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Abbreviations 

 

53BP1 - 53 binding protein-1 

BAC - bacterial artificial chromosome 

Bmp2/BMP2 - bone morphogenetic protein 2 

CVD - cardiovascular disease 

DNA-PK - DNA-dependent protein kinase 

DNA-PKcs - DNA-dependent protein kinase catalytic subunit 

EC(s) - endothelial cell(s) 

ECM - extracellular matrix 

ePPi - extracellular inorganic pyrophosphate 

FTI(s) - farnesyl transferase inhibitor(s) 

HF – heart failure 

HGPS - Hutchinson-Gilford progeria syndrome 

ICMT - isoprenylcysteine carboxyl methyltransferase 

iPSC(s) - induced pluripotent stem cell(s) 

LV – left ventricle 

LVH - left ventricular hypertrophy 

mTOR - mammalian target of rapamycin 

NHEJ - non-homologous end joining 

PWV - pulse wave velocity 

Runx2 - Run-related transcription factor-2 

SMC(s) - smooth muscle cell(s) 

VC – Vascular calcification 

VSMC(s) - vascular smooth muscle cell(s) 
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Abstract 

Aging, the main risk factor for cardiovascular disease (CVD), is becoming progressively 
more prevalent in our societies. A better understanding of how aging promotes CVD is 
therefore urgently needed in order to develop new strategies to reduce disease burden. 
Atherosclerosis and heart failure contribute significantly to age-associated CVD-related 
morbimortality. CVD and aging are both accelerated in patients suffering Hutchinson-
Gilford progeria syndrome (HGPS), a rare genetic disorder caused by the prelamin A mutant 
progerin. Progerin causes extensive atherosclerosis and cardiac electrophysiological 
alterations that invariably lead to premature aging and death. This review summarizes the 
main structural and functional alterations to the cardiovascular system during physiological 
and premature aging and discuss the mechanisms underlying exaggerated CVD and aging 
induced by prelamin A and progerin. Since both proteins are expressed in normally aging 
non-HGPS individuals, and most hallmarks of normal aging occur in progeria, research into 
HGPS can identify mechanisms underlying physiological aging. 

 

1. Learning about physiological cardiovascular aging from Hutchinson-Gilford 
progeria syndrome (HGPS) 

Cardiovascular disease (CVD) is strongly associated with aging and is the leading cause of 
morbimortality worldwide (1, 2). The increasing prevalence of CVD is due in part to 
significant improvements in treatments, which by extending lifespan have contributed to 
progressive societal aging. Population aging is already one of the most important 
demographic phenomena of our times in developed countries and is advancing rapidly in 
much of the developing world, bringing with it a major medical, social and economic impact. 
For example, >20% of Europeans will be 65 or older by 2025, and by 2050 19 countries are 
projected to have at least 10% of their population aged 80 years or over, with many having 
CVD and other age-associated disorders and dependent on the work of others (3). The 
economic cost of treating CVD patients is huge and is projected to increase substantially in 
the coming years. For example, every day EU member states collectively spend more than 
€4 billion on health care (4). Moreover, between 2010 and 2030, total direct medical costs of 
CVD in the United States are projected to triple, and a 61% increase in indirect costs is 
predicted due to CVD-related productivity loss (5). There is therefore an urgent need to 
define the mechanisms by which aging induces deterioration in the cardiovascular system 
independently of other risk factors, most of which are modifiable. This knowledge is essential 
for the provision of sustainable health care to a rapidly ageing population. 

Animal and human studies have identified four main causes of accumulated damage 
that are proposed to drive mammalian aging: genomic instability, telomere attrition, 
epigenetic alterations, and loss of proteostasis (6). These primary hallmarks of aging trigger 
deregulated nutrient sensing, mitochondrial dysfunction, and cellular senescence 
(antagonistic aging hallmarks), processes that lead to stem cell exhaustion and altered 
intercellular communication, the main culprits of aging (integrative hallmarks). These aging 
mechanisms have been identified through the comparison of young and normally aging 
animals or human subjects or through interventional studies assessing how alterations to 
specific genetic pathways and biochemical processes affect lifespan during physiological 
aging. However, there is evidence that research into HGPS (OMIM 176670) may shed light 
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on the cellular and molecular mechanisms driving normal aging and associated CVD. HGPS 
patients exhibit premature aging associated with excessive atherosclerosis and the 
development of cardiac electrical defects, which lead to death typically in the early teens. 
The disease is caused by progerin, a variant of the precursor protein prelamin A produced 
because of a de novo mutation in the LMNA gene (7, 8) (see below). Other human progeroid 
syndromes have been linked to loss-of-function mutations in ZMPSTE24, causing abnormal 
accumulation of prelamin A (9). Remarkably, all the hallmarks of normal aging proposed by 
López-Otín et al. (6) have been described in animal models of progeria, and some have also 
been reported in HGPS patients (reviewed in (6, 10-12)). Moreover, normal aging in non-
HGPS individuals features low level prelamin A and progerin expression in cells and tissues 
(reviewed in (10-13)), including cells within the adventitia, media, and coronary 
atherosclerotic lesions (14). Oxidative stress and telomere shortening, both of which are 
thought to contribute to normal aging (6), have been reported to promote the expression of 
prelamin A (15) and progerin (16) in normal cells. In this review, we summarize the main 
structural and functional alterations in the cardiovascular system during physiological and 
premature aging, and discuss cellular and molecular mechanisms implicated in the 
acceleration of CVD and aging induced by abnormal expression of prelamin A or progerin. 

 

 

2. CVD in physiological aging 

 

2.1. Cardiac alterations 

 

Heart failure (HF) 

HF is a complex clinical syndrome strongly associated with aging and results from any 
structural or functional impairment of ventricular filling or ejection that causes insufficient 
perfusion of peripheral tissues (17, 18). Clinical manifestations of HF are dyspnea and 
fatigue, limited capacity for exercise, and fluid retention, which may lead to pulmonary 
and/or peripheral edema. In a large proportion of aged patients, ejection fraction remains 
unaltered, indicating that overall systolic function is preserved (19, 20). Therefore, age-
related HF in otherwise healthy individuals is attributed to a dysfunction in the diastolic 
filling of the left ventricle (LV), rather than an impairment of systolic function (21). Left 
ventricular dysfunction occurs when the LV loses its ability to relax normally, caused by 
stiffening of the cardiac muscle as a result of fibrosis (22).  

Echocardiographically determined early (E) and late (A) ventricular velocities are both 
altered in aged patients. Aging is associated with a decline in early diastolic LV filling (23-
25). Early diastolic filling occurs after closure of the aortic valve and depends mainly on the 
active relaxation of the myocardium, myocardial compliance, and the pressure gradient from 
the atrium to the ventricle (26). The delay in early emptying is compensated by a more 
vigorous end-diastolic atrial contraction, increasing the A wave and therefore reducing the 
E/A ratio (23-25). As a result, aging does not affect end-diastolic volume at rest. Mechanisms 
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proposed for the reduced early diastolic LV filling rate during aging are fibrosis and 
stiffening of the ventricle (reduced compliance), as well as incomplete myofilament Ca2+ 
recruitment in the preceding systole (reducing active myocardial relaxation) (21, 27).  

 

Left ventricular hypertrophy (LVH) 

The prevalence of LVH, defined as an increase in echocardiographically-measured LV wall 
thickness, increases dramatically with age in men and women (28-30), and stands out as a 
powerful independent predictor for mortality and morbidity, especially in the elderly (28, 
31). Age-associated LVH is the result of a progressive pathologic cardiac remodeling 
involving cardiomyocyte hyperthrophy and death, and collagen deposition (21, 32). Blood 
pressure, obesity, valve disease, and myocardial infarction are independent identified 
conditions that can induce the development of LVH (29). 

 

Cardiac fibrosis 

Aging is associated with increased collagen content in the extracellular matrix (ECM), 
leading to cardiac fibrosis and the development of LVH (33). However, the precise 
mechanisms underlying age-related cardiac remodeling remain largely undefined. Cardiac 
fibrosis during aging has been attributed to the downregulation of matrix-degrading pathways 
and increased collagen crosslinking, rather than to increased collagen synthesis, the main 
cause of cardiac fibrosis in hypertension (34). Fibrosis is also activated to replace dead 
cardiac tissue (34, 35). Fibrosis is a major predisposing factor for mechanical and electrical 
dysfunction in HF, since it reduces the ability of the myocardium to conduct electrical 
impulses, to relax and stretch properly, and to diffuse oxygen, thus increasing the age-related 
incidence of LV and heart-valve dysfunction and arrhythmias (36). The fibrosis-induced 
increase in cardiomyocyte workload combines with the impairment of the physiological 
environment to promote additional cardiomyocyte cell death and the replacement of lost cells 
by fibrotic material, generating a vicious cycle that aggravates cardiac dysfunction (37). 
Furthermore, enhanced collagen deposition and cardiomyocyte hypertrophy are thought to 
be consequences of increased LV workload induced by vessel stiffening (34), highlighting 
the importance of vascular dysfunction in the development of age-associated CVD. 

 

Cardiac valve disease 

Mitral and aortic valves become thicker and stiffer with age, leading to valve dysfunction 
and regurgitation (36, 38). Age-related functional impairment of heart valves due to 
calcification and connective tissue degeneration might be caused by progressive alterations 
to the ECM, resulting in loss of elasto-mechanical force, weakness, and stiffening and driving 
inflammation and further calcification (36, 38). 
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Hearth rhythm alterations 

Cardiac output at rest is not modified by aging, since both stroke volume and heart rate are 
maintained. However, the aged heart has reduced capacity to increase heart rate, and 
therefore cardiac output, in response to physical exercise. Hence, the maximum acute cardiac 
output reserve decreases by around 30% between the ages of 20 and 85 years (39). This effect 
may account for the age-associated reduced physical performance capacity and increased 
fatigue after exercise.  

The prevalence of atrial fibrillation also increases with age, and is epidemiologically 
associated with hypertension, heart-valve disease, and HF (40). Factors suggested to 
contribute to atrial fibrillation are overt sinus node dysfunction and altered autonomous 
nervous regulation (41, 42). Aging reduces the intrinsic pacemaker activity of the sinoatrial 
node, likely due to fibrosis, alterations to electrical conduction, and changes in the sinoatrial 
node action potential (43). 

 

Defective autonomic cardiovascular regulation 

Alterations in the autonomic regulation of the heart and blood vessels during aging have a 
major impact on cardiac and vascular functions, such as heart rate, myocardial contractility, 
myocardial relaxation, and vascular regulation of blood flow. Aging-associated autonomic 
cardiovascular dysregulation includes elevated sympathetic activity linked to increased 
plasma levels of catecholamines, decreased β-adrenergic sensitivity, and decreased 
baroreflex sensitivity. The causes of these aging-related alterations remain poorly 
understood; however, increased sympathetic activity has been suggested as a mechanism to 
compensate the decreases in baroreflex sensitivity and β-adrenergic postsynaptic activity (21, 
44-46). 

 

 

2.2. Vascular alterations  

 

Hypertension 

The classic assumption that aging causes hypertension is today disputed (47). Data from 
longitudinal studies led some authors to propose that the aging-associated sympathetic 
activity increases blood pressure (44); however, whether this increase crosses the threshold 
to hypertension depends upon the initial blood pressure values in youth (48). Sun et al. (49) 
emphasize the etiological involvement of vascular stiffening in blood pressure elevation, 
suggesting that large artery stiffening underlies the drop in sympathetic baroreflex sensitivity, 
which is subsequently compensated by sympathetic activation. In human, the baroreflexes 
rapidly and reflexively modulate blood pressure, and their impairment with aging is therefore 
also associated with a decline in blood pressure variability (50, 51).  
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Vascular stiffening, endothelial dysfunction, and atherosclerosis 

Two major age-related vascular alterations are arterial stiffening and endothelial dysfunction 
(1, 2, 52). Arterial stiffening is noninvasively calculated from the pulse wave velocity (PWV) 
and is a highly reliable, blood pressure-independent predictor of cardiac events in a variety 
of adult populations, including the elderly (53). Carotid-femoral PWV increases 
progressively from around the age of 50 and arterial stiffness can reach an incidence of 64% 
to 74% in the geriatric population (54, 55). Increased stiffness of the large arteries places a 
strain on the heart, leading to cardiac fibrosis and HF. Vessel stiffening also sets a fertile 
stage for the initiation and progression of hypertension and atherosclerosis in the elderly by 
promoting cellular dysfunction in the vessel wall (56). The mechanisms underlying age-
induced arterial stiffening include ECM alterations and associated increases in fibrosis and 
inflammation (49). Age-induced alterations in ECM structure and composition in the artery 
wall are due to increased collagen deposition and crosslinking, accumulation of advanced 
glycation end-products, and elastin fiber breakage. Progressive fibrosis in the tunica media 
is one of the suspected underlying mechanisms predisposing to inflammation and 
atherosclerosis during aging (45, 56, 57).  

Aging is also associated with endothelial dysfunction, which alters homeostatic EC 
function, including the control of vascular tone, vascular permeability, and inflammation 
(52). Age-related accumulation of dysfunctional ECs is associated with decreased 
bioavailability of the cellular messenger nitric oxide (52), which increases permeability and 
inflammation and triggers a positive feedback that aggravates the phenomenon in the long 
term (58). Endothelial dysfunction is a major determinant of both the initiation and 
progression of atherosclerosis, a degenerative process that occurs within large elastic arteries 
during aging (2, 47, 59). Age-associated vascular-wall remodeling includes luminal 
enlargement as well as intimal and medial thickening (60). Intima-media thickening is an 
early sign of human atherosclerosis (47) and is an independent predictor of future 
cardiovascular events (61). Intimal thickening is initiated and sustained by the recruitment of 
blood-borne leukocytes, which is triggered by the activation of adhesion molecules on 
dysfunctional ECs (62). Neointimal leukocytes trigger a complex local immune response that 
further promotes leukocyte recruitment, and induces the migration of vascular smooth muscle 
cells (VSMCs) from the tunica media to the growing atherosclerotic lesion. Activated 
neointimal VSMCs switch from a ‘contractile’ to a ‘synthetic’ phenotype characterized by 
dedifferentiation, proliferation, and abundant secretion of ECM components (63, 64).  

There is persistent controversy about whether atherosclerosis results from the 
accumulation of risk factors with aging or, conversely, aging itself promotes atherosclerosis 
independently of other factors. The important influence of risk factor exposure is attested by 
the lack of atherosclerosis in elderly members of isolated tribal societies (65) and by its 
presence in children with a high risk exposure (66), suggesting that it is possible to age 
without atherosclerosis. However, signs of atherosclerosis have been detected in ancient 
mummified human remains from societies not exposed to modern risk factors (67). This, 
together with the incidence of atherosclerosis in individuals with HGPS and other premature 
aging syndromes, supports the idea that the strongest atherosclerosis risk factor is aging itself. 
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3. CVD in HGPS patients 

HGPS is an ultra-rare human genetic disease, with an estimated prevalence of 1 in 20 million 
people (www.progeriaresearch.org). The disease is characterized by accelerated aging caused 
by a de novo mutation in the LMNA gene (7, 8). In normal cells, alternative splicing of LMNA 
transcripts gives rise to two major A-type lamin variants (lamin A and lamin C) as well as 
minor variants (lamin A∆10 and the germline-specific lamin C2) (68-70). The precursor 
protein prelamin A undergoes several posttranslational modifications to yield mature lamin 
A (Figure 1A). First, a farnesyltransferase farnesylates the cysteine residue at the C-terminal 
cysteine-serine-isoleucine-methionine (CSIM) motif. The 3 C-terminal amino acids are then 
removed, enabling methylation of the new C terminus by isoprenylcysteine carboxyl 
methyltransferase (ICMT). Finally, the zinc metalloprotease ZMPSTE24/FACE-1 removes 
the farnesylated and carboxymethylated 15 C-terminal residues. Mature lamin A is then 
incorporated into the nuclear lamina, a protein scaffolding network that underlies the inner 
nuclear membrane, providing mechanical strength to the nucleus and regulating many 
cellular functions, including DNA replication and repair, chromatin organization, signal 
transduction, and gene transcription (71).  

‘Classic’ progeria in most HGPS patients is caused by a heterozygous de novo 
c.1824C>T (p.Gly608Gly) point mutation in the LMNA gene (7, 8). This synonymous 
mutation creates an aberrant splice site in exon 11 that deletes 150 nucleotides, resulting in 
the synthesis of a truncated prelamin A variant called progerin (∆50 prelamin A) (Figure 1B). 
Lack of the 50 amino acids at the progerin C-terminus impedes cleavage of the terminal 15 
amino acids, causing the accumulation of permanently farnesylated and carboxymethylated 
progerin. ZMPSTE24/FACE-1-inactivating mutations provoke the accumulation of 
farnesylated prelamin A and are also linked to human progeroid syndromes (9). Abnormal 
prelamin A and progerin expression causes multiple structural and functional alterations that 
affect signal transduction, gene transcription, and chromatin organization, ultimately 
provoking growth arrest, cell senescence, cell death, and the acceleration of organismal aging 
(11, 71) (Figure 1B). Remarkably, most of the processes affected in HGPS are implicated in 
normal aging (6). 

HGPS patients appear normal at birth but start to develop symptoms during the first 
12-18 months of life. The disease is characterized by failure to thrive, abnormal dentition, 
alopecia, lipodystrophy, skin abnormalities, joint contractures, osteoporosis, and osteolysis, 
progressively impairing walking and other motor activities. However, the most severe 
medical problem in HGPS patients is atherosclerosis and cardiac electrical abnormalities, 
causing premature death at an average age of 14.6 years, mainly from myocardial infarction 
or stroke (72-76).   

Many of the cardiovascular alterations in HGPS patients also feature in physiological 
aging (Table 1). However, unlike the physiologically elderly, HGPS patients have an elevated 
platelet count and a prolonged prothrombin time (75), and typically lack or are only mildly 
affected by most traditional cardiovascular risk factors. For example, HGPS patients and 
healthy children have similar levels of mean plasma cholesterol, LDL and HDL cholesterol, 
triglyceride, and median C-reactive protein (74, 75, 77). Moreover, ~30% HGPS patients 
show only slight elevation of systolic and diastolic blood pressures compared with age-

http://www.progeriaresearch.org/
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matched healthy children (74, 75, 78). The study of CVD in HGPS therefore offers a unique 
opportunity to identify mechanisms that cause age-associated cardiovascular damage in the 
absence of other risk factors or aging-associated chronic diseases that can secondarily 
influence cardiovascular health. 

As with normal aging, noninvasive imaging in HGPS patients detects patent carotid 
plaques only at later stages (74, 75, 78). However, arterial stenosis affects HGPS patients of 
all ages and may be an early indicator of atherosclerotic plaque formation (74). 
Atherosclerosis in HGPS patients is accompanied by alterations typically seen in normal 
aging, such as inflammation, VSMC loss, and plaque erosion and rupture (74). Nevertheless, 
HGPS vessels also uniquely feature prominent adventitial thickening and fibrosis (14, 79). 
Another feature of physiological aging also found in HGPS is vascular calcification (VC), 
which is associated with augmented CVD-associated morbimortality in the general 
population (80); VC affects the aorta and aortic and mitral valves of some HGPS patients, 
and can cause aortic and/or mitral regurgitation (14, 75, 81-84). Neuroimaging studies in a 
25-patient cohort identified early and clinically silent stroke as a prevalent characteristic of 
HGPS (85). Stroke in HGPS patients can also leave neurologic sequelae (86). 

HGPS is also characterized by vessel stiffening, an alteration associated with 
physiological aging which independently predicts the incidence of future cardiovascular 
events. Analysis of a 21-patient cohort identified vascular stiffening as an early and pervasive 
feature of the disease, detecting PWV values comparable to those typically seen in adults 
older than 60 years (74). While carotid intima-media thickness is normal in HGPS patients, 
their carotid arteries have an above-normal echodensity, especially in the adventitia, 
consistent with elevated vascular fibrosis seen on autopsy (14, 74, 75, 87). Altered ankle-
brachial index in HGPS is an indicator of peripheral artery disease and vascular dysfunction 
(74, 82); nevertheless, endothelial vasodilator function seems to be preserved, since there is 
no alteration to flow-mediated dilation, an indicator of endothelial vasodilator function (75). 
Further studies are warranted to identify the mechanisms underlying progerin-induced 
vascular dysfunction. 

A subset of HGPS patients show electrocardiographic alterations, including 
repolarization abnormalities, such as ST depression/elevation and negative and biphasic T 
waves; these abnormalities are especially evident in patients with LV hypertrophy, diastolic 
dysfunction, or cardiac valve dysfunction at advanced disease stages (74-76, 81, 84). Cardiac 
rhythm in HGPS patients is in the normal range; however, heart rate tends to be below normal 
in older patients (76).  

In summary, the key features of CVD in HGPS patients are vascular stiffening and 
remodeling, with prominent medial and adventitial fibrosis, VSMC loss, accelerated 
atherosclerosis, and premature death from myocardial infarction or stroke. Premature death 
in HGPS might also be linked to arrhythmias resulting from cardiac electrical defects. 
Additional studies are needed to define the precise mechanisms through which progerin 
expression accelerates CVD and to elucidate the relative contribution of cardiac and vascular 
alterations to premature death in HGPS.  
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4. Mouse models of progeria 

An estimated 350 to 400 children live with HGPS worldwide (www.progeriaresearch.org). 
This very low number presents many challenges, both for research to identify mechanisms 
underlying premature aging and associated CVD and for conducting clinical trials to assess 
new therapies. To facilitate HGPS research, a number of strategies have been used over the 
past 15 years to create mouse models of progeria (Table 2). Although none of these models 
fully recapitulates HGPS symptoms, probably due to interspecies differences, they have been 
extremely useful in identifying molecular and cellular mechanisms underlying progeria and 
testing therapeutic strategies. This section summarizes the main characteristics of available 
progeroid mouse models. 

 

4.1. LmnaHG 

Yang and colleagues produced the first HGPS-like mouse model, creating a knock-in mouse 
line carrying a mutant progerin-expressing allele referred to as LmnaHG (‘Hutchinson-
Gilford’) (88, 89). Heterozygous LmnaHG/+ mice express progerin together with lamin A and 
C and start losing weight at 6-8 weeks of age, and either die or require euthanasia by 4-6 
months of age (compared with >2 years average lifespan in wild-type mice). Homozygous 
LmnaHG/HG mice exclusively express progerin and have a more severe phenotype, dying by 
3-4 weeks of age. Both, LmnaHG/+ and LmnaHG/HG present osteoporosis, loss of subcutaneous 
fat, and alopecia, features observed in HGPS patients. Nevertheless, these models show no 
signs of CVD (89). 

 

4.2. G608G BAC 

Varga et al. (90) generated G608G BAC transgenic mice using a bacterial artificial 
chromosome (BAC) harboring a version of the human LMNA gene containing the HGPS-
causing c.1824C>T mutation (p.G608G). These mice express human progerin and 
endogenous mouse lamin A/C but show no overt progeroid features (90). However, autopsy 
studies revealed progressive loss of VSMCs in the large arteries of G608G BAC mice starting 
at 5 months of age. This is accompanied by collagen and proteoglycan deposition in the 
media, broken elastic fibers, and thickened adventitia and medial layers (90), all of which are 
vascular pathologies described in human patients (14, 79, 91). Consistent with the aortic 
phenotype of G608G BAC mice, these animals show impaired vascular responsiveness after 
sodium nitroprusside administration; however, G608G BAC mice present no signs of 
atherosclerotic plaque formation. 

 

4.3. LmnaG609G/G609G 

Osorio et al. (92) generated LmnaG609G knock-in mice carrying a c.1827C>T (p.G609G) 
mutation in the endogenous mouse Lmna gene, equivalent to the HGPS-causing human 
mutation LMNA c.1824C>T (p.G608G). The LmnaG609G allele gives rise to progerin (via 
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aberrant splicing), lamin C, and some residual lamin A, mimicking the situation in HGPS 
patients. Homozygous LmnaG609G/G609G mice appear normal at birth, but from 3 weeks of age 
they develop progeroid symptoms, including failure to thrive, loss of subcutaneous fat, hair 
follicle attrition, and bone alterations, and die at an average age of 15 weeks. These mice also 
exhibit hypoglycemia and altered plasma concentrations of metabolic hormones (increased 
GH and adiponectin and reduced IGF-1, insulin, and leptin). LmnaG609G/G609G mice exhibit 
VSMC loss in the aortic arch, but not in the thoracic aorta. Longitudinal studies revealed 
normal blood pressure, but LmnaG609G/G609G mice progressively developed QRS wave 
prolongation—consistent with altered ventricular depolarization—and bradycardia. On the 
other hand, heterozygous LmnaG609G/+ mice appear normal until ~32 weeks of age, when they 
rapidly develop a severe phenotype similar to that of homozygotes, and die shortly thereafter 
(92). LmnaG609G/+ mice show extensive calcification of the aortic media (93), an important 
feature of human HGPS. Although the LmnaG609G/G609G mouse model recapitulates most 
clinical features of HGPS, there have been no reports of atherosclerosis in this model. 

Lee et al. (94) recently generated a new LmnaG609G/G609G model, which carries a 
HGPS-causing mutation in codon 609 of Lmna and produces progerin via abnormal splicing. 
The phenotype is similar to other HGPS mouse models, including severe VSMC loss in the 
media of the ascending aorta and adventitial fibrosis by 4 months of age. However, the effect 
of the mutation on longevity has not been reported.  

 

4.4. Zmpste24-/- 

The final step in prelamin A maturation is the cleavage of the farnesylated C-terminus by the 
zinc metalloproteinase ZMPSTE24 (Fig. 1A). ZMPSTE24 deficiency in humans results in 
farnesylated prelamin A accumulation, causing various progeria-like syndromes, such as 
restrictive dermopathy (95-97) and mandibuloacral dysplasia (98). Zmpste24-deficient mice 
expressing farnesylated prelamin A thus present an appropriate preclinical model for 
studying premature aging. Zmpste24-/- mice generated by Bergo et al. (99) show postnatal 
growth retardation, alopecia, reduced subcutaneous fat, muscle weakness, and bone 
abnormalities and die by 6-7 months of age. The Zmpste24-/- mouse model generated by 
Pendas et al. (100) has a slightly more severe phenotype, including postnatal growth 
retardation, alopecia, lipodystrophy, skeletal and muscular atrophy, cardiac alterations 
(dilation of both ventricles, interstitial fibrosis, and ventricular wall thinning), and death at 
an average age of 5 months. Recent studies in this progeroid model revealed electrical cardiac 
alterations associated with connexin 43 mislocalization (see below) (76). 

 

5. HGPS: General mechanisms and treatments 

Lamin A/C play major roles in a broad range of cell functions, including maintenance of 
nuclear mechanical stability, signal transduction, gene transcription, chromatin organization, 
DNA damage repair, cell-cycle progression, and cell differentiation and migration (71). By 
affecting multiple pathways, progerin and prelamin A accumulation may therefore trigger 
premature aging through a number of non-mutually exclusive mechanisms. Moreover, the 
profile of activated mechanisms might differ between different tissues depending on 
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differences in the amount of lamin A (and therefore progerin) produced, which is related to 
tissue stiffness (101). 

Mouse and human studies suggest that HGPS severity is determined by both the 
total amount of progerin and the ratio of farnesylated progerin to mature lamin A. Indeed, 
different human LMNA point mutations are associated with major differences in progerin 
levels and disease severity, ranging from neonatal progeria (high progerin level) to late-onset 
progeria (low progerin level) (102-104). Accordingly, in LmnaG609G/G609G mice, the aging 
phenotype is ameliorated and survival prolonged by the reduction in progerin expression with 
antisense morpholinos targeting aberrant Lmna exon 11-exon 12 splicing (92). Progerin 
production, adventitial fibrosis, and VSMC loss in LmnaG609G/G609G mice are also reduced by 
antisense oligonucleotides designed to shift alternative splicing from lamin A toward lamin 
C; however, the effect of this strategy on longevity was not reported (94). 

Unlike mature lamin A, progerin remains permanently farnesylated (Figure 1). The 
hypothesis that persistent farnesylation is a chief cause of progeria was supported by mouse 
and human studies demonstrating progeroid symptoms associated with farnesylated prelamin 
A accumulation caused by ZMPSTE24 deficiency (95, 96, 99, 100). Moreover, a patient with 
both a homozygous loss-of-function ZMPSTE24 mutation and a heterozygous LMNA 
mutation resulting in C-terminal elongation of the final lamin A had a milder-than-usual 
progeroid phenotype, possibly due to reduced levels of farnesylated prelamin A (105). 
Supporting this conclusion, Zmpste24-/- mice with Lmna haplodeficiency display no overt 
aging phenotype (106). The importance of farnesylation in HGPS pathogenesis was 
confirmed by the generation of LmnacsmHG/csmHG mice, which produce nonfarnesylated 
progerin and do not age prematurely (107). Likewise, LmnanPLAO/nPLAO mice, expressing only 
non-farnesylated prelamin A, develop cardiomyopathy but not progeria (108). Moreover, 
treatment with farnesyl transferase inhibitors (FTIs) diminishes nuclear defects in progerin-
expressing cells (88, 109), prevents CVD onset and late progression in progeroid G608G 
BAC mice (110), and prolongs the survival of progeroid Zmpste24-/- and LmnaHG/+ mice (89, 
111). 

Later work showed that FTI treatment results in alternative 
geranylgeranyltransferase-induced prenylation of prelamin A and progerin (112), similar to 
the effect of FTIs on some oncoproteins in cancer therapy (113). Combined treatment of 
Zmpste24-/- mice with statins and aminobisphosphonates to block both prelamin A 
farnesylation and geranylgeranylation improved the progeriod phenotype and prolonged 
lifespan (112). Based on findings in progerin- and prelamin A-expressing mice and cells 
(reviewed in (10)), clinical trials have been conducted with HGPS patients to test the effect 
of treatment with an FTI (lonafarnib) alone or in combination with statins (pravastatin) and 
bisphosphonates (zoledronate) (72, 78, 87). Lonafarnib monotherapy provided some 
improvement in vascular stiffness, bone structure, and audiological status and was estimated 
to increase mean survival by 1.6 years (72, 87). Triple-drug therapy with lonafarnib, 
pravastatin, and zoledronate showed an additional improvement in bone mineral density, but 
there was no cardiovascular improvement compared with lonafarnib monotherapy (78). 
Thus, although farnesylated progerin appears to play a major role in HGPS, current therapies 
to prevent progerin farnesylation appear to provide only a modest benefit.  
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The observation that unfarnesylated and farnesylated progerin both form aggregates 
at the nuclear membrane prompted Kalinowski et al. (114) to suggest that progerin 
association with the inner nuclear membrane also involves increased electrostatic interactions 
and aggregation. In addition, the less heterogeneous and more compact tail of progerin 
compared with normal lamin A may affect its interaction with DNA and other proteins (115).  

Another factor that might contribute to progerin toxicity is altered protein structure, 
due to the deletion of 50 amino acids near the C-terminal region. Abnormal interactions of 
progerin with other nuclear components cause nuclear blebbing, increased thickness and 
stiffness of the nuclear lamina, heterochromatin mislocalization, and alterations to nuclear 
pore complexes (116, 117). Recently, Lee et al. (118) found that progerin binds strongly to 
lamin A/C and that chemical disruption of progerin-lamin A/C heterodimers reduces nuclear 
aberrations, prevents cell senescence, ameliorates progeroid features, and extends lifespan of 
LmnaG609G/G609G mice. 

ICMT-catalyzed carboxymethylation of the progerin C-terminal farnesylcysteine 
residue might also play a role in progeria. Reducing ICMT expression and activity by 70-
90% in hypomorphic Zmpste24-/-Icmthm/hm mice improved body weight, grip strength, and 
bone structure and extended survival compared with control Zmpste24-/-Icmt+/+ littermates 
with intact ICMT (119). Diminished ICMT activity in Zmpste24-/-Icmthm/hm mice was 
associated with prelamin A mislocalization and activation of signaling through AKT and 
mTOR (mammalian target of rapamycin), in turn delaying cell senescence. However, it is 
noteworthy that the mTOR inhibitor rapamycin activated autophagic clearance of progerin 
and reduced nuclear abnormalities (120, 121). These results clearly show that ICMT and 
mTOR are implicated in premature aging, but further studies are needed to define the precise 
underlying mechanisms and relationship between ICMT, AKT, and mTOR. 

 

6. Mechanisms underlying CVD in progeria 

This section summarizes current knowledge of the cellular and molecular mechanisms 
through which prelamin A and progerin damage the cardiovascular system. This knowledge 
is of major interest for understanding the mechanisms implicated in CVD during normal 
aging, since both prelamin A and progerin are expressed at low level in cells and tissues of 
non-HGPS individuals, including medial VSMCs and atherosclerotic lesions (14, 15, 122). 
 

6.1. VSMC loss 

Progressive VSMC loss is a characteristic of HGPS patients (14, 79, 91) and progeria mouse 
models (90, 92, 94), suggesting an important role in progeroid vascular disease. Although 
less severe, depletion of VSMCs in the media also occurs in physiological aging (123).  

VSMCs are subject to high mechanical stress related to blood flow. In normal 
conditions, cells respond to increased shear stress by increasing the expression of lamin A/C 
and changing their nuclear localization (101, 124, 125). Abnormal responses to physical 
stress in progerin-expressing cells may lead to cell damage and death (117, 126). Consistent 
with this notion, sustained mechanical stress applied to HGPS fibroblasts reduces cell 



15 
 

viability and increases apoptotic cell death (127). Progerin-induced alterations in 
mechanotransduction might be explained by changes in the expression of proteins controlling 
cytoskeleton organization, mechanotransduction, and ECM production (128, 129). 
Supporting this view, the ascending aorta of progerin-expressing G608G BAC transgenic 
mice have reduced expression of vimentin (128), a cytoskeletal protein attached to the 
nucleus, endoplasmic reticulum, and mitochondria that is essential for maintaining cellular 
integrity (130). This correlation between mechanotransduction protein downregulation and 
high shear stress might partially explain VSMC loss in HGPS. 

The mechanisms underlying progerin-induced VSMC loss can be explored in human 
SMCs differentiated from induced pluripotent stem cells (iPSCs) derived from healthy 
individuals and HGPS patients. Liu et al. (131) reported premature senescence associated 
with vascular aging in iPSC-derived progerin-expressing SMCs, and identified the 
interaction between progerin and the DNA-dependent protein kinase catalytic subunit (DNA-
PKcs), a catalytic subunit of nuclear DNA-PK that participates in DNA repair by non-
homologous end joining (NHEJ). Conflicting with these findings, Kinoshita et al. (132) 
reported that progerin, unlike wild-type lamin A, cannot interact with DNA-PK or other 
proteins implicated in the DNA damage response. They also found that expression of 
progerin in VSMCs, but not in ECs, causes DNA-PK activation, leading to VSMC growth 
arrest and senescence. Further studies are thus warranted to clarify the interaction between 
progerin and DNA-PK and its subunits in different cell types, and to map out its 
pathophysiological consequences. 

Zhang et al. (133) reported caspase-independent severe proliferative defects in SMCs 
derived from HGPS-iPSCs. They also found that progerin expression in SMCs inhibits 
poly(ADP-ribose) polymerase 1 (PARP1), an important DNA repair regulator, and activates 
the error-prone NHEJ response, causing prolonged mitosis, mitotic catastrophe, and cell 
death. Prelamin A also induces DNA damage and increases the DNA damage response in 
aged VSMCs (15, 134). This response might be a consequence of impaired recruitment of 53 
binding protein-1 (53BP1) to DNA damage sites, resulting from defective nuclear import 
related to nucleoporin 153 mislocalization (135). Defective DNA damage repair has also 
been described in non-vascular HGPS cells and progeria mouse models (136-138). These 
accumulated findings confirm that a defective DNA damage response contributes to 
progerin-driven VSMC death. Remarkably, DNA damage plays an important role in normal 
aging (139). 

 

6.2. Vascular calcification 

Like HGPS patients (14, 81-83), progeroid G608G BAC and LmnaG609G/+ mice develop aortic 
calcification (90, 93). In the calcified aortas of LmnaG609G/+ mice, Villa-Bellosta et al. (93) 
found abnormally high expression of the osteogenic markers bone morphogenetic protein 2 
(Bmp2) and Run-related transcription factor-2 (Runx2), without alterations in the anti-
calcification agents matrix Gla-protein and fetuin A. Moreover, LmnaG609G/+-derived primary 
VSMCs showed a reduced capacity to inhibit calcium deposition in vitro, which was 
associated with lower extracellular concentration of inorganic pyrophosphate (ePPi), the 
major endogenous inhibitor of VC. Reduced ePPi levels in VSMC cultures was associated 
with impaired ePPi synthesis due to decreased ATP production (the main substrate for ePPi 



16 
 

synthesis) and upregulation of both tissue-nonspecific alkaline phosphatase (TNAP, the main 
enzyme causing PPi hydrolysis) and ectonucleoside triphosphatase diphosphohydrolase 1 
(eNTPD1, an enzyme that hydrolyzes ATP to release Pi). Compared with Lmna+/+ 
littermates, LmnaG609G/+ mice had lower plasma concentrations of ePPi and ATP, and 
treatment with exogenous PPi prevented VC in LmnaG609G/G609G mice (93). 

Prelamin A expression in VSMCs also promotes VC through a mechanism involving 
the activation of signaling via the DNA damage-related ataxia telangiectasia mutated 
(ATM)/ataxia telangiectasia and Rad3-related (ATR) pathway (134). Activation of this 
pathway induces the senescence-associated secretory phenotype in VSMCs, which release 
pro-calcification factors such as BMP2 that can trigger calcification both locally and at 
remote sites (134). Moreover, exposure of VSMC cultures to calcifying medium leads to 
upregulation of lamin A and prelamin A expression, accompanied by augmented expression 
of pro-calcifying factors such as Runx2, osteocalcin, and osteopontin and increased calcium 
deposition (140). Remarkably, human mesenchymal stems cells expressing progerin also 
have elevated levels of osteopontin and show enhanced osteogenic differentiation (141).  

In summary, lamin A and its mutant or unprocessed forms participate in osteoblastic 
VSMC differentiation and VC, underlying the need to deepen our knowledge about the role 
of progerin and prelamin A in VC during premature aging.  

 

6.3. Endothelial dysfunction 

EC dysfunction plays a key role in all stages of atherosclerosis, which is the life-threatening 
symptom of HGPS. ECs sense and respond to different types of blood flow, and aortic regions 
subjected to turbulent blood flow and high sheer stress, such as the ascending aorta, are more 
susceptible to atherosclerosis (142, 143). Song et al. (128) observed intact EC monolayers in 
regions of the ascending aorta of G608G BAC mice that were almost completely devoid of 
VSMCs. Compared with ECs in regions with preserved VSMCs, progerin-expressing ECs 
near regions with massive VSMC loss have more-than 8-fold higher vimentin expression, 
which might make them more resistant to shear stress, thus explaining the presence of well-
preserved endothelium in HGPS vessels (14).  

Elevated adhesion molecule expression in dysfunctional ECs triggers monocyte 
adhesion, an important step in atherosclerosis initiation and progression (62). Recent studies 
show that prelamin A accumulation in ECs, by blocking lamin A maturation, induces cell 
senescence and promotes intercellular adhesion molecule 1 (ICAM1)-dependent monocyte 
adhesion (144). Further studies are needed to determine the connection between ECs, 
progerin and prelamin A expression and atheroma build-up. 

 

6.4. Cardiac electrical alterations 

Consistent with the observed repolarization abnormalities in HGPS patients, progeriod 
Zmpste24-/- mice progressively develop T-wave flattening (75, 76). Moreover, both progerin-
expressing LmnaG609G/G609G mice and prelamin A-expressing Zmpste24-/- mice develop severe 
bradycardia with aging (76, 92). Aging is also associated with QRS prolongation in 
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LmnaG609G/G609G mice and with PQ and QRS prolongation in Zmpste24-/- mice, indicating 
defective cardiac conduction. These alterations may reflect intercellular connectivity defects, 
since the gap junction protein connexin 43 is mislocalized in myocardial tissue of HGPS 
patients and Zmpste24-/- mice. These results suggest that cardiac alterations in HGPS patients 
and progeroid mice are a characteristic of progeria that could increase the risk of arrhythmias 
and lead to premature death. Moreover, some of the alterations in the progeorid heart are also 
frequently observed during normal aging (145, 146), suggesting the existence of common 
mechanisms underlying heart alterations in HGPS patients and in the geriatric population. 

 

7. Concluding remarks and perspectives 

Aging is the main risk factor for CVD. Since societies are progressively aging and CVD is 
the main cause of morbimortality worldwide, it is urgent to improve our knowledge of the 
mechanisms underlying tissue and organismal aging. This information is critical to the 
development of new strategies to reduce disease burden in the elderly and thus promote 
healthy aging. Intense efforts in basic, clinical, and epidemiological research have identified 
general mechanisms implicated in aging. These were recently classified into primary 
hallmarks of aging (genomic instability, telomere attrition, epigenetic alterations, and loss of 
proteostasis) that trigger antagonistic hallmarks (deregulated nutrient sensing, mitochondrial 
dysfunction, and cellular senescence), leading to integrative hallmarks (stem cell exhaustion 
and altered intercellular communication). A challenge in aging research is to identify which 
of the aging hallmarks contribute mainly to explain the high interindividual variability in 
human biological aging, as well as their relative contribution to age-associated cardiovascular 
damage. This knowledge should help to develop new therapies and improve prevention by 
identifying individuals at higher risk of suffering age-related diseases before symptoms 
appear, thus promoting healthy aging and reducing the health care and socio-economic 
impact of aging. 

Aging and CVD are strongly accelerated in patients with HGPS, a rare genetic disorder 
caused by the unprocessed form of lamin A called progerin. Human progeria is also linked 
to abnormal accumulation of prelamin A caused by inactivating mutations in ZMPSTE24. 
Remarkably, both prelamin A and progerin are expressed at low level in cells and tissues 
from normally aging individuals, including cells of the artery wall. Progeria research can 
therefore shed light on the cell and molecular mechanisms driving normal aging and 
associated CVD. Traditional cardiovascular risk factors such as hypercholesterolemia, 
diabetes, obesity, hypertension, and smoking are typically absent or only mildly expressed in 
HGPS patients; therefore research into this disease offers a unique opportunity to isolate 
mechanisms that directly cause age-dependent cardiovascular damage from modifiable risk 
factors that progressively deteriorate cells and tissues during aging and can secondarily 
influence cardiovascular health.   

The identification of specific and shared mechanisms involved in normal and 
premature aging will require high-throughput genomic, epigenomic, transcriptomic, 
proteomic, and metabolomic studies. Moreover, loss-of-function and gain-of-function 
studies targeting candidate factors identified in ‘omic’ studies will permit the establishment 
of causal relationships. Bearing in mind the large number of cell types that participate in 
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CVD and normal and premature aging, it will be of great interest to generate new conditional 
and/or tissue-specific mouse models, with special emphasis on cells known to play a major 
role in atherosclerosis (e.g., monocytes/macrophages, lymphocytes, ECs, and VSMCs). 
There is a specific need to create small and large animal models of progeria that develop 
atherosclerosis, one of the main causes of death in HGPS patients. In control cells, oxidative 
stress and telomere shortening have been proposed to induce prelamin A and progerin 
expression, respectively (15, 16). Further research should focus on understanding how 
physiological aging leads to the accumulation of unprocessed forms of lamin A, and whether 
nuclear abnormalities induced by these proteins contribute to normal aging.  
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Table1. Age-associated structural and functional changes in the cardiovascular 
system: Physiological vs premature aging 

 

 
 

Physiological aging Premature aging 
Heart failure  YES YES 
Left ventricular diastolic dysfunction YES YES 
Ventricular hypertrophy YES YES 
Cardiac fibrosis YES YES 
Heart valve dysfunction YES YES 
Increased sympathetic activity  YES YES 
Decreased baroreflex sensitivity  YES YES 
Intima/media thickening YES YES 
Vascular stiffening YES YES 
Vascular fibrosis YES YES 
Endothelial dysfunction YES NO 
Atherosclerosis YES YES 
Vascular calcification YES YES 
Hypertension YES YES 
Elevated platelet count NO YES 
Prolonged prothrombin time NO YES 
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Table 2. Mouse models of HGPS 

 

Model Gene or 
Transgene 

A-type lamin 
expression 

Vascular 
alterations 

Cardiac 
alterations 

Premature 
aging References 

LmnaHG/+ Lmna progerin, 
lamin A/C NO NO YES (88, 89) 

LmnaHG/HG Lmna progerin NO NO YES (88, 89) 

BAC-G608G Tg(LMNA*
G608G) 

lamin A/C, 
human progerin YES N NO (90) 

LmnaG609G/+ Lmna progerin, 
lamin A/C YES N YES (92, 93) 

LmnaG609G/G609G Lmna 
progerin, 
lamin C, 

residual lamin A 
YES YES YES (92) 

LmnaG609G/G609G Lmna 
progerin, 
lamin C, 

residual lamin A 
YES NR YES (94) 

Zmpste24-/- Zmpste24 prelamin A, 
lamin C NO NO YES (99) 

Zmpste24-/- Zmpste24 prelamin A, 
lamin C NO YES YES (76, 100) 

 

NR – not reported 
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FIGURE 1: PRELAMIN A PROCESSING IN NORMAL AND HGPS CELLS. 

(A) In control cells carrying the wild-type LMNA sequence, normal splicing between exons 
11 and 12 gives raise to prelamin A, which undergoes sequential post-translational 
modifications to yield mature lamin A. Final cleavage by the protease ZMPSTE24 removes 
the farnesylated and carboxymethylated C-terminus. ZMPSTE24-inactivating mutations lead 
to accumulation of permanently farnesylated and carboxymethylated prelamin A, which 
accelerates aging. (B) Classic HGPS is caused by a heterozygosis de novo synonymous 
mutation in the LMNA gene (c.1824C>T; p.G608G), which results in aberrant splicing 
between exon 11-12 and the synthesis of progerin. Lack of the 50-aminoacid residues 
encompassing the ZMPSTE24 cleavage site prevents removal of the progerin C-terminus, 
which remains permanently farnesylated, causing multiple cellular alterations and premature 
aging and death.  
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