

τ
;U) :=

1
2τ

��U − U
n−1

τ

��2 + ϕ(U). (1.15)

In fact, it is immediate to check that any minimizer U
n

τ
of (1.15) solves (1.13); moreover, the

function defined by (1.15) is (τ−1+λ)-convex and therefore it admits a unique minimizer whenever
τ
−1

> −λ.
Denoting by Uτ : [0,+∞) → Rd the piecewise linear interpolant of the discrete values (Un

τ
)n∈N

on the grid Pτ , defined by

Uτ (t) :=
t− t

n−1
τ

τ
U

n−1

τ
+

t
n

τ
− t

τ
U

n

τ
if t ∈ [tn−1

τ
, t

n

τ
], (1.16)

one expects that Uτ (t) converges to the solution ut to (1.2) as τ ↓ 0.

Theorem 1.5. If limτ↓0 U
0
τ

= u0 then the family of piecewise linear interpolants (Uτ )τ>0 satisfies

the Cauchy condition as τ ↓ 0 with respect to the uniform convergence on each compact interval

[0, T ], T > 0; its unique limit is the solution ut of (1.2). Moreover, for every T > 0 there exists a

universal constant C(λ, T ) such that

sup
t∈[0,T ]

|ut − Uτ (t)| ≤ |u0 − U
0

τ
| + C(λ, T )|∇ϕ(u0)| τ. (1.17)

In particular, when λ = 0 we can choose C = 1√
2
, independent of T .

Remarks about the proof. In the present finite dimensional smooth setting, the proof of the con-
vergence of Uτ is not difficult: considering e.g. the case λ = 0, we can apply the contraction
property of the map Jτ defined by (1.14)

|Jτ (x)− Jτ (y)| ≤ |x− y| for every x, y ∈ Rd
, (1.18)

to obtain the uniform bound

τ
−1|Un

τ
− U

n−1

τ
| = |∇ϕ(Un

τ
)| ≤ |∇ϕ(Un−1

τ
)| for every n ≥ 1, (1.19)

so that

|U �
τ
(t)| ≤ sup

n∈N
τ
−1|Un

τ
− U

n−1

τ
| = τ

−1|U1

τ
− U

0

τ
| ≤ |∇ϕ(U0

τ
)| for every t ∈ [0,+∞) \ Pτ . (1.20)
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Since limτ↓0 |∇ϕ(U0
τ
)| = |∇ϕ(u0)| it follows that (Uτ )τ>0 satisfies a uniform Lipschitz condition

and therefore it admits a suitable subsequence uniformly converging to a Lipschitz curve u in each
compact interval [0, T ]. Denoting by Ūτ (t) the piecewise constant interpolant

Ūτ (t) := U
n

τ
if t ∈ (tn−1

τ
, t

n], (1.21)

the same estimate (1.20) shows that

sup
t∈(0,+∞)

|Uτ (t)− Ūτ (t)| ≤ τ |∇ϕ(U0

τ
)|, (1.22)

so that Ūτ has the same limit points than Uτ . On the other hand, (1.13) yields

U
�
τ
(t) = −∇ϕ(Ūτ (t)) in [0,+∞) \ Pτ , (1.23)

and we can pass to the limit in an integrated form of (1.23) thus showing that u solves (1.2).
The uniform error estimate (1.17) is subtler: a simple derivation in the case λ = 0 can be found

in [51], see also [59, 61]. Its main functional interest relies on the fact that it involves just the
lower bound on the Hessian of ϕ but not its upper bound (and therefore, it does not require a
uniform Lipschitz condition on ∇ϕ). �
1.3. Metric characterization of Gradient flows in Rd. The energy identity (EI) (with his in-
tegrated version (1.6)) and the evolution variational inequality (EVIλ) not only provide important
estimates on the solution to (1.2) but can also be used to characterize it.

Concerning (EI) we can even relax the identity, as the following proposition shows.

Proposition 1.6 (Curves of maximal slope). A C
1

curve u : [0,+∞) → Rd
is a solution to (1.2)

if and only if it satisfies the Energy Dissipation Inequality
d
dt

ϕ(ut) ≤ −
1
2
|u�

t
|2 − 1

2
|∇ϕ(ut)|2 in (0,+∞) (EDI)

or its weaker integrated form

ϕ(ut) +
1
2

�
t

0

�
|u�

r
|2 + |∇ϕ(ur)|2

�
dr ≤ ϕ(u0) for every t ∈ (0,+∞). (EDI’)

Proof. Il u is a C
1 curve the chain rule yields

ϕ(ut) = ϕ(u0) +
�

t

0

�∇ϕ(ur), u�r�dr, (1.24)

so that (EDI’) yields

1
2

�
t

0

��u�
r
+∇ϕ(ur)

��2 dr =
1
2

�
t

0

�
|u�

r
|2 + |∇ϕ(ur)|2

�
dr +

�
t

0

�∇ϕ(ur), u�r�dr ≤ 0,

and therefore u
�
r

= −∇ϕ(ur) for L 1-a.e. r ∈ (0, t). Since t is arbitrary and u ∈ C
1, u solves

(1.2). �
Notice that in the previous formulation we did not use the λ-convexity of ϕ: the argument only

relies on the chain rule.
In the following proposition we show that also the evolution variational inequality (EVIλ)

characterizes a solution of (1.2). In fact, if (EVIλ) admits a solution for every initial datum u0,
then ϕ is λ-convex.

Proposition 1.7 (Characterization of Gradient Flows through the EVI). If u : [0,+∞) → Rd
is

a C
1

curve solving (EVIλ) then u is a solution to (1.2).

Proof. Applying the chain rule for the squared distance function 1

2
| · −v|2 we easily have

�u�
t
, ut − v� ≤ ϕ(v)− ϕ(ut)−

λ

2
|ut − v|2 for every v ∈ Rd

, t > 0. (1.25)

Choosing v := ut + εξ, for ε > 0 and ξ ∈ Rd and dividing by ε we obtain

−�u�
t
, ξ� ≤ ε

−1

�
ϕ(ut + εξ)− ϕ(ut)

�
− λε

2
|ξ|2 for every ξ ∈ Rd

.
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Passing to the limit as ε ↓ 0 we eventually get

−�u�
t
, ξ� ≤ �∇ϕ(ut), ξ� for every ξ ∈ Rd

,

so that −u
�
t
= ∇ϕ(ut). �

Proposition 1.8. Let us suppose that there exists a C
1

semigroup S̃t : Rd → Rd
, t ≥ 0, of smooth

maps such that for every u0 ∈ Rd
the curve ut := S̃t(u0) satisfies (EVIλ). Then ϕ is λ-convex.

Proof. We consider for simplicity the case λ = 0; for arbitrary u
0
, u

1 ∈ Rd we set

u
s := (1− s)u0 + su

1
, u

s

t
:= S̃t(us)

and we want to show that
d
ds

ϕ(us)|s=0
≤ d

ds
ϕ(us)|s=1

.

We get
d
ds

ϕ(us)|s=0
= �∇ϕ(u0), u1 − u

0� (1.2)

= −� d
dt

u
0

t |t=0
, u

1 − u
0� =

d
dt

�1
2
|u0

t
− u

1|2
�
|t=0

(EVIλ)

≤ ϕ(u1)− ϕ(u0)
(EVIλ)

≤ − d
dt

�1
2
|u0 − u

1

t
|2

�
|t=0

(1.2)

≤ �∇ϕ(u1), u1 − u
0� =

d
ds

ϕ(us)|s=1
�

1.4. Extensions to more general functional settings. The simple finite dimensional theory
for smooth functionals has been extended in various directions; without claiming any completeness,
we quote here four different points of view:
The theory of differential inclusions and maximal monotone operators in Hilbert spaces, developed
in the seventies by Komura [39], Crandall-Pazy [25], Crandall-Liggett [24], Brézis [13],
Bénilan [10], J.L. Lions [40]: we refer to the monographs [14, 8, 40]. In this framework one
considers the gradient flow generated by a proper lower semicontinuous λ-convex functional φ :
H → (−∞,+∞], where H is a separable Hilbert space. By using tools of convex analysis, clever
regularization techniques, and replacing ∇ϕ with the multivalued subdifferential operator ∂φ, one
can basically reproduce all the estimates and results we briefly discussed in the finite dimensional
setting which just depend on the lower bound of the Hessian of ϕ, avoiding any strong compactness
assumptions.

In this framework, the resolvent operator Jτ := (I +τ∂φ)−1 is single-valued and non-expansive,
i.e.

d(Jτ [u], Jτ [v]) ≤ d(u, v) for every u, v ∈ H, τ > 0. (1.26)

This property is the key ingredient to prove, as in the Crandall-Liggett generation theorem
[24], uniform convergence of the exponential formula

ut = lim
n→+∞

(Jt/n)n[u0], d(ut, (Jt/n)n[u0]) ≤
2|∂φ|(u0)t√

n
(1.27)

and therefore to define a contraction semigroup on D(φ).
Being generated by a convex functional, this semigroup exhibits a nice regularization effect, since

ut ∈ D(∂φ) even if u0 ∈ D(φ). Moreover, the curve ut can be characterized as the unique solution
of the evolution variational inequality (EVIλ), whose formulation goes back to [41]. Optimal
error estimates for the implicit Euler discretization in the spirit of (1.17) have been obtained by
[7, 59, 61, 51].
The theory of the curves of maximal slope in metric spaces, developed in the eighties by De
Giorgi, Degiovanni, Marino, Tosques in a series of papers originating from [30, 29], and
culminating in [31, 44] (but see also the more recent [16] and the presentation of [2, 3]). Here
φ : X → (−∞,+∞] is a proper and lower semicontinuous functional defined in the complete
metric space X and one looks for absolutely continuous curves satisfying a suitable form of the
Energy dissipation inequality (EDI), where |u�| should be interpreted as the metric velocity of the

curve u and |∇ϕ(u)| should be replaced by the metric slope of φ. The theory is usually based on
local compactness of the sublevels of φ and various kind of assumptions on its slope, yielding in
particular its lower semicontinuity and the possibility to write a weak form of the chain rule. The
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advantage of this approach relies on its flexibility, but in general metric spaces uniqueness and
stability properties of curves of maximal slope are not known.
Limits of discrete solutions, generalized minimizing movements. This is the weakest approach,
which has been clarified in [28] and independently applied to different kind of problems (see
e.g. [43], [35], [36], [48]). It just provides a general approximating scheme which is quite useful
to construct some limit curves by compactness arguments, but one can hardly deduce refined
properties of these curves from general metric results and each example deserves a careful ad hoc
investigation.
Evolution variational inequalities in metric spaces: this is the strongest point of view, which is
related to the metric evolution variational inequality (EVIλ) and goes back to Bénilan [10]
notion of integral solutions to evolution equations in Banach spaces. Its application to gradient
flows in metric spaces has been developed in [3] and it will be adopted in these notes.

2. Gradient flows and evolution variational inequalities in metric spaces

The aim of this section is to study the metric notion of gradient flows associated to the (metric
formulation of the) evolution variational inequality (EVIλ).

Throughout the rest of these notes, (X, d) will be a complete and separable metric space and
φ : X → (−∞,+∞] a proper and l.s.c. functional on X with non empty domain D(φ) = {v ∈ X :
φ(v) < +∞}. We will look for curves u : [0,+∞) → X which satisfy properties that depend only
on the metric structure of X and that in the case of a smooth function φ = ϕ on X = Rd satisfy
the ODE (1.2).

2.1. A few metric concepts. Let us first recall the notion of metric velocity and metric slope

(see e.g. [3]).

Definition 2.1 (Absolutely continuous curves). We say that a curve v : (a, b) ⊂ R → X belongs

to AC
p

(loc)
(a, b;X) for some p ∈ [1,+∞] if there exists m ∈ L

p

(loc)
(a, b) such that

d(vs, vt) ≤
�

t

s

m(r) dr for every a < s ≤ t < b. (2.1)

If p = 1 we say that v is a (locally) absolutely continuous curve.

Theorem 2.2 (Metric derivative). If v : (a, b) → X is an absolutely continuous curve then the

limit

|v�|(t) = lim
s→t

d(vs, vt)
|t− s| (2.2)

exists for L 1
-a.e. t ∈ (a, b) and it is called metric derivative of v at the point t. Moreover, the

function t �→ |v�|(t) belongs to L
1(a, b), it is an admissible integrand for the right hand side of

(2.1), and it is minimal in the following sense:

|v�|(t) ≤ m(t) for L 1
-a.e. t ∈ (a, b), for each function m satisfying (2.1).

Definition 2.3 (Metric Slope). The metric slope of φ at a point v ∈ X is given by

|∂φ|(v) =






+∞ if v �∈ D(φ),
0 if v ∈ D(φ) is isolated,

lim sup
w→v

�
φ(v)− φ(w)

�+

d(v, w)
otherwise.

(2.3)

2.2. Structural properties of solutions to Evolution Variational Inequalities. The next
(quite restrictive) definition is modeled on the case of λ-convex functionals in Euclidean-like spaces
and has been introduced and discussed in [3, Chap. 4].

Definition 2.4 (EVI and Gradient flow). A solution of the evolution variational inequality

EVIλ(X, d, φ), λ ∈ R, is a locally absolutely continuous curve u : t ∈ (0,+∞) �→ ut ∈ D(φ)
such that

1
2

d
dt

d2(ut, v) +
λ

2
d2(ut, v) ≤ φ(v)− φ(ut) L 1

-a.e. in (0,+∞), for every v ∈ D(φ). (EVIλ)
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A λ-gradient flow of φ is a family of continuous maps St : D(φ) → D(φ), t > 0, such that for

every u ∈ D(φ)

lim
t↓0

St(u) = u =: S0(u), St+h(u) = Sh(St(u)) for every t, h ≥ 0, (2.4a)

the curve t �→ St(u) is a solution of EVIλ(X, d, φ). (2.4b)

The next result shows that (EVIλ) can be formulated avoiding differentiation and without
assuming the absolute continuity of u (see [60] for the proof).

Theorem 2.5 (Derivative free characterization of solutions to (EVIλ)). A curve u : (0,+∞) →
D(φ) is a solution of EVIλ(X, d, φ) according to Definition 2.4 if and only if for every s, t ∈
(0,+∞) with s < t and v ∈ D(φ)

eλ(t−s)

2
d2(ut, v)− 1

2
d2(us, v) ≤ Eλ(t− s)

�
φ(v)− φ(ut)

�
. (EVI�

λ
)

Notice that (EVI�
λ
) yields the pointwise right-upper differential inequality

1
2

d
dt

+

d2(ut, v) +
λ

2
d2(ut, v) ≤ φ(v)− φ(ut) for every v ∈ D(φ), (2.5)

at every time t > 0: here d

dt

+
ζ denotes the right-upper Dini derivative lim sup

h↓0 h
−1(ζ(t+h)−ζ(t)).

The next result collects many useful properties of solutions to EVIλ(X, d, φ) (see [60] and an
analogous result of [4] in the Wasserstein framework): they reproduce in the metric framework the
estimates of the previous section and show that (EVIλ) contains all the information concerning
the gradient flow of φ.

Theorem 2.6 (Properties of solutions to (EVIλ)). Let u, u
1
, u

2 : [0,+∞) → X be solutions of

EVIλ(X, d, φ).
λ-contraction and uniqueness:

d(u1

t
, u

2

t
) ≤ e−λ(t−s)d(u1

s
, u

2

s
) for every 0 ≤ s < t < +∞. (2.6)

In particular, for every u0 ∈ D(φ) there is at most one solution u of EVIλ(X, d, φ) satis-

fying the initial condition limt↓0 ut = u0.

Regularizing effects: u is locally Lipschitz continuous in (0,+∞) and ut ∈ D(|∂φ|) ⊂
D(φ) for every t > 0. Moreover in the time interval [0,+∞)

the map t �→ φ(ut) is non-increasing and (locally semi-, if λ < 0) convex, (2.7)

the map t �→ eλt|∂φ|(ut) is non-increasing and right continuous, (2.8)

the following regularization/a priori estimate holds

eλt

2
d2(ut, v) + Eλ(t)

�
φ(ut)− φ(v)

�
+

�
Eλ(t)

�2

2
|∂φ|2(ut) ≤

1
2
d2(u0, v) (2.9)

for every v ∈ D(φ); in particular

φ(ut) ≤ φ(v) +
1

2Eλ(t)
d2(u0, v), (2.10)

|∂φ|2(ut) ≤
1

2eλt − 1
|∂φ|2(v) +

1
(Eλ(t))2

d2(u0, v) if − λt < log 2. (2.11)

Asymptotic expansion for t ↓ 0: If u0 ∈ D(|∂φ|) and λ ≤ 0 then for every v ∈ D(φ) and

t ≥ 0

e2λt

2
d2(ut, v)− 1

2
d2(u0, v) ≤ E2λ(t)

�
φ(v)− φ(u0)

�
+

t
2

2
|∂φ|2(u0). (2.12)
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Right and left limits, energy identity: For every t > 0 the right limits

|u̇t+| := lim
h↓0

d(ut, ut+h)
h

,
d
dt

φ(ut+) := lim
h↓0

φ(ut+h)− φ(ut)
h

(2.13)

exist, they satisfy

d
dt

φ(ut+) = −|u̇t+|2 = −|∂φ|2(ut), (2.14)

and they define a right continuous map. (2.13) and (2.14) hold at t = 0 iff u0 ∈ D(|∂φ|).
Moreover, there exists an at most countable set C ⊂ (0,+∞) such that the analogous

identities for the left limits hold for every t ∈ (0,+∞) \ C.

Asymptotic behavior: If λ > 0, then φ admits a unique minimum point ū and for every

t ≥ t0 ≥ 0 we have

λ

2
d2(ut, ū) ≤ φ(ut)− φ(ū) ≤ 1

2λ
|∂φ|2(ut), (2.15a)

d2(ut, ū) ≤ d2(ut0 , ū)e−λ(t−t0), (2.15b)

φ(ut)− φ(ū) ≤
�
φ(ut0)− φ(ū)

�
e−2λ(t−t0), φ(ut)− φ(ū) ≤ 1

2
eλ(t−t0)d2(ut0 , ū), (2.15c)

|∂φ|(ut) ≤ |∂φ|(ut0)e
−λ(t−t0), |∂φ|(ut) ≤

1
eλ(t−t0)d(ut0 , ū)

. (2.15d)

If λ = 0 and ū is any minimum point of φ then we have

|∂φ|(ut) ≤
d2(u0, u)

t
, φ(ut)− φ(ū) ≤ d2(u0, ū)

2t
,

the map t �→ d2(ut, ū) is not increasing.

(2.16)

Continuity of the energy and the slope: If u
n ∈ C

0([0,+∞);X) are solutions of

EVIλ(X, d, φ) such that limn↑+∞ u
n

0 = u0, then

lim
n↑+∞

φ(un

t
) = φ(ut) for every t > 0, (2.17)

lim
n↑+∞

|∂φ|(un

t
) = |∂φ|(ut) for every t ∈ (0,+∞) \ C. (2.18)

We just sketch the proof of the contraction property (2.6). For a fixed s ∈ (0,+∞) we have that

∂

∂t

1
2
d2(u1

t
, u

2

s
) +

λ

2
d2(u1

t
, u

2

s
) ≤ φ(u2

s
)− φ(u1

t
) for every t ∈ (0,+∞), (2.19)

while for a fixed t ∈ (0,+∞)

∂

∂s

1
2
d2(u1

t
, u

2

s
) +

λ

2
d2(u1

t
, u

2

s
) ≤ φ(u1

t
)− φ(u2

s
) for every s ∈ (0,+∞). (2.20)

Adding (2.19) and (2.20) we get

∂

∂t

1
2
d2(u1

t
, u

2

s
) +

∂

∂s

1
2
d2(u1

t
, u

2

s
) + λd2(u1

t
, u

2

s
) ≤ 0;

Applying [3, Lemma 4.3.4] we obtain

d
dt

d2(u1

t
, u

2

t
) ≤ −2λd2(u1

t
, u

2

t
) L 1-a.e. in (0,+∞)

and therefore we obtain (2.6). �

Theorem 2.6 concerns each single solution to (EVIλ); when the λ-gradient flow St of φ exists
we have further interesting properties, showing that the formulation by (EVIλ) is really stronger
than all the other metric approaches.
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2.3. λ-Gradient flows and λ-convexity along geodesics. Let us first recall the notion of
(minimal, constant speed) geodesics in a metric space X and the related convexity.

Definition 2.7 (Constant speed geodesics). A curve γ : [0, 1] → X is a constant speed geodesic
(or simply geodesic) if

d(γs, γt) = |t− s| d(γ0, γ1) for every 0 ≤ s ≤ t ≤ 1. (2.21)

A set D ⊂ X is geodesically convex if every couple of points x0, x1 ∈ D can be connected by a

geodesic γ contained in D.

Definition 2.8 (λ-convexity along curves and geodesically λ-convex functionals). We say that

φ : X → (−∞,+∞] is λ-convex along a curve γ : [0, 1] → X if

φ(γs) ≤ (1− s)φ(γ0) + sφ(γ1)−
λ

2
s(1− s)d2(γ0, γ1) for every s ∈ [0, 1]. (2.22)

We say that φ is geodesically λ-convex if every couple of points x0, x1 ∈ D(φ) can be connected by

a geodesic γ along which φ is λ-convex. If φ is geodesically convex and it is λ-convex along every
geodesic connecting x0, x1 ∈ D(φ) in D(φ) then we say that φ is strongly geodesically λ-convex.

Theorem 2.9 ([27]). If the λ-gradient flow St of φ exists then φ is λ-convex along any geodesic

in D(φ). In particular, if D(φ) is geodesically convex, then φ is strongly geodesically λ-convex.

Proof. Let γ : s ∈ [0, 1] �→ γ
s ∈ D(φ) be a geodesic with γ

0
, γ

1 ∈ D(φ) and let us set γ
s

t
:= St(γs).

Applying (EVI�
λ
) we have for every s ∈ [0, 1] and t > 0

1
2
eλtd2(γs

t
, γ

0)− 1
2
d2(γs

, γ
0) ≤ Eλ(t)

�
φ(γ0)− φ(γs

t
)
�
, (2.23)

1
2
eλtd2(γs

t
, γ

1)− 1
2
d2(γs

, γ
1) ≤ Eλ(t)

�
φ(γ1)− φ(γs

t
)
�
. (2.24)

Multiplying (2.23) by (1− s) and (2.24) by s and adding the two inequalities we get

eλt

2
�
(1− s)d2(γs

t
, γ

0) + sd2(γs

t
, γ

1)
�
− 1

2
�
(1− s)d2(γs

, γ
0) + sd2(γs

, γ
1)

�

≤ Eλ(t)
�
(1− s)φ(γ0) + sφ(γ1)− φ(γs

t
)
�
. (2.25)

We now observe that the elementary inequality

(1− s)a2 + sb
2 ≥ s(1− s)(a + b)2 for every a, b ∈ R, s ∈ [0, 1], (2.26)

and the triangular inequality yield

(1− s)d2(γs

t
, γ

0) + sd2(γs

t
, γ

1)
(2.26)

≥ s(1− s)
�
d(γs

t
, γ

0) + d(γs

t
, γ

1)
�2

≥ s(1− s)d2(γ0
, γ

1). (2.27)

On the other hand, since γ is a geodesic we have

(1− s)d2(γs
, γ

0) + sd2(γs
, γ

1) = s(1− s)d2(γ0
, γ

1). (2.28)

Inserting (2.27) and (2.28) in (2.25) we get

eλt − 1
2

s(1− s)d2(γ0
, γ

1) ≤ Eλ(t)
�
(1− s)φ(γ0) + sφ(γ1)− φ(γs

t
)
�
. (2.29)

Dividing then both sides of (2.29) by Eλ(t) and passing to the limit as t ↓ 0 we obtain

φ(γs) ≤ (1− s)φ(γ0) + sφ(γ1)− λ

2
s(1− s)d2(γ0

, γ
1) for every s ∈ [0, 1].

�
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2.4. λ-gradient flows and curves of maximal slope.

Definition 2.10 (Curves of maximal slope). We say that a curve u ∈ AC
2

loc
(0,+∞;X) is a curve

of maximal slope for the functional φ if the energy dissipation inequality

1
2

�
t

s

|u�|2(r) dr +
1
2

�
t

s

|∂φ|2(ur) dr ≤ φ(us)− φ(ut) (2.30)

holds for all 0 < s ≤ t < +∞.

The notion of curve of maximal slope has been first introduced (in a slightly different form) by
De Giorgi and provides a weak notion of gradient flow for nonsmooth functionals, also nonconvex.
If φ admits a λ-gradient flow according to Definition 2.4, then these two definitions coincide.

Theorem 2.11. Let us assume that the λ-gradient flow S of φ exists and let u ∈ AC
2

loc
(0,+∞;X)

be satisfying (2.30) with limt↓0 ut = u0 ∈ D(φ). Then ut = St(u0) for every t ≥ 0 and (2.30) is in

fact an identity for every 0 ≤ s < t < +∞.

2.5. λ-gradient flows and the minimizing movements variational scheme. A general vari-
ational method to approximate gradient flows (and often to prove their existence) is provided by
the so-called minimizing movements variational scheme. In his original formulation (see e.g. [28]),
the method consists in finding a discrete approximation U

τ
of the continuous gradient flow u by

solving a recursive variational scheme, which is the natural generalization of (1.15) to a metric-
space setting. If τ > 0 denotes the step size of the uniform partition Pτ (1.12), starting from a
suitable approximation U

0
τ

of u0 one looks at each step ((n − 1)τ, nτ ] for the minimizers of the
functional

U �→ Φ(τ, Un−1

τ
;U) :=

1
2τ

d2(U, U
n−1

τ
) + φ(U). (2.31)

U
τ

thus takes a value U
n

τ
∈ argmin Φ(τ, Un−1; ·) on each interval ((n− 1)τ, nτ ].

Definition 2.12 (The minimizing movement variational scheme). Let us consider a time step

τ > 0 and a discrete initial datum U
0
τ
∈ D(φ). A τ -discrete minimizing movement starting from

U
0
τ

is any sequence (Un

τ
)n∈N in D(φ) which satisfies

Φ(τ, Un−1

τ
;Un

τ
) ≤ Φ(τ, Un−1

τ
;V ) for every V ∈ X, n ∈ N. (2.32)

A discrete solution U
τ

is any piecewise constant interpolant of a τ -discrete minimizing movement

on the grid Pτ defined by

Uτ (0) = U
0

τ
, Uτ (t) ≡ U

n

τ
if t ∈ (tn−1

τ
, t

n

τ
], n ≥ 1. (2.33)

The existence of a minimizing sequence {Un

τ
}n∈N is usually obtained by invoking the direct

method of the Calculus of Variations, thus requiring that the functional (2.31) has compact sub-
levels with respect to some Hausdorff topology σ on X (see e.g. the setting of [3, § 2.1]). In the
next section we will discuss another possibility, still considered in [3], when the functional (2.31)
satisfies a strong convexity assumption.

In a general setting it is also possible to avoid these restrictions by applying the Ekeland’s
Variational Principle to the functional (2.31): this approach only requires the completeness of the
metric space.

Definition 2.13 (A relaxed minimizing movement variational scheme). Let us consider a time

step τ > 0, a relaxation parameter η ≥ 0, and a discrete initial datum U
0
τ,η

∈ D(φ). A (τ, η)-
discrete minimizing movement starting from U

0
τ,η

is any sequence (Un

τ,η
)n∈N in D(φ) which satisfies

Φ(τ, Un−1

τ,η
;Un

τ,η
) ≤ Φ(τ, Un−1

τ,η
;V ) +

η

2
d(Un

τ,η
, U

n−1

τ,η
) d(V,U

n

τ,η
) for every V ∈ D(φ), (2.34a)

and the further condition

Φ(τ, Un−1

τ,η
;Un

τ,η
) =

1
2τ

d2(Un

τ,η
, U

n−1

τ,η
) + φ(Un

τ,η
) ≤ φ(Un−1

τ,η
), (2.34b)

for every n ∈ N. A (τ, η)-discrete solution U
τ,η

is any piecewise constant interpolant of a (τ, η)-
discrete minimizing movement on the grid Pτ , as in (2.33).
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Notice that when η = 0 a solution to (2.34a) is a minimizer of (2.31) (and in particular satisfies
(2.34b)), so that the usual discrete solutions arising from the minimizing movement scheme are
included in this more general relaxed framework. The next result [60], which follows directly from
Ekeland’s variational principle, shows that the previous scheme is always solvable when η > 0.

Theorem 2.14. Let us assume that X is complete and φ is quadratically bounded from below, i.e.

for some κo, φo ∈ R, o ∈ X

φ(x) +
κo

2
d2(x, o) ≥ φo for every x ∈ X. (2.35)

Then for every η > 0, τ > 0 with τ
−1

> −κ0, and U
0
τ,η
∈ D(φ), the relaxed minimizing movement

scheme admits at least a (τ, η)-discrete solution (Un

τ,η
)n∈N.

Since under the general assumptions of Theorem 2.14 the relaxed minimizing movement scheme
admits a (τ, η)-discrete solution U

τ,η
for fixed η > 0 and arbitrarily small step size τ , it is natural

to ask what its limit as τ ↓ 0. A first result in this direction is provided by the next theorem, which
shows that the minimizing movement scheme is consistent with the definition of λ-gradient flow
2.4. Notice that in Theorem 2.15 we will assume a priori that the λ-gradient flow of φ exists to get
the convergence of U

τ,η
; in Section 3 we will discuss how to remove this strong assumption. Still

it is sometimes useful to know that any λ-gradient flow, no matter how it has been constructed,
admits a uniformly converging discrete approximation, which exhibits nice variational properties.

Theorem 2.15. Let us assume that there exists the λ-gradient flow St of φ according to Definition

2.4 and that D(φ) is geodesically convex. Let τ > 0, η ≥ 0 satisfy η − λ <
1

2τ
, and let the

sequence (Un

τ,η
)n∈N ⊂ D(φ) be a (τ, η)-discrete minimizing movement with U

0
τ,η
∈ D(|∂φ|). Setting

α = ατ,η := 1

2τ
log(1 + 2(λ− η)τ) we have the a priori error estimate

d(St(u0), Uτ,η
(t)) ≤ d(u0, U

0

τ,η
) + e−αT

√
Tτ |∂φ|(U0

τ,η
) for every t ∈ [0, T ]. (2.36)

In particular if for some η ≥ 0 and every τ ∈ (0, τ0) U
τ,η

is a family of (τ, η)-discrete solutions

with U
0
τ,η

= u0 ∈ D(|∂φ|), then limτ↓0 U
τ,η

(t) = St(u0) uniformly on every compact interval.

Let us remark that η has been kept fixed in the previous convergence result, so that the
coefficients ατ,η = 1

2τ
log(1 + 2(λ− η)τ) in the estimate (2.36) are uniformly bounded from below

as τ ↓ 0.

2.6. Stability of λ-gradient flows under Γ-convergence. We conclude this section by showing
a simple stability property of Gradient Flows with respect to perturbations of the generating
functional φ. Here we consider a coercive family of Γ-converging functionals φ

h : X → (−∞,+∞],
h ∈ N̄ = N ∪ {+∞}, which are quadratically bounded from below, uniformly w.r.t. h: for some
o ∈ X, φo, κo ∈ R they satisfy

φ
h(x) +

κo

2
d2(x, o) ≥ φo for every x ∈ X, h ∈ N. (2.37)

In the next definition we jointly recall the (sequential) notions of Γ-convergence and of coercivity
[26, Def. 1.12]. For notational convenience, we will identify monotone subsequences (hn)n∈N with
their unbounded image H = {hn : n ∈ N} ⊂ N; expressions like limh∈H , lim infh∈H have an
obvious meaning as limits for h ↑ +∞, h ∈ H.

Definition 2.16 (Sequential Γ(X, d)-convergence of coercive functionals). We say that (φh)h∈N is

a coercive family of functionals Γ(X, d)-sequentially converging to a proper functional φ
∞ : X →

(−∞,+∞] if the following two conditions are satisfied:

(1) For every infinite subset H ⊂ N and every bounded sequence (xh)h∈H with sup
h∈H

φ
h(xh) <

+∞, there exists an infinite subsequence H
� ⊂ H such that limh∈H� x

h = x
∞ ∈ D(φ∞)

and

lim inf
h∈H�

φ
h(xh) ≥ φ

∞(x∞). (2.38)
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(2) For every x̄
∞ ∈ D(φ∞) there exists a sequence (x̄h)h∈N such that

lim
h↑+∞

d(x̄h
, x̄
∞) = 0, lim

h↑+∞
φ

h(x̄h) = φ
∞(x̄∞). (2.39)

It is possible to prove that a coercive family of λ-convex functionals (φh)h∈N Γ(X, d)-converging
to φ

∞ always satisfies the uniform lower bound (2.37).
Let us now state our first convergence result [60].

Theorem 2.17. Let (φh)h∈N be a coercive family of functionals Γ(X, d)-converging to φ
∞

and let

us assume that the λ-gradient flows Sh
exist for every h ∈ N. Then the functional φ

∞
admits a

λ-gradient flow S∞ and for every sequence u
h

0 ∈ D(φh) converging to u
∞
0 ∈ D(φ∞) we have

lim
h↑+∞

Sh

t
(uh

0 ) = S∞
t

(u∞0 ), lim
h↑+∞

φ
h(Sh

t
(uh

0 )) = φ
∞(S∞

t
(u∞0 )) for every t > 0, (2.40)

locally uniformly on (0,+∞).

Proof. Here we consider the simpler case when (2.37) holds for κo = 0; it is not restrictive to
assume λ ≤ 0 and φo ≥ 0.

Step 1: uniform bounds. We set u
h

t
:= Sh

t
(uh

0 ) and we fix a compact time interval [0, T ], T > 0,
a point o

∞ ∈ D(φ∞) and a corresponding sequence o
h as in (2.39). (EVI�

λ
) yields

d2(uh

t
, o

h) ≤
�
d2(u0

h
, o

h) + 2Eλ(t) φ
h(oh)

�
e−λt; (2.41)

and therefore there exists a constant C1(T ) independent of h such that

d(uh

t
, o

h) ≤ C1(T ) for every t ∈ [0, T ], h ∈ N. (2.42)

The regularizing estimate (2.9) yields

eλt

2
d2(uh

t
, o

h) + Eλ(t)φh(uh

t
) +

�
Eλ(t)

�2

2
|∂φ

h|2(uh

t
) ≤ 1

2
d2(uh

0 , o
h) + Eλ(t)φh(oh) ≤ C2(T ) (2.43)

if t ∈ (0, T ], for a suitable constant C2(T ) independent of h.
In particular for every 0 < S < T there exists a constant C(S, T ) such that

φ
h(uh

t
) ≤ C(S, T ), |∂φ

h|(uh

t
) = |u̇h

t+| ≤ C(S, T ) for every t ∈ [S, T ]. (2.44)

Step 2: compactness. By the estimates of the previous point, the sequence (uh)h∈N is uniformly
Lipschitz in each bounded interval [S, T ] of (0,+∞) and for every fixed t {uh

t
}h∈N satisfies the

assumptions of Definition 2.16, so that (uh

t
)h∈N is relatively compact in X. Applying Ascoli-Arzelà

theorem we can find a subsequence H = (hn)n∈N such that u
hn converge locally uniformly in time

to a locally Lipschitz curve u
∞ in (0,+∞).

Step 3: characterization of the limit. Let us now fix an arbitrary point v
∞ ∈ D(φ∞) and a

corresponding approximating sequence v
h ∈ D(φh) as in (2.39). By (EVI�

λ
) of Theorem 2.5 we

know that
eλ(t−s)

2
d2(uh

t
, v

h)− 1
2
d2(uh

s
, v

h) ≤ Eλ(t− s)
�
φ

h(vh)− φ
h(uh

t
)
�
; (2.45)

We then pass to the limit in (2.45) as h ↑ +∞, h ∈ H, using the facts that u
h

t
converges pointwise

to ut in X and applying (2.38) for u
h

t
and (2.39) for v

h; we obtain

eλ(t−s)

2
d2(u∞

t
, v
∞)− 1

2
d2(u∞

s
, v
∞) ≤ Eλ(t− s)

�
φ(v∞)− φ(u∞

t
)
�

(2.46)

for every v
∞ ∈ D(φ∞), 0 ≤ s < t. A further application of Theorem 2.5 shows that u

∞ solves
EVIλ(X, d, φ

∞).
In order to check that limt↓0 u

∞
t

= u
∞
0 we use (2.46) at s = 0 and the lower semicontinuity of

φ
∞, which yields

lim sup
t↓0

d2(u∞
t

, v
∞) ≤ d2(u∞0 , v

∞) for every v
∞ ∈ D(φ∞); (2.47)

since u
∞
0 ∈ D(φ∞) we conclude that limt↓0 d(u∞

t
, u
∞
0 ) = 0.

Since the limit is the unique solution of EVIλ(X, d, φ
∞) starting from u

∞
0 , we conclude that

the whole sequence u
h converge to u

∞.
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Step 4: convergence of energy. We argue as in the proof of (2.17) and (2.18): for a fixed t > 0
and applying (2.39) to u

∞
t

we find a sequence (ūh

t
)h∈N converging to u

∞
t

with limh↑+∞ φ
h(ūh

t
) =

φ
∞(u∞

t
). By estimate (2.43), the slope |∂φ

h|(uh

t
) is uniformly bounded by a constant Mt so that

φ
h(ūh

t
) ≥ φ

h(uh

t
)−Mtd(ūh

t
, u

h

t
)− λ

2
d2(ūh

t
, u

h

t
).

Passing to the limit as h ↑ +∞ we get lim sup
h↑+∞ φ

h(uh

t
) ≤ φ

∞(u∞
t

), which combined with
(2.38) yields the second identity of (2.40). �

3. Convergence of the minimizing movement method and generation results

We have seen in Theorem 2.15 a first convergence theorem for the relaxed minimizing movement
method: it basically says that if φ admits a λ-gradient flow according to Definition 2.4 then any
family of discrete solutions converges to the unique continuous solution of (EVIλ) as the time step
converges to 0.

In this section we revert this point of view and we try to prove the existence of the λ-gradient

flow when φ is geodesically λ-convex by studying the convergence of the (relaxed) minimizing
movement Method.

In the following we present three different results in this direction:
(1) A simpler convergence result when the sublevels of φ are locally compact : in this case we

avoid any geometric restriction on the distance d of X and we do not need any Cauchy
estimate. On the other hand, the (not necessarily unique) limit points of the discrete
solutions are just curves of Maximal Slope, according to Definition 2.10: in general it is
not possible to prove that they solve (EVIλ).

(2) A first generation result for λ-gradient flows, by assuming that the minimizing movement
generating functional Φ(τ, U ;V ) defined by (2.31) satisfies a suitable convexity property
(which results from the combination of the convexity of d2 and of φ).

(3) A second generation result when d2(·, v) is semiconcave along geodesics and the metric
space satisfies a local angle condition between triple of geodesics emanating from the same
point.

Differently from the first approach, the last ones provide explicit Cauchy estimates ensuring the
convergence of the method and do not require any local compactness of the sublevels of φ.

3.1. Convergence of the variational scheme in the locally compact case. Let us first
consider the case when φ is geodesically λ-convex and its sublevels are locally compact, i.e.∃ o ∈ X

s.t. �
x ∈ X : φ(x) ≤ R and d(x, o) ≤ R

�
are compact in X for every R > 0. (3.1)

Combining [3, Proposition 2.2.3, Corollary 2.4.11] we get

Theorem 3.1 (Limits of discrete minimizing movements are curves of maximal slope). If φ is

geodesically λ-convex and satisfies (3.1) then for every τ > 0 satisfying τ
−1

> −λ and U
0
τ
∈ D(φ)

the minimizing movement variational scheme admits at least one solution (Un

τ
)n∈N. If moreover

lim
τ↓0

U
0

τ
= u0, lim

τ↓0
φ(U0

τ
) = φ(u0), (3.2)

and U
τ

is a family of discrete solutions, any infinitesimal sequence of time steps τn ↓ 0 admits a

convergent subsequence (still denoted by τn) and a limit curve u ∈ AC
2

loc
([0,+∞);X) such that

lim
n↑+∞

U
τn

(t) = ut, lim
n↑+∞

φ(U
τn

(t)) = φ(ut) for every t ≥ 0 (3.3)

uniformly in each compact interval [0, T ]. u is a curve of maximal slope (see Definition 2.10),

satisfying the energy identity

1
2

�
t

s

|u�|2(r) dr +
1
2

�
t

s

|∂φ|2(ur) dr = φ(us)− φ(ut) for all 0 < s ≤ t < +∞. (3.4)
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Corollary 3.2 (Existence of Curves of Maximal Slope). Under the same assumptions of the

previous theorem, for every u0 ∈ D(φ) there exists a curve of maximal slope u ∈ AC
2

loc
([0,+∞);X)

starting from u0 and satisfying (3.4).

3.2. Generation of λ-gradient flows by strong convexity of Φ. In the case when X is an
Hilbert space and φ is a l.s.c. λ-convex functional, it is well known that the minimizing movement
variational scheme admits a unique solution and the corresponding discrete solution Uτ converges
to the solution of (EVIλ). Applying this approximation scheme, it is then possible to show the
existence of the λ-gradient flow of φ according to Definition 2.4.

Similar results for minimizing movements of convex functionals in Banach spaces do not always
hold: indeed, the characterization of gradient flows through the EVI depends not only on the
convexity of φ but also on structural properties of the distance d.
One fundamental property is the 1-convexity of the function v �→ 1

2
d(v, w)2, i.e.

d2(vs, w) ≤(1− s)d2(v0, w) + sd2(v1, w)− s(1− s)d2(v0, v1)
for every v0, v1, for every [0, 1] � s �→ vs geodesic between v0 and v1, (3.5)

which in Banach spaces is equivalent to the fact that d is induced by a scalar product.
(3.5) is satisfied by the geodesic distance on Riemannian manifolds of non-positive sectional cur-
vature and characterizes the Aleksandrov non-positively curved (NPC) length spaces, see e.g.
[37, 15].

Actually, using (3.5) and adapting a Crandall-Liggett argument, Mayer [46] was able to prove
(1.26) and then (1.27) also for geodesically convex functionals on NPC spaces.

A crucial consequence of (3.5) and the λ-convexity of φ is that the generating functional
Φ(τ, V ;U) of the minimizing movement scheme (2.31)

Φ(τ, V ;U) :=
1
2τ

d2(U, V ) + φ(U) τ > 0, U, V ∈ X, (3.6)

satisfies the τ
−1 + λ-convexity condition along geodesics, i.e.

the map U �→ Φ(τ, V ;U) is geodesically (τ−1 + λ)-convex for every V ∈ X. (3.7)

One of the main contributions of [3, Chapter 4] is to show that (3.7) can be relaxed, by assuming
the (τ−1 + λ)-convexity of Φ(τ, V ; ·) along more general families of curves in X connecting two
arbitrary points in D(φ).

This improvement has been essential to apply the generation result in Wasserstein spaces, which
do not satisfy (3.5) except for the 1-dimensional case.

Theorem 3.3 (Convergence of the minimizing movement scheme and generation result [3]). Let us

assume that the functional Φ defined in (3.6) satisfies the following property: for every V,U0, U1 ∈
D(φ) there exists a curve γs : [0, 1] → X with γ0 = U0 and γ1 = U1, such that

U �→ Φ(τ, V ;U) is

�
1
τ

+ λ

�
-convex on γ for each 0 < τ <

1
λ−

, (3.8)

i.e.

Φ(τ, V ; γs) ≤ (1− s)Φ(τ, V ;U0) + sΦ(τ, V ;U1)−
1 + λτ

2τ
s(1− s)d2(U0, U1). (3.9)

(1) For every U
0
τ

= u0 ∈ D(φ) and τ > 0 with 1 + τλ > 0 the minimizing movement method

2.12 admits a unique solution (Un

τ
)n∈N ⊂ D(φ)

(2) The corresponding discrete solutions Ūτ converge to u as τ ↓ 0 uniformly on compact

intervals.

(3) The limit u is the unique solution of (EVIλ). In particular, φ admits a λ-gradient flow

according to Definition 2.4, thus satisfying all the properties stated in Theorem 2.6.

(4) There exist universal constants Cλ,T such that if u0 ∈ D(|∂φ|) the optimal error estimate

holds:

d(u(t), Ūτ (t)) ≤ Cλ,T |∂φ|(u0) τ for every t ∈ [0, T ]. (3.10)
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The main arguments of the proof of Theorem 3.3 in a simplified setting can be found in [62]. Sub-
optimal convergence estimates, inspired by the Crandall-Ligget approach, have also been obtained
in a different way in [5] and in [23].

3.3. Generation results for geodesically convex functionals in spaces with a semicon-
cave squared distance. In this subsection we consider a geodesically λ-convex functional in a
complete metric space (X, d) whose squared distance satisfies a semi-concavity condition.

Definition 3.4 (Semi-concavity of the squared distance function). We say that D(φ) ⊂ X is a

K-SC (Semi-Concave) space if for every geodesic [0, 1] � s �→ vs ∈ D(φ) and for every w ∈ D(φ)
we have

d2(vs, w) ≥ (1− s)d2(v0, w) + sd2(v1, w)−Ks(1− s)d2(v0, v1) for every s ∈ [0, 1]. (3.11)

Examples of K-SC spaces
-PC spaces: X is positively curved (PC) in the Aleksandrov sense if and only if X is K-SC with
K = 1.
-Aleksandrov spaces: if X is an Aleksandrov space whose curvature is bounded from below by
a negative constant −k and D = diam(X) < +∞, then X is a K-SC space with K = D

√
k

tanh(D
√

k)
.

This class includes all Riemannian manifolds whose sectional curvature is bounded from below.
-Product and L

2-spaces: if {(Xi, di)}i∈N is a countable collection of K-SC spaces, then the
product

�
i∈N

Xi with the usual product distance is a K-SC space. If µ is a finite measure on some

separable measure space Ω, then X := L
2
µ
(Ω; X) =

�
f : Ω → X :

�
Ω

d2(f(ω), x0) dµ(ω) <

+∞ for some x0 ∈ X
�

endowed with the distance d
2

X (f, g) =
�
Ω

d2(f(ω), g(ω)) dµ(ω) is K-SC
whenever X is K-SC.
-Wasserstein space: (P2(X), W2) is K-SC if and only if X is K-SC (see the next section).

We will also assume that the (upper) angle between couple of geodesics emanating from the
same point satisfies a suitable condition.

Definition 3.5 (Upper angles). Let x
1
, x

2
be two geodesics emanating from the same initial point

x0 := x
1
0 = x

2
0. Their upper angle �u(x1

, x
2) ∈ [0, π] is defined by

cos(�u(x1
, x

2)) := lim inf
s,t↓0

d2(x0, x
1
s
) + d2(x0, x

2
t
)− d2(x1

s
, x

2
t
)

2d(x0, x
1
s
)d(x0, x

2
t
)

Definition 3.6 (Local angle condition (LAC)). We say that D(φ) ⊂ X satisfies the local angle
condition (LAC) if for any triple of geodesics x

i : [0, 1] → D(φ), i = 1, 2, 3, emanating from

the same initial point x0 the corresponding angles θ
ij := �u(xi

, x
j) satisfy one of the following

equivalent conditions:

1. θ
12 + θ

23 + θ
31 ≤ 2π.

2. There exist a Hilbert space H and vectors w
i ∈ H such that �wi

, w
j�H = cos(θij) for 1 ≤ i, j ≤ 3.

3. For any choice of ξ
1
, ξ

2
, ξ

3 ≥ 0 one has that

3�
i,j=1

cos(θij)ξi
ξ

j ≥ 0.

Examples of (LAC) spaces
-A Banach space X satisfies (LAC) if and only if X is a Hilbert space.
-Riemannian manifolds and Aleksandrov spaces with curvature bounded from below satisfy
(LAC). In particular if (3.11) holds with K = 1 then X satisfies (LAC).
-Product and L

2-spaces:
�
i∈N

Xi satisfies (LAC) if and only if each (Xi, di) does; L
2
µ
(Ω; X)

satisfies (LAC) if and only if X satisfies it.
-Wasserstein space: P2(X) satisfies (LAC) if and only if X does.

Theorem 3.7 (Generation theorem for geodesically λ-convex functionals in K-SC and (LAC)
spaces). Let (X, d) be a complete metric space and let φ : (−∞,+∞] be a proper, l.s.c. and

λ-geodesically convex functional.

(1) For every τ, η > 0 with 1+τλ > 0 and U
0
τ,η

= u0 ∈ D(φ) the relaxed minimizing movement

scheme (2.34a,b) admits at least one solution (Un

τ,η
)n∈N.
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(2) If D(φ) is a K-SC space and satisfies the (LAC) then the discrete solution Ūτ,η converges

to u as τ ↓ 0 uniformly in each compact interval.

(3) The limit u is the unique solution of (EVIλ). In particular, φ admits a λ-gradient flow

according to Definition 2.4, thus satisfying all the properties stated in Theorem 2.6.

4. Wasserstein spaces and diffusion equations

4.1. The Wasserstein space. Here, just to set the notation, we collect some basic definitions
and properties of the Wasserstein space which will be used in the sequel. For a more detailed
overview on this topic we refer to [67, 68], [3] and [4].

Transport maps and couplings. We denote by Xi, for some i ∈ N, a separable and complete metric
space. P(X) is the space of Borel probability measures on X.

If µ ∈ P(X1) and t : X1 → X2 is a Borel map, we denote by t#µ ∈ P(X2) the push-forward

of µ through t, defined by

t#µ(B) := µ(t−1(B)) for every B ∈ B(X2). (4.1)

We denote by π
i, for i = 1, ..., n, the canonical projection operator from a product space

X1 × ...×Xn into Xi, defined by

π
i(x1, ..., xn) := xi.

Given µ1 ∈ P(X1) and µ2 ∈ P(X2), the class Γ(µ1, µ2) of transport plans or couplings between
µ1 and µ2 is defined by

Γ(µ1, µ2) :=
�
γ ∈ P(X1 ×X2) : π

1

#γ = µ1, π
2

#γ = µ2

�
.

To each couple of measures µ1 ∈ P(X1), µ2 = t#µ1 ∈ P(X2) linked by a Borel map t : X1 →
X2 we can associate the coupling

µ := (iX1 × t)#µ1 ∈ P(X1 ×X2), iX1 being the identity map on X1. (4.2)

If µ is representable as in (4.2) we say that µ is induced by t and t is a transport map between µ1

and µ2. Each coupling µ ∈ Γ(µ1, µ2) concentrated on a µ-measurable graph in X1 ×X2 admits
the representation (4.2) for some µ1-measurable map t, which therefore transports µ1 into µ2.

Wasserstein distance. Given a complete and separable metric space (X, d) we denote by P2(X)
the space of Borel probability measures with finite quadratic moment: µ ∈ P(X) belongs to
P2(X) iff

�

X

d2(x, xo) dµ(x) < +∞ for some (and thus any) point xo ∈ X. (4.3)

For every couple of measures µ, ν ∈ P2(X) we consider the Kantorovich problem for the cost d2

W
2

2 (µ, ν) := min
��

X×X

d2(x, y) dγ(x, y) : γ ∈ Γ(µ, ν)
�

. (4.4)

It is not difficult to check, by the direct method of calculus of variations, that the minimum
problem (4.4) admits at least a solution. The subset of Γ(µ, ν) given by the optimal transport

plans for (4.4) will be denoted by Γopt(µ, ν). Notice that if there exists γ = (iX1× t)#µ ∈ Γ(µ, ν),
we have �

X×X

d2(x, y) dγ(x, y) =
�

X

d2(x, t(x)) dµ(x).

The quantity W2(µ, ν) defined by (4.4) is a distance between the measures µ, ν ∈ P2(X) which
enjoys remarkable properties.
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Theorem 4.1. Let (X, d) be a complete and separable metric space. Then, W2 defines a distance

on P2(X) and (P2(X), W2) is a complete and separable metric space. Moreover, for a given

sequence {µk}k∈N ⊂ P2(X) we have

lim
k→+∞

W2(µk, µ) = 0 ⇔






�

X

f dµk →
�

X

f dµ for every f ∈ C
0

b
(X)

lim
R↑+∞

�

X\BR(x0)

d2(x, x0) dµk(x) = 0 uniformly w.r.t. k ∈ N.

The metric space (P2(X), W2) is called the (L2-) Wasserstein space on X. When X = Rd we
denote by Pa

2 (Rd) the subset of P2(Rd) defined by

Pa

2 (Rd) := {µ ∈ P2(Rd) : µ � L d}. (4.5)

Here we recall the following basic result on the existence and uniqueness of optimal transport
plans induced by maps (which are then called optimal transport maps) in the case in which the
initial measure µ belongs to Pa

2 (Rd).

Theorem 4.2 (Existence and uniqueness of optimal transport maps, [38, 12]). For any µ ∈
Pa

2 (Rd) and ν ∈ P2(Rd), Kantorovich’s optimal transport problem (4.4) has a unique solution

γ, which is concentrated on the graph of a transport map t. t is the unique minimizer of Monge’s

optimal transport problem on Rd
for the Euclidean distance

min
��

Rd

|x− r(x)|2 dµ(x) : r#µ = ν

�
.

The map t is cyclically monotone and there exists a convex open set Ω ⊂ Rd
with µ(Rd \ Ω) = 0

and a convex function φ : Ω → R such that t(x) = ∇φ(x) for µ-a.e. x ∈ Ω.

Geodesics and curvature properties of (P2(Rd), W2).

Theorem 4.3 (Geodesics in the Wasserstein space). Given µ, ν ∈ P2(Rd) and γ ∈ Γopt(µ, ν),
the curve

[0, 1] � s �→ µs =
�
(1− s)π1 + sπ

2
�
#

γ.

is a constant speed geodesic between µ and ν, i.e. it satisfies

W2(µs, µt) = |s− t|W2(µ0, µ1) for every s, t ∈ [0, 1].

Vice versa, any constant speed geodesic between µ and ν can be built in this way.

If γ = (i× t)#µ, then

µs =
�
(1− s)i + st

�
#

µ, s ∈ [0, 1].

In particular, (P2(Rd), W2) is a geodesic space.

In view of the application to the Wasserstein framework of the theory of gradient flows in metric
spaces developed in the previous section, we recall the following theorem (see Theorem 7.3.2 and
Example 7.3.3 of [3])

Theorem 4.4 ((P2(Rd), W2) is a PC-space). For any µ0, µ1, µ2 ∈ P2(Rd) we have

W
2

2 (µs, µ2) ≥ (1− s)W 2

2 (µ0, µ2) + sW
2

2 (µ1, µ2)− s(1− s)W 2

2 (µ0, µ1) for every s ∈ [0, 1], (4.6)

where µs is any constant speed geodesic between µ0 and µ1.

Moreover, when d ≥ 2 there is no constant λ ∈ R such that W
2
2 (·, µ2) is λ-convex along geodesics.

According to Aleksandrov’s notion of curvature for metric spaces, (4.6) can be interpreted by
saying that the Wasserstein space is a positively curved metric space (or PC-space).
Then, the square of the Wasserstein distance along geodesics does not satisfy the 1-convexity
assumption (3.5), which would be the most natural to prove the generation Theorem 3.3 for the
gradient flows of λ-convex functionals.

However, the theory developed in the previous section allows for a great flexibility in the choice
of the connecting curves. In particular, for the Wasserstein space on Rd the 1-convexity property
(3.5) is satisfied along the following class of curves:
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Definition 4.5 (Generalized geodesics). A generalized geodesic joining µ2 to µ3 (with base point

µ1) is a curve of the type

[0, 1] � s �→ µ
2→3

s
:= ((1− s)π2 + sπ

3)#µ, (4.7)

where

µ ∈ Γ(µ1, µ2, µ3) and π
1,2

#µ ∈ Γopt(µ1, µ2), π
1,3

#µ ∈ Γopt(µ1, µ3). (4.8)

Here Γ(µ1, µ2, µ3) :=
�
γ ∈ P(Rd × Rd × Rd) : π

i

#
γ = µ

i
, i = 1, 2, 3

�
and π

i,j : Rd × Rd × Rd →
Rd × Rd

is the projection on the i-th and j-th coordinate.

Proposition 4.6 (1-convexity of the Wasserstein distance along generalized geodesics). Let µ1, µ2, µ3 ∈
P2(Rd) and let µ ∈ Γ(µ1, µ2, µ3) such that π

1,i

#
µ ∈ Γopt(µ1, µi), for i = 2, 3. Then,

W
2

2

�
µ

2→3

s
, µ1

�
≤ (1− s)W 2

2 (µ1, µ2) + sW
2

2 (µ1, µ3)− s(1− s)W 2

2 (µ2, µ3) for every s ∈ [0, 1].

In particular, the function
1

2
W

2
2 (µ1, ·) is 1-convex along generalized geodesics.

4.2. Absolutely continuous curves in (P2(Rd), W2). We recall here some basic properties
of absolutely continuous curves in the Wasserstein space, which are related to the “dynamic
interpretation” by Benamou-Brenier [9]. The main result is the following [3, Theorem 8.3.1]:

Theorem 4.7 (Absolutely continuous curves and the continuity equation). Let µt : (0,+∞) →
P2(Rd) be an absolutely continuous curve and let |µ�| ∈ L

1(0,+∞) be its metric derivative. Then

there exists a Borel vector field v : (x, t) �→ vt(x) such that

vt ∈ L
2(µt; Rd), ||vt||L2(µt;Rd) ≤ |µ�|(t) for L 1

-a.e. t ∈ (0,+∞) (4.9)

and the continuity equation

∂

∂t
µt +∇ · (vtµt) = 0 in Rd × (0,+∞) (4.10)

holds in the sense of distributions.

Moreover,

vt ∈ {∇ϕ : ϕ ∈ C∞
c

(Rd)}
L2

(µt;Rd
)

for L 1
-a.e. t ∈ (0,+∞). (4.11)

Conversely, if a curve (0,+∞) � t �→ µt ∈ P2(Rd) is continuous w.r.t. the weak topology on

P(Rd) and it satisfies the continuity equation (4.10) for some Borel vector field vt with

� +∞

0

||vt||L2(µt;Rd) < +∞,

then µt is an absolutely continuous curve and |µ�|(t) ≤ ||vt||L2(µt;Rd) for L 1
-a.e. t ∈ (0,+∞).

Then, the minimal norm for the vector fields vt satisfying (4.10) for an absolutely continuous
curve µt is given by its metric derivative. Furthermore, such “minimal” vector fields satisfy (4.11).
This fact suggests the following definition (we refer to [3, Chap. 8.4]).

Definition 4.8 (Tangent space). Let µ ∈ P2(Rd). We define the tangent space to P2(Rd) at

the point µ as

TanµP2(Rd) := {∇ϕ : ϕ ∈ C∞
c

(Rd)}
L2

(µt;Rd
)

. (4.12)

Proposition 4.9 (Tangent vectors to absolutely continuous curves). Let µt : (0,+∞) → P2(Rd)
be an absolutely continuous curve and let vt ∈ L

2(µt; Rd) be a Borel vector field such that (4.10)
holds. Then vt satisfies (4.9) if and only if vt ∈ TanµtP2(Rd) for L 1

-a.e. t ∈ (0,+∞). The

vector vt is uniquely determined L 1
-a.e. by (4.9) and (4.10).

Tangent vector fields are also strictly related to the first order infinitesimal behavior of the
Wasserstein distance along absolutely continuous curves.
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Proposition 4.10. Let µt : (0,+∞) → P2(Rd) be an absolutely continuous curve and let vt ∈
TanµtP2(Rd) be the tangent vector characterized by Proposition 4.9. Then, for L 1

-a.e. t ∈
(0,+∞) the following property holds:

lim
h→0

W2(µt+h, (i + hvt)#µt)
|h| = 0. (4.13)

Then, if µt and µt+h are linked by an optimal transport map t
µt+h
µt , we have

lim
h→0

t
µt+h
µt − i

h
= vt in L

2(µt; Rd).

As an application of (4.13) we are able to show the L 1-a.e. differentiability of t �→ W2(µt, σ)
along absolutely continuous curves µt in terms of tangent vectors and optimal transport plans;
this provides a useful formula for the left hand side of the (EVIλ)

1
2

d
dt

W
2

2 (µt, σ) ≤ φ(σ)− φ(µt) for every σ ∈ D(φ)

Theorem 4.11. Let µt : (0,+∞) → P2(Rd) be an absolutely continuous curve, let vt ∈ TanµtP2(Rd)
be the tangent vector characterized by Proposition 4.9 and let σ ∈ P2(X). Then

1
2

d
dt

W
2

2 (µt, σ) =
�

Rd×Rd

�x− y,vt(x)�dγ(x, y) for every γ ∈ Γopt(µt, σ), (4.14)

for L 1
-a.e t ∈ (0,+∞). In particular, if µt ∈ Pa

2 (Rd),
1
2

d
dt

W
2

2 (µt, σ) =
�

Rd

�x− tσ

µt
(x),vt(x)�dµt(x), (4.15)

where tσ

µt
is the unique optimal transport map between µt and σ.

4.3. Geodesically λ-convex functionals in P2(Rd). In this section we introduce the three
main classes of λ-geodesically convex functionals on the Wasserstein space (P2(Rd), W2) intro-
duced by McCann [47] (for the proofs of the main results we refer to Chapter 9 of [3]).

Example 4.12 (Potential energy). Let V : Rd → R be a λV -convex function for some λV ∈ R
and let us define the potential energy

V (µ) :=
�

Rd

V (x) dµ(x) for every µ ∈ P2(Rd). (4.16)

For every µ1, µ2 ∈ D(V ) and µ ∈ Γ(µ1, µ2) we have

V
��

(1− s)π1 + sπ
2
�
#

µ
�
≤ (1− s)V (µ1) + sV (µ2)−

λV

2
s(1− s)

�

Rd×Rd

|x− y|2 dµ(x, y). (4.17)

In particular, V is geodesically λV -convex on P2(Rd).

Example 4.13 (Interaction energy). Let λW ≤ 0 and let W : Rd → R be a λW -convex function
with W (−x) = W (x) for every x ∈ Rd, and let us set

W (µ) :=
1
2

��

Rd×Rd

W (x− y) dµ(x) dµ(y) for every µ ∈ P2(Rd). (4.18)

For every µ1, µ2 ∈ D(W ) and µ ∈ Γ(µ1, µ2) we have

W
��

(1− s)π1 + sπ
2
�
#

µ
�
≤ (1− s)W (µ1)+ sW (µ2)−

λW

2
s(1− s)

�

Rd×Rd

|x−y|2 dµ(x, y). (4.19)

In particular, W is geodesically λW -convex on P2(Rd).

Example 4.14 (Internal energy). Let U : [0,+∞) → R be a convex function such that

U(0) = 0, lim inf
s↓0

U(s)
sα

> −∞ for some α >
d

d + 2
, lim

s→+∞

U(s)
s

= +∞ (4.20)

the map s �→ s
d
U(s−d) is convex and non-increasing on (0,+∞). (4.21)
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The internal energy functional

U (µ) :=






�

Rd

U(ρ(x)) dL d(x) if µ � L d, ρ =
dµ

dL d
,

+∞ otherwise.
(4.22)

is geodesically convex and lower semicontinuous in P2(Rd). Among the functionals U with U

satisfying (4.20) and (4.21) we have

the entropy functional U(s) = s log s (4.23)

the power functional U(s) =
s

m

m− 1
, m > 1. (4.24)

Property (4.21) is also satisfied in the range 1 − 1

d
< m < 1; however, since in this case U is

not superlinear at infinity (the third condition of (4.20)), we have to consider the relaxed lower
semicontinuous functional

U ∗(µ) =
�

Rd

ρ
m

m− 1
dL d

, if µ = ρL d + µ
⊥

, µ
⊥ ⊥ L d

.

Example 4.15 (Relative entropy). Let µ, γ be two measures in P(Rd). Then, the relative entropy
of µ w.r.t. γ is the functional defined by

Entγ(µ) :=






�
dµ

dγ
log

dµ

dγ
dγ, if µ � γ,

+∞ otherwise.
(4.25)

We note that (4.25) corresponds to the internal energy associated to the function (4.23) when
γ = L d (which nevertheless is not in P(Rd)).

Proposition 4.16. The relative entropy Entγ is geodesically convex in P2(Rd) if and only if one

of the following conditions holds:

1. γ = e−V L d
for some convex function V : Rd → R; (4.26)

2. γ is log-concave, i.e. for every couple of open sets A, B ⊂ Rd
, t ∈ [0, 1]

log γ((1− t)A + tB) ≥ (1− t) log γ(A) + t log γ(B). (4.27)

Now we introduce the notion of convexity which will be crucial to apply the metric theory of
gradient flows developed in Section 3 to the main examples 4.12, 4.13, 4.14, 4.15 of geodesically
λ-convex functionals in the Wasserstein space.

Definition 4.17 (Convexity along generalized geodesics). Given λ ∈ R, we say that φ : P2(Rd) →
(−∞,+∞] is λ-convex along generalized geodesics if for any µ1, µ2, µ3 ∈ D(φ) there exists a

generalized geodesic [0, 1] � s �→ µ
2→3
s

joining µ2 to µ3 induced by a plan µ satisfying (4.8) such

that

φ(µ2→3

s
) ≤ (1− s)φ(µ2) + sφ(µ3)−

λ

2
s(1− s)

�
|x2 − x3|2 dµ(x1, x2, x3) for every s ∈ [0, 1].

(4.28)

Lemma 4.18. [(1/τ + λ)-convexity of Φ(τ, µ1; ·)] Let φ : P2(Rd) → (−∞,+∞] be a proper

functional which is λ-convex along generalized geodesics for some λ ∈ R. Then, for each µ1 ∈ D(φ)
and for each 0 < τ <

1

λ− the functional

Φ(τ, µ1;µ) :=
1
2τ

W
2

2 (µ1, µ) + φ(µ) satisfies the convexity assumption (3.8).

By Lemma 4.18, whenever φ is proper, l.s.c. and λ-convex along generalized geodesics in P2(Rd)
we can apply Theorem 3.3 and get the existence, uniqueness and regularizing estimates for the
solutions of the EVIλ.

The examples of geodesically convex functionals in P2(Rd) which have been introduced in this
section are also convex along the generalized geodesics.
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Theorem 4.19. The functionals on P2(Rd) considered by the examples 4.12, 4.13 (with λ ≤ 0),
4.14 (under condition (4.21)), and 4.15 (under condition (4.27)) are λ-convex along generalized

geodesics.

4.4. Gradient flows in (P2(Rd), W2) and evolutionary PDE’s. In this section we show some
applications of the generation result 3.3 to the existence, well-posedness, and asymptotic behavior
of nonnegative solutions ρ : Rd × (0,+∞) → R of evolutionary PDE’s of the type

∂

∂t
ρ−∇ ·

�
ρ∇δφ

δρ

�
= 0 in Rd × (0,+∞), (4.29)

where δφ(ρ)

δρ
is the first variation of a suitable integral functional; here we consider the case of

functionals which are a positive linear combination of the three kinds of contributions considered
in the Examples 4.12, 4.13, and 4.14, i.e. φ(ρ) := α1U (ρ) + α2V (ρ) + α3W (ρ) where αi ≥ 0 and

U (ρ) :=
�

Rd

U(ρ(x)) dx,

V (ρ) :=
�

Rd

V (x)ρ(x) dx,

W (ρ) :=
1
2

�

Rd×Rd

W (x− y)ρ(x)ρ(y) dxdy,

(4.30)

so that
δφ(ρ)

δρ
= α1U

�(ρ) + α2V + α3W ∗ ρ. (4.31)

In the particular cases of the Fokker-Planck equation (φ = U + V and U(r) = r log r)

∂

∂t
ρ−∇ · (∇ρ + ρ∇V ) = 0 in Rd × (0,+∞), (4.32)

and of the nonlinear diffusion equations (φ = U , U(r) = 1

m−1
r

m)

∂

∂t
ρ−∆ρ

m = 0, m ≥ 1− 1
d
, (4.33)

the Wasserstein approach has been introduced by the remarkable papers of Jordan-Kinderlehrer-
Otto [36] and Otto [56] and then extended in many interesting directions, covering a wide range
of applications: see e.g. [54, 1, 17, 18, 21, 33, 57, 22, 20, 6, 11, 34, 5, 19, 50, 45, 49].

The results presented here are just examples of the transport approach.

Theorem 4.20. Let V,W, U be as in the examples 4.12, 4.13 and 4.14, let V ,W ,U be defined as

in (4.30), and let φ := α1U + α2V + α3W . For every µ0 ∈ P2(Rd) there exists a unique solution

µt ∈ Liploc(0,+∞;P2(Rd)) satisfying EVIλ(P2(Rd), W2, φ), λ := α2λV + α3λW ,

1
2

d
dt

W
2

2 (µt, σ) ≤ φ(σ)− φ(µt)−
λ

2
W

2

2 (µt, σ) for every σ ∈ D(φ) (4.34)

with lim
t↓0

µt = µ0 in P2(Rd); the curve µ satisfies all the properties stated in Theorem 2.6, the

continuity equation

∂

∂t
µt +∇ · (µt vt) = 0 in Rd × (0,+∞), with (4.35)

vt ∈ TanµtP2(Rd) L 1
-a.e. in (0,+∞) and t �→

�

Rd

|vt|2 dµt = |µ�
t
|2 ∈ L

∞
loc(0,+∞), (4.36)

and for L 1
-a.e. t ∈ (0,+∞) the velocity vector vt ∈ TanµtP2(Rd) satisfies the “subdifferential

inequality”

�

Rd

�vt(x), x− y�+
λ

2
|y − x|2 dγ

t
(x, y) ≤ φ(σ)− φ(µt) for every γ

t
∈ Γopt(µt, σ). (4.37)
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We can give an explicit characterization of the system (4.35), (4.37). Here we consider the
simpler case when U, V, W are differentiable and satisfy a doubling condition: for a function
f : Rh → R it means that there exists a constant C > 0 such that

f(x + y) ≤ C(1 + f(x) + f(y)) for every x, y ∈ Rh
. (4.38)

We also set
LU (r) := rU

�(r)− U(r) if r > 0, LU (0) = 0. (4.39)

Theorem 4.21. Under the same assumptions of the previous theorem, let us also suppose that

U, V, W are differentiable and satisfy the doubling condition (4.38). The locally Lipschitz curve

µ characterized by (4.34) (or by (4.35), (4.37)) solves the following evolutionary PDE’s in Rd ×
(0,+∞)
Transport equation, φ = V , vt = −∇V :

∂

∂t

µt −∇ · (µt∇V ) = 0. (4.40)

Nonlocal interaction equation, φ = W , vt = −(∇W ) ∗ µt

∂

∂t

µt −∇ · (µt(∇W ∗ µt)) = 0. (4.41)

Fokker-Planck equation, φ = U + V , U(r) = r log r, −µtvt = ∇µt + µt∇V

∂

∂t

µt −∇ · (∇µt + µt∇V ) = 0. (4.42)

In this case, µt = ρtL d
with ρt ∈ W

1,1

loc
(Rd) for L 1

-a.e. t ∈ (0,+∞).
Nonlinear diffusion equation, φ = U , µtvt = −∇LU (ρt) where µt = ρtL d � L d

,

∂

∂t

µt −∆(LU (ρt)) = 0, (4.43)

with LU (ρt) ∈ W
1,1

loc
(Rd) for L 1

-a.e. t ∈ (0,+∞).
Drift-diffusion with non local interactions, φ = U + V + W , −µtvt = ∇LU (ρt) + µt∇V +
µt((∇W ) ∗ µt), µt = ρtL d � L d

,

∂

∂t

µt −∇ ·
�
∇LU (ρt) + µt∇V + µt((∇W ) ∗ µt)

�
= 0 (4.44)

We refer to [3, Chap. 11] for the proofs and for more general and detailed results; here we just
give a sketch of the argument showing that (4.35), (4.37) yield (4.42) when φ = U + V in the
case of U(r) = r log r.

Let us fix a time t > 0 where (4.37) holds, a smooth test function ζ ∈ C
∞
c (Rd), and tε := i+ε∇ζ.

If |ε|maxRd �D2
ζ� < 1 the coupling γ

ε
:= (i, tε)#µt is optimal between µt and (tε)#µt so that

(4.37) yields

−ε

�

Rd

�vt(x),∇ζ(x)�dµt(x) ≤ φ((tε)#µt)− φ(µt).

Setting

ρt :=
dµt

dL d
, ρ

ε

t
:=

d(tε)#µt

dL d

we get

−ε

�

Rd

�vt,∇ζ�dµt ≤
�

Rd

ρ
ε

t
log ρ

ε

t
dL d −

�

Rd

ρt log ρt dL d +
�

Rd

�
V (tε(x))− V (x)

�
dµt(x)

Applying the change of variables formula

ρ
ε

t
(tε(x)) det[i + εD2

ζ(x)] = ρt(x),

we obtain

−ε

�

Rd

�vt,∇ζ�dµt ≤ −
�

Rd

ρ(x) log
�
det[i+εD2

ζ(x)]
�
dL d+

�

Rd

�
V (tε(x))−V (x)

�
dµt(x) (4.45)
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Finally, dividing by ε and taking the limit of (4.45) as ε tends to 0 we get

−
�

Rd

�vt,∇ζ�dµt =
�

Rd

�
−∆ζ(x) +∇V (x) · ∇ζ

�
dµt for every ζ ∈ C

∞
c

(Rd),

so that µ satisfies the distributional formulation of (4.42).

4.5. The heat flow on Riemannian manifolds and metric-measure spaces. We conclude
these notes by giving a short account of possible applications of the Wasserstein setting to the
generation of the heat flow in Riemannian manifolds and metric-measure spaces.

Let us start with a compact and smooth Riemannian manifold (M, g); we denote by dg its
Riemannian distance and by γ = Volg ∈ P(M) its (normalized) volume measure.

In P2(M) we consider the Relative Entropy functional Entγ as in (4.25). Von Renesse-Sturm
[66] proved

Theorem 4.22. The Relative Entropy functional Entγ is geodesically λ-convex in P2(M) if and

only if M satisfies the lower Ricci curvature bound

Ric(M) ≥ λ i.e. Ricx(v, v) ≥ λ|v|2
g

for all x ∈ M and v ∈ Tanx(M). (4.46)

In this case, it is possible to show (see [55, 57, 27, 53, 68, 32]) that the Relative Entropy
functional Entγ generates a λ-gradient flow St : P2(M) → P2(M) according to definition 2.4,
which coincides with the classical heat flow on M .

Theorem 4.23. The relative entropy functional Entγ generates a λ-gradient flow St in P2(M)
according to Definition 2.4 (and thus satisfying all the properties stated in Theorems 2.6 and 2.15).

A curve µt ∈ P2(M) is a solution of EVIλ(M, dg,Entγ) if and only if its density ρt = dµt/dγ

solves the Heat equation

∂

∂t
ρt −∆g ρt = 0 in M × (0,+∞),

where ∆g is the Laplace-Beltrami operator on M .

The adimensionality of the form of the Entropy functional (4.25) and the purely metric character
of the EVI suggest that one can use them to define a heat flow on more general measure-metric

spaces (X, d, γ), where (X, d) is a complete and separable metric space and γ ∈ P(X). Indeed, as
it has been often pointed out in the previous sections, the EVI formulation gives nice regularity,
stability and asymptotic properties for the related flow. We briefly sketch two possible approaches:

Approximation by measured Gromov-Hausdorff convergence. We consider a sequence of smooth
and compact Riemannian manifolds (Mh

, dh
,Volh) converging to a limit measure-metric space

(X, d, γ) in the measured Gromov-Hausdorff convergence: it means [64] that a sequence {d̂h}k∈N
of (complete, separable) coupling semidistances on the disjoint union M

h �X exists such that the
restriction of d̂h on M

h (resp. X) coincides with dh (resp. d) and

lim
k↑∞

Ŵ
h

2 (Volh, γ) = 0, Ŵ
h

2 is the Wasserstein distance on P2(Mh �X) induced by d̂h (4.47)

A sequence µ
h ∈ P2(Mh) converges to µ ∈ P2(X) if limk↑+∞ Ŵ

h

2 (µh
, µ) = 0. Adapting the

arguments of Theorem 2.17 it is possible to prove the following asymptotic result:

Theorem 4.24 ([63]). Let us assume that the compact Riemannian manifolds M
h

satisfy the

uniform lower bound on the Ricci curvature Ric(Mh) ≥ λ for some λ ∈ R independent of k

and converge to (X, d, γ) in the measured Gromov-Hausdorff sense. Then the Relative Entropy

functional Entγ admits a λ-gradient flow St on P2(X) and for every sequence of initial measures

µ
h

0 ∈ P2(Mh) converging to µ0 ∈ P2(X) the corresponding solution µ
h

t
of the Heat flow on M

h

converges to St(µ0) in P2(X) for every t > 0.

Applying Theorem 2.9 one finds in particular that the limit Entropy functional Entγ is strongly

geodesically λ-convex (at least when the support of γ is X), a stability result that has been proved
by [65, 42].
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Intrinsic costruction. Starting from Theorem 4.22, Sturm [65] and Lott-Villani [42] intro-
duced the concept of metric-measure spaces (X, d, γ) satisfying a lower Ricci curvature bound, by
requiring that the relative entropy functional Entγ is geodesically λ-convex in P2(X).

Definition 4.25 (Lower Ricci curvature bounds for metric-measure spaces). We say that a metric-

measure space (X, d, γ) has Ricci curvature bounded from below by a certain λ ∈ R (and we write

Ric(X) ≥ λ) if the relative entropy Entγ is λ-geodesically convex on X.

It is then natural to look for other intrinsic properties of X which are sufficient to deduce the
existence of the associated EVI semigroup. It is interesting to notice that if the relative entropy
functional generates a λ-gradient flow St then St is a semigroup of linear operators [63]. In the case
of compact positively curved (PC) Alexandrov spaces the existence of a λ-contracting gradient
flow can be deduced by a general unpublished result of [58] and has been recently proved by Ohta
[52].

In more general cases, we can apply Theorem 3.7:

Theorem 4.26. Let us suppose that (X, d, γ) is a complete and separable metric-measure space

with Ricci curvature bounded from below, according to Definition 4.25, and measure γ with full

support supp(γ) = X. If X satisfies the Local Angle Condition 3.6 and it is K-semiconcave as in

3.4, then the relative entropy functional Entγ generates a λ-gradient flow on P2(X) which can

be uniquely extended to a Markov semigroup (i.e. linear, order preserving, strongly continuous,

contractive) in every space L
p(γ), p ∈ [1,+∞).
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[39] Y. Kōmura. Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan, 19:493–507, 1967.
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[60] G. Savaré. Gradient flows and evolution variational inequalities in metric spaces. In preparation, 2010.
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