
 

   

 

 

This is the peer reviewed version of the following article: 

 

Childhood leukemia and residential proximity to industrial and urban sites. 

García-Pérez J, López-Abente G, Gómez-Barroso D, Morales-Piga A, Romaguera EP, 
Tamayo I, Fernández-Navarro P, Ramis R. 
Environ Res. 2015 Jul;140:542-53. 

 

which has been published in final form at: 

https://doi.org/10.1016/j.envres.2015.05.014 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

Childhood leukemia and residential proximity to industrial and urban sites 

 

Authors: 

Javier García-Pérez1,2,*, Gonzalo López-Abente1,2, Diana Gómez-Barroso2,3, Antonio Morales-Piga4,5, 

Elena Pardo Romaguera6, Ibon Tamayo7, Pablo Fernández-Navarro1,2, and Rebeca Ramis1,2. 

 

Authors’ affiliations: 

1Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid, 

Spain. 

2CIBER Epidemiología y Salud Pública (CIBERESP), Spain. 

3National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain. 

4Rare Disease Research Institute (IIER), Carlos III Institute of Health, Madrid, Spain. 

5Consortium for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain. 

6Spanish Registry of Childhood Tumors (RETI-SEHOP), University of Valencia, Valencia, Spain. 

7Public Health Division of Gipuzkoa, BIODonostia Research Institute, Department of Health of the Regional Government 

of the Basque Country, Donostia, Spain 

 

 

*Corresponding author:  

Javier García-Pérez 

Área de Epidemiología Ambiental y Cáncer 

Centro Nacional de Epidemiología 

Instituto de Salud Carlos III 

Avda. Monforte de Lemos, 5, 28029 Madrid, Spain 

Tel.: +34-918222643 

E-mail: jgarcia@isciii.es 

mailto:jgarcia@isciii.es


 
 

E-mail addresses:  

 JG-P: jgarcia@isciii.es 

 GL-A: glabente@isciii.es  

 DGB: dgomez@externos.isciii.es  

 AM-P: amorales@isciii.es 

 EPR: elena.pardo@uv.es 

 IT: ibontama@gmail.com  

 PF-N: pfernandezn@isciii.es  

 RR: rramis@isciii.es  

 

 

 

  

mailto:jgarcia@isciii.es
mailto:glabente@isciii.es
mailto:dgomez@externos.isciii.es
mailto:amorales@isciii.es
mailto:elena.pardo@uv.es
mailto:ibontama@gmail.com
mailto:pfernandezn@isciii.es
mailto:rramis@isciii.es


 
Abbreviations:  

IPPC: Integrated Pollution Prevention and Control 

E-PRTR: European Pollutant Release and Transfer Register 

RETI-SEHOP: Spanish Registry of Childhood Tumors 

UTM: Universal Transverse Mercator 

ORs: Odds ratios 

95%CIs: 95% confidence intervals 

IARC: International Agency for Research on Cancer 

VOCs: Volatile organic compounds 

POPs: Persistent organic pollutants 

PACs: Polycyclic aromatic chemicals 

Non-HPCs: Non-halogenated phenolic chemicals 

PAHs: Polycyclic aromatic hydrocarbons 

 

 

  



 
Abstract 

Background: Few risk factors for the childhood leukemia are well established. While a small fraction of cases 

of childhood leukemia might be partially attributable to some diseases or ionizing radiation exposure, the role 

of industrial and urban pollution also needs to be assessed. 

Objectives: To ascertain the possible effect of residential proximity to both industrial and urban areas on 

childhood leukemia, taking into account industrial groups and toxic substances released. 

Methods: We conducted a population-based case-control study of childhood leukemia in Spain, covering 638 

incident cases gathered from the Spanish Registry of Childhood Tumors and for those Autonomous Regions 

with 100% coverage (period 1990-2011), and 13188 controls, individually matched by year of birth, sex, and 

autonomous region of residence. Distances were computed from the respective subject’s residences to the 

1068 industries and the 157 urban areas with ≥10,000 inhabitants, located in the study area. Using logistic 

regression, odds ratios (ORs) and 95% confidence intervals (95%CIs) for categories of distance to industrial and 

urban pollution sources were calculated, with adjustment for matching variables. 

Results: Excess risk of childhood leukemia was observed for children living near (≤2.5 km) industries (OR=1.31; 

95%CI=1.03-1.67) – particularly glass and mineral fibers (OR=2.42; 95%CI=1.49-3.92), surface treatment using 

organic solvents (OR=1.87; 95%CI=1.24-2.83), galvanization (OR=1.86; 95%CI=1.07-3.21), production and 

processing of metals (OR=1.69; 95%CI=1.22-2.34), and surface treatment of metals (OR=1.62; 95%CI=1.22-

2.15) –, and urban areas (OR=1.36; 95%CI=1.02-1.80).  

Conclusions: Our study furnishes some evidence that living in the proximity of industrial and urban sites may 

be a risk factor for childhood leukemia. 
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1. Introduction 

Childhood cancer is the leading cause of disease-related death in childhood affecting both sexes 

worldwide and, therefore, is an important concern for public health, medical care, and society (Peris-Bonet et 

al., 2010).  

The main group is leukemia, with almost a third of all childhood cancers (Peris-Bonet et al., 2010). 

Insofar as the etiology of this disease is concerned, few risk factors for the childhood leukemias are well 

established. There are evidences that Down syndrome (Mezei et al., 2014) and inherit cancer-predisposing 

conditions such as ataxia telangiectasia (Bielorai et al., 2013) substantially increase the risk of leukemias 

(specially for acute lymphoblastic leukemia and acute myeloid leukemia) but account for only a small fraction 

of cases (5%) (Ross et al., 2011). Investigations of other risk factors, as ionizing radiation (Wakeford et al., 

2009), radon (Evrard et al., 2005; Tong et al., 2012) or infectious agents (Alexander et al., 1998; Greaves, 2002; 

Smith et al., 1998), have also indicated increased risk of childhood leukemias. With respect to environmental 

and parental occupational exposures, several studies have reported risks of leukemias among children whose 

parents have been occupational exposed to a high level of carcinogenic agents (Perez-Saldivar et al., 2008), 

pesticides (Ferreira et al., 2013) or involving social contact (Keegan et al., 2012), and some meta-analyses found 

associations between childhood leukemias and prenatal parental occupational pesticide exposure (Vinson et 

al., 2011; Wigle et al., 2009). Other exposure to chemicals, as benzene and some volatile organic compounds, 

has been associated with some type of leukemias (Best et al., 2001; Eden, 2010; Knox, 2005; Steffen et al., 

2004), although a review of chemical risk factors and childhood leukemia revealed inconsistent associations 

(Infante-Rivard, 2008). 

With regard to urban and residential traffic exposure, some authors have found associations between 

childhood leukemia and air pollutants (Boothe et al., 2014; Heck et al., 2014). Nevertheless, there are few 

studies on exposure to industrial pollution and childhood leukemia (Knox, 1994; Weng et al., 2008), even 

though industrial plants are known to release carcinogens, such as benzene, dioxins and metals. In relation to 



 
industrial sources, the European Commission passed the Integrated Pollution Prevention and Control (IPPC) in 

2002 and the European Pollutant Release and Transfer Register (E-PRTR) in 2007. IPPC and E-PRTR records 

constitute an inventory of geo-located industries with health and environmental impact in Europe, which is a 

valuable resource for monitoring industrial pollution and, by extension, renders it possible for the association 

between residential proximity to such pollutants installations and health impacts, such as cancer, to be studied 

(Lopez-Cima et al., 2011; Lopez-Cima et al., 2013). 

In this context, a Spanish population-based case-control study of incident childhood cancer was set in 

motion to furnish in-depth knowledge of the possible role of residential proximity to both industrial and urban 

areas as a risk factor for childhood leukemias. In this paper, we analyze the effects of exposure to industrial 

and urban areas and, including different industrial groups, groups of carcinogenic and other toxic substances, 

and specific pollutants, on childhood leukemia risk, by incorporating information on industries governed by 

the IPPC Directive and E-PRTR Regulation. 

 

2. Materials and methods 

2.1 Study area and subjects 

We designed a population-based case-control study of childhood cancer in Spain. Cases were 

incident cases of childhood cancer (0-14 years) gathered from the Spanish Registry of Childhood 

Tumors (RETI-SEHOP) and for those Autonomous Regions with 100% coverage (Catalonia, the 

Basque Country, Aragon, and Navarre), for the period 1990-2011.  

In this study, we select incident cases of childhood leukemia, and corresponded to diseases 

coded as leukemias, myeloproliferative diseases, and myelodysplastic diseases – code I (International 

Classification of Diseases for Oncology, 3rd revision) (Steliarova-Foucher et al., 2005). Controls were 

selected by simple random sampling from among all single live births registered in the Spanish 

National Statistics Institute between 1996 and 2011, individually matched to cases by year of birth, sex 



 
and autonomous region of residence. The final study population comprised 638 cases and 13188 

controls, and both cases and controls were ethnically homogeneous.  

 

2.2 Residential locations 

Each individual’s last residence was geocoded using Google Map Javascript API v3 (Google 

Maps, 2015). The obtained latitude and longitude coordinates were projected into the ETRS89/UTM 

zone 30N (EPSG:25830) using QGIS software (Open Source Geospatial Foundation (OSGeo), 2015), 

and subsequently converted into the Universal Transverse Mercator (UTM) Zone 30 (ED50) 

coordinates. Then, we validated the coordinates and kept those where the address and the coordinates 

matched. For this validation process, we apply the inverse method, getting the addresses of the obtained 

coordinates and comparing these new addresses (town or city name, street name, and street number) to 

the original addresses. Lastly, in UTM coordinates of children’s residences, the last digit of coordinates 

(X, Y) was assigned randomly in order to preserve their confidentiality. 

With respect to cases, we successfully validated 87% of their addresses. The remaining 13% of 

cases were fairly uniformly distributed along the different regions and, therefore, we did not think the 

data were biased in this sense. On the other hand, only 2% of controls did not have valid coordinates. 

Having had a small number of failures we decided to select more controls to replace this 2%, and we 

geocoded and validated this last group to end up with more than 20 controls with valid coordinates for 

every case. 

 

2.3 Industrial facility locations 

We used the industrial database (industries governed by IPPC and facilities pertaining to 

industrial activities not subject to IPPC but included in the E-PRTR) provided by the Spanish Ministry 



 
for Agriculture, Food & Environment in 2009, which includes information on the geographic location 

and industrial pollution emissions of all industrial plants in Spain.  

Each of the installations was classified into one of the 25 categories of industrial groups listed 

in Table 1. These groups were formed on the basis of the similarity of their pollutant emission patterns.  

Owing to the presence of errors in the initial location of industries, the geographic coordinates of the 

industrial locations recorded in the IPPC+E-PRTR 2009 database were previously validated: every single address 

was thoroughly checked using Google Earth, the Spanish Agricultural Plots Geographic Information System 

(Spanish Ministry of Agriculture and Food and Environment, 2015), the “Yellow pages” web page, and the web 

pages of the industries themselves, to ensure that location of the industrial facility was exactly where it should 

be. We identified a total of 1068 industrial facilities: 1026 installations located in the four areas included in the 

study and 42 installations located in adjacent regions but very close to the individuals. Table 1 shows the 

distribution of the number of industrial facilities by industrial group and autonomous region. 

  

2.4 Urban locations 

 In Spain, municipal centroids are computed by taking only the inhabited area of the 

designated town into account, and are situated in the center of the most populous zone where the town 

hall and the main church tend to be located. For the purposes of this study, we considered as urban 

areas those towns with more than 10,000 inhabitants, where a total of 157 towns were identified in the 

areas under study. 

 

2.5 Exposure coding and statistical analysis 

 For each subject, the following Euclidean distances were calculated: a) industrial distance, i.e., 

the distance between the subject’s residence and any of the previously mentioned 1068 industrial 

installations (using a purpose-designed distance matrix between all industrial facilities and subjects); 



 
and b) urban distance, i.e., the distance between the subject’s residence and the centroid of the town in 

which it resides. 

 Three types of statistical analysis, including mixed multiple unconditional logistic regression 

models, were performed to estimate odds ratios (ORs) and 95% confidence intervals (95%CIs), in order 

to:  

1) evaluate the possible relationship between childhood leukemia and residential proximity to any 

industrial installation (taking the following industrial distances ‘D’ into account: 5, 4, 3, 2.5, 2, 

1.5, and 1 km) and urban sites, where all models (7 independent models) included matching 

factors (year of birth, sex, and autonomous region of residence (as a random effect)). Each of 

the subjects was classified into one of the following 4 categories of exposure variable for each 

model: a) residence in an “industrial area”, defined in terms of proximity to industrial 

facilities, on the basis of the industrial distance ‘D’; b) residence in the “urban area”, taking 

the areas defined by the following urban distances, according to the size of the municipality: 

10 km (if the towns have more than 2,000,000 inhabitants), 6 km (towns between 1,000,000 

and 2,000,000 inhabitants), 4 km (towns between 500,000 and 1,000,000 inhabitants), 3 km 

(towns between 200,000 and 500,000 inhabitants), 2 km (towns between 100,000 and 200,000 

inhabitants), 1 km (towns between 50,000 and 100,000 inhabitants), and 0.5 km (towns between 

10,000 and 50,000 inhabitants); c) residence in the intersection between industrial and urban 

areas (“both”); and, d) residence within the “reference area”, consisting of zones not included 

above and corresponding mainly to rural settings. If a subject resides at ≤ ‘D’ km from any 

industrial installation but far from towns with more than 10,000 inhabitants, is categorized as 

“industrial area”; if not, if it resides near towns with more than 10,000 inhabitants (in the 

circles above-defined for the urban distances) but far (>’D’ km) from any industrial installation, 

is categorized as “urban area”; if not, if it resides near towns with more than 10,000 inhabitants 



 
and ≤’D’ km from any facility, is categorized as “both”; otherwise, is categorized as “reference 

area”. Figures 1 (A) and 1 (B) depict two examples for the above-defined areas, for industrial 

distances of 1 and 2.5 km, respectively, in Barcelona City and its metropolitan area (Catalonia), 

which include 28 towns ≥10,000 inhabitants and 139 industrial facilities; 

2) evaluate the relationship between childhood leukemia and residential proximity to industries 

by different categories of industrial groups defined in Table 1, using the above-described mixed 

multiple unconditional logistic regression model for the industrial distance ‘D’ which yielded 

the highest and statistically significant ORs for the three categories of exposure (industrial area 

(only), urban area (only), and both), where all models (25 independent models) included 

matching factors. To this end, we created an exposure variable for each model in which the 

subject was classified into one of the following categories: a) residence near a specific 

“industrial group”: children at ≤’D’ km from any installation belonging to the industrial group 

in question; b) residence near “other industrial groups”: children at ≤’D’ km from any 

industrial installation other than the group analyzed (intermediate area); c) residence in the 

“urban area”, defined as in the previous analysis; d) residence in the intersection between 

“industrial group” and “urban” areas; and e) residence within the “reference area”, consisting 

of zones not included above; and, 

3) assess the relationship between childhood leukemia and residential proximity to any industrial 

focus releasing substances classified by the International Agency for Research on Cancer 

(IARC) as carcinogenic (Group 1), probably carcinogenic (Group 2A) and possibly 

carcinogenic (Group 2B) to humans, and other toxic chemical substances (9 groups) – including 

metals, pesticides, polycyclic aromatic chemicals (PACs), non-halogenated phenolic chemicals 

(non-HPCs), plasticizers, persistent organic pollutants (POPs), volatile organic compounds 

(VOCs), solvents, and other. For this purpose, the industrial distance chosen in the previous 



 
phase was used to define an “exposed subject” as any child who lived close to any facility 

releasing the above-defined groups of carcinogenic and toxic substances, and specific 

pollutants, and we performed two different sub-analyses, according to groups of carcinogenic 

and toxic substances (12 independent models), and specific pollutants (72 independent models). 

To this end, we created an exposure variable for each model, analogous to the second analysis. 

 Since matching conditions, i.e., year of birth, sex, and autonomous region of residence, are very 

general and controls can fit the criteria for more than one case (the corresponding pair can be 

interchangeable), the standard methodology is to use unconditional logistic regression including the 

matched characteristics in the model. 

 Finally, to take into account the problem of multiple comparisons or multiple testing 

(which occurs when a set of statistical inferences is considered simultaneously), p-values were also 

suitably adjusted by controlling for the expected proportion of false positives (False Discovery Rate), 

as proposed by Benjamini (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001). 

 

3. Results 

The analysis covered 638 cases and 13188 controls. Distribution by sex, year of birth, autonomous 

region, and histologic type of case is summarized in Table 2. Catalonia was the autonomous region with the 

highest proportion of cases and controls (65.5 and 67.2%, respectively), and histologically, lymphoid leukemias 

(81.5%) was the main type of childhood leukemias. 

In order to provide a global view of the different components of the study, Figure 2 shows the locations 

of residences of cases and controls, industrial installations, and towns with more than 10000 inhabitants. 

Estimated ORs of childhood leukemias associated with residential proximity to industrial and urban 

sites using different industrial distances are shown in Table 3. An increased risk of childhood leukemia was 



 
observed for all distances analyzed, with this proving statistically significant for children living between 1.5 and 

2.5 km, both of industrial (only) and urban (only) sites. Of these distances, 2.5 km (adjusted-OR=1.31; 

95%CI=1.03-1.67 for industrial sites (only); adjusted-OR=1.36; 95%CI=1.02-1.80 for urban area (only)) also 

provided an excess risk, although non-statistically significant, for the intersection area between industrial and 

urban areas (adjusted-OR=1.07; 95%CI=0.84-1.36) and, therefore, this distance was used to define industrial 

proximity in subsequent analyses. This industrial distance of 2.5 km has the advantage of being able to better 

discriminate the risk and furnish a series of cases and controls which would have enough statistical power in 

the three categories of exposure analyzed (see Table 3). 

Estimated ORs of childhood leukemias, both overall and by industrial group, are shown in Table 4. 

When type of industrial activity was taken into account, all industrial groups in the study area – with the 

exception of ‘Refineries and coke ovens’, ‘Mining industry’, Inorganic chemical industry’, ‘Fertilizers’, and 

‘Tanning of hides and skins’ – showed an increased risk of childhood leukemias in their environs, with this 

reaching statistically significance in the case of ‘Glass and mineral fibers’ (adjusted-OR=2.42), ‘Surface 

treatment using organic solvents’ (adjusted-OR=1.87), ‘Galvanization’ (adjusted-OR=1.86), ‘Production and 

processing of metals’ (adjusted-OR=1.69), ‘Surface treatment of metals and plastics’ (adjusted-OR=1.62), 

‘Hazardous waste’ (adjusted-OR=1.55), and ‘Pharmaceutical products’ (adjusted-OR=1.53). Detailed 

information on emission amounts by groups of substances, and type of specific pollutants released by the 

industrial groups analyzed is provided in Supplementary Data, Tables S1 and S2, respectively.  

Table 5 shows the estimated ORs of childhood leukemias by reference to groups of carcinogens and 

other toxic chemical substances released by industries. The results showed highest and statistically significant 

ORs in children living close (≤2.5 km) to industrial facilities releasing carcinogenic substances (adjusted-

ORs=1.35 for facilities releasing Group-1 carcinogens, 1.48 for Group 2A, and 1.54 for Group 2B) and all groups 

of toxic substances, principally near non-HPCs (adjusted-OR=1.71), plasticizers (adjusted-OR=1.67), pesticides 



 
and solvents (adjusted-ORs=1.61 in both cases), POPs (adjusted-OR=1.58), PACs (adjusted-OR=1.57), and 

metals (adjusted-OR=1.40). 

Lastly, Table 6 shows specific pollutants released by facilities, amounts in kg and number of industrial 

facilities reporting these releases, and estimated ORs of childhood leukemias in children living at ≤2.5 km from 

industries releasing these specific substances. Many pollutants (37 of 72) displayed high statistically significant 

results, including tetrachloromethane (adjusted-OR=2.23), fluoranthene (adjusted-OR=1.86), PAHs (adjusted-

OR=1.54), and arsenic or cadmium (adjusted-OR=1.50 in both cases). Finally, it should be noted that some 

pollutants were released by virtually the same facilities; in fact, 100% of the population exposed to 

benzo(a)pyrene was also exposed to benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno(1,2,3-

cd)pyrene. Other examples were the next: 84% of the population exposed to cadmium was also exposed to 

arsenic, and 69 % of the population exposed to nickel was also exposed to arsenic and cadmium (data not 

shown). 

 

4. Discussion 

 In this study, we investigated the effects of exposure to industrial and urban air pollutions on 

childhood leukemia risk in Spain, taking into account different industrial groups, groups of carcinogens 

and other toxic substances, and specific pollutants. Our findings support the hypothesis that air 

pollution might be a risk factor for childhood leukemia incidence. Indeed, our analyses show an excess 

of risk of childhood leukemia among children living in the proximity of industrial installations (in a 

radius of 2.5 km) and urban nuclei (≥ 10,000 inhabitants) and, especially those living near plants 

involved in the metal sector (production and processing of metals, galvanization, and surface treatment 

of metals and plastics), glass and mineral fibers, pharmaceutical products, hazardous waste, and surface 

treatment using organic solvents, and facilities releasing, principally, carcinogens, non-HPCs, 

plasticizers, pesticides, solvents, POPs, PACs, metals, and VOCs.  



 
Insofar as exposure to industrial pollution is concerned, the studies existing in the literature 

about childhood leukemia and industrial sectors are inconsistent. Whereas the results of a Taiwanese 

study showed that children who lived in municipalities with highest levels of petrochemical air 

pollution had a statistically significant higher risk of developing leukemia (Weng et al., 2008), and a 

review found increased risk of childhood leukemia with residential addresses near gas stations and 

nuclear power plants (Brender et al., 2011), other studies did not find evidence of risk of childhood 

leukemia in the vicinity of incinerators (Reeve et al., 2013) or petrochemicals (Yu et al., 2006).  

With regard to the industrial groups of our study, our findings for the metal industry (production 

and processing of metals, galvanization, and surface treatment of metals and plastic) are consistent 

with a previous ecologic study carried out by our group about leukemia-related mortality in towns close 

to these installations, which suggested an association between risk of dying due to leukemia (in general 

population, including all age groups) and proximity to Spanish metal industries (Garcia-Perez et al., 

2010). These types of installations release numerous carcinogenic substances into the environment, 

e.g., heavy metals, PAHs, asbestos, benzene or dioxins, which have been linked to leukemias. In this 

sense, a British study found childhood leukemia clusters near steelworks (Knox, 1994), whereas 

another study of the same author found relative excesses of leukemia and of solid cancers in children 

living near installations of production of aluminium, zinc, galvanizers and iron/steel foundries, 

although the authors did not distinguish the findings for leukemias and for solid cancers (Knox and 

Gilman, 1997). Insofar as the galvanizing sector is concerned, it is one of the main industrial activities 

that releases dioxins to air (Martinez et al., 2008), recognized by the IARC as carcinogens in humans 

(IARC, 2012) and related to increased risk of leukemias in general population (Consonni et al., 2008), 

a finding that could be related to the excess risk observed by us in the environs of this industrial group. 

Another noteworthy result is the excess risk found in the environs of installations for the surface 

treatment of metals and plastic, a group of metal industries that use mineral oils and metalworking 



 
fluids, a range of oils and other chemicals substances known to be carcinogens in humans (Savitz, 

2003). In this connection, an Italian study detected increased risk of childhood leukemia related to 

paternal exposure to mineral oils (Miligi et al., 2013). Lastly, it should be noted that the primary metal 

industry is a major environmental contributor of chlorinated solvents (dichloromethane, 

tetrachloroethylene, and trichloroethylene), which are potential chemical leukemogens (Shore et al., 

1993) and known or suspected carcinogens. There are studies which have linked exposure to drinking 

water contaminated by tetrachloroethylene and trichloroethylene to an increase in incidence of some 

childhood leukemias (Cohn et al., 1994; Fagliano et al., 1990). In our study, we found statistically 

significant excess risks for tetrachloroethylene and dichloromethane, and a non-statistically significant 

excess risk for trichloroethylene (see Table 6). 

In relation to other industrial groups, Knox and Gilman found relative excess risks of childhood 

leukemias and solid cancers near fiberglass fabricators (Knox and Gilman, 1997), a finding that could 

be related to the high statistically significant excess risk found by us in the proximity of installations 

for the production of glass and mineral fibers.  

With regard to the specific groups of pollutants of our study, some papers have found 

associations between exposure to toxic pollutants and risk of childhood leukemia: an American study 

found an association between increased childhood leukemia rates and high exposure scores for 25 

potentially carcinogenic hazardous air pollutants (including benzene, dioxins, tetrachloroethylene, and 

vinyl chloride) released from mobile, area, and point sources (Reynolds et al., 2003), whereas other 

authors detected increased risks of leukemia in relation to exposure to some ambient air toxics in 

pregnancy, specifically with PAHs, arsenic, benzene, lead, toluene, and xylenes (Heck et al., 2014). In 

our study, we have found high statistically significant excess risks in children living close to industrial 

installations releasing these pollutants, findings consistent with other studies about exposure to specific 

PAHs (Deziel et al., 2014; Miligi et al., 2013). With respect to other pollutants, a Canadian study found 



 
an association between exposure to zinc in drinking water and childhood leukemia (Infante-Rivard et 

al., 2001), whereas some studies have found associations between some types of childhood leukemia 

and parental occupational exposure to toluene (Infante-Rivard et al., 2005), and chromium and lead 

(Miligi et al., 2013). 

In this paper, we have used several urban distances depending on the size of the municipality, 

from large cities to small towns. Our findings for exposure to urban air pollution are consistent with 

other studies (Boothe et al., 2014; Crosignani et al., 2004; Filippini et al., 2015; Vinceti et al., 2012), 

although some papers did not find any evidence of an association between traffic density and the risk 

of childhood leukemia (Langholz et al., 2002; Sun et al., 2014; Von Behren et al., 2008). One of the 

most surprising results is the inverse relationship between the excess risks in the urban areas and 

industrial distance (from OR-adjusted=1.16 for urban areas with industrial distance of 1 km to OR-

adjusted=1.41 for urban areas in 5 km). A possible explanation for this could be that the increase in 

industrial distance entails reducing the urban and reference areas (see Figure 1), something that allows 

for the establishment of a “cleaner” reference zone with increasing industrial distance (reference areas 

having no industry in a radius of 5 km will be “cleaner” than reference areas having no industry in a 

radius of 1 km, i.e., it is possible that many children included in the reference area for the example of 

industrial distance of 1 km are “actually exposed” to industrial pollution and, therefore, the estimated 

ORs for urban areas are lower than for industrial distance of 5 km). 

One of this study’s limitations is the non-inclusion of possible confounding factors that might 

be associated with the distance, as socioeconomic variables or life-style-related factors, for their 

unavailability at an individual level. Moreover, this study uses distances to the pollution sources as a 

proxy of exposure, assuming an isotropic model, something that could introduce a problem of 

misclassification, since real exposure is critically dependent on prevailing winds, geographic landforms 

and releases into aquifers. Nevertheless, this problem would limit the capacity to find positive results 



 
but in no way invalidating the associations found. Lastly, we did not have any information about 

parental occupational exposures at an individual level. 

It should be noted that we have the home address of the cases at the moment of diagnosis (i.e., 

residence at the time of incidence, because in childhood leukemia, the time difference between disease 

onset and diagnosis is usually very small), and the home address of the mother at birth for the controls. 

This difference could introduce bias in the analysis, but according to official data in Spain, only around 

1% of the children change their residence to a different province (National Statistics Institute, 2015). 

Therefore, we considered that the home address at time of diagnosis is the same as the home address 

at birth for most of the cases. 

One aspect addressed in the analyses is the problem of multiple comparisons (to find 

associations that are falsely positive by random chance). In the tables, we have provided adjusted p-

values, though from an epidemiologic standpoint we have preferred to discuss the results in the light 

of a series of factors, namely, the magnitude of risk per se, the consistency of the associations observed, 

and biologic plausibility. 

One of the main strengths of our study is the large control group (approximately 20 controls per 

case), that give a much more realistic image of the spatial distribution of the population at risk. The 

controls were randomly selected from birth certificates. This implies the possibility of having cases 

included in the control group, since the exclusion of the cases in that group could bias the results 

(Grimes and Schulz, 2005). The control group should give a clear view of the spatial distribution of 

the population at risk and should have the same risk of exposure as the cases. We matched the controls 

by sex, year of birth, and region of residence to account for the temporal and regional variation in the 

child population. 

 



 
5. Conclusions 

 In conclusion, our study furnishes some evidence that living in the proximity of industrial and urban 

sites may be a risk factor for childhood leukemia. Specifically, children living near plants involved in the metal 

industry, glass and mineral fibers, pharmaceutical products, hazardous waste, and surface treatment using 

organic solvents showed an increased risk. In addition, analysis by group of substances showed a statistically 

significant excess risk of childhood leukemia in the proximity of installations releasing carcinogens, non-HPCs, 

plasticizers, pesticides, solvents, POPs, PACs, metals, and VOCs. 
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Figure legends 

Figure 1: Examples of exposure areas to industrial and urban sites, for industrial distances of 1 (A) and 2.5 km 

(B) in Barcelona City and its metropolitan area (Catalonia). 

Figure 2: Geographic distribution of cases, controls, industrial facilities, and towns with more than 10000 

inhabitants. 

 


