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ABSTRACT 

Motivation: Set enrichment analysis (SEA) is used to identify enriched biological 

categories/terms within a high-throughput differential expression experiments. This is done by 

evaluating the proportion of differentially expressed genes against a background reference 

(BR): usually the whole genome or the chip-imprinted gene list. However it is seldom possible to 

evaluate the whole genome in some experimental settings. In addition different BRs may render 

different results thus, depending on the BR used, potentially relevant terms could be missing. 

To enhance SEA, we propose a visualization procedure to explore and identify relevant terms 

by means of simultaneous use of multiple BRs to enhance SEA. The proposed strategy is 

referred as multi-reference contrast method (MRCM). 

Results: By means of the MRCM, it was able to find new biologically relevant information terms 

in various genomic/proteomic experiments. The use of the whole genome, the chip plus a user 

defined BR may provide new biological insights. Non-consensus terms were highly relevant and 

automatically highlighted by the MRCM, facilitating the exploration task evolved in ontology 

analysis on genomic/proteomic experiments. The method was evaluated in three microarrays 

*Manuscript
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and one proteomic study where new relevant ontology categories/terms were identified and 

validated by literature. 

Contact: cristobalfresno@ucc.edu.ar 

Availability and Implementation: R source code available at 

https://sites.google.com/site/biologicaldatamininggroup/software. 

Keywords: Gene ontology; Genomics; Proteomics; Data integration; Background reference  

INTRODUCTION  

Ontology analysis is currently one of the main steps in most of high-throughput 

genomic/proteomic experiments. It is usually carried out to relate differentially expressed 

genes/proteins (DEG/P) to biologically relevant terms, identifying enriched functions and/or 

pathways within the experiment. This task is achieved by querying large databases with 

controlled vocabulary (known as ontologies), where genes and their known functionality and 

location are stored. Gene Ontology (GO, www.geneontology.org) is the most popular ontology 

and it is structured as three direct acyclic graphs (DAGs) - molecular function (MF), biological 

process (BP) and cellular component (CC) [1]. Each DAG node represents a biological concept 

and has several genes associated to it. The nodes are organized in a hierarchical manner 

where the root is the most generic category/term and more specific ones are found downstream 

on the DAG. 

Set enrichment analysis (SEA) is the traditionally used approach for ontology analysis, due to its 

trajectory and availability over commercial and public tools/websites [2-3]. Despite the different 

statistic variants for SEA calculations, each GO term/category is evaluated in a term by term 

fashion [4]. A term would result enriched if the observed proportion differed from the null 

distribution when compared with a background reference (BR). This reference (BR) could be: 

i. The genome of the studied species (usually the default option in most bioinformatic tools 

and the only one in proteomic studies). 

ii. The chip-specific gene list in microarray experiments. 

iii. Specified by the user (“user defined”). 

The Database for Annotation, Visualization and Integrated Discovery (DAVID, [5-6]) allows the 

selection of BR according to the needs of the experiment type and GoMiner [7], another well 

https://sites.google.com/site/biologicaldatamininggroup/software
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known Ontology tool, requires the user to include the BR for the analysis. However, it was 

acknowledged that different BRs could yield different results and inappropriate BR selection 

could contradict statistical assumptions potentially biasing interpretation of results [2]. Currently 

there is no consensus about which the best option is in each experimental setting. For instance, 

when using the microarray gene set (or a subset of genes) the representation of all genes will 

be biased (representation bias). To avoid this, the full set of genes in the genome could be 

used, but another bias is introduced because there are several genes/proteins that cannot be 

detected [7]. 

In addition, a big effort is necessary by the user even for a single reference output interpretation 

(SEA outputs are usually long tabular lists or huge trees). To overcome this issue, some 

alternatives were developed such as, trimming of the DAG [8] or p-adjustment/filtering of the 

enrichment scores[3] which, in any case, valuable information could be lost. 

Some visualization methods are provided by SEA tools. For instance, clustering visualization in 

DAVID to represent the relationship between genes and literature supported annotations (i.e. 

Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, etc.) or DAG structures in 

GoMiner. However, they do not permit the comparison of results from different BRs. 

In this work we present a method that integrates and visualizes results using several references 

at the same time. We do so by simultaneously querying DAVID with different BRs. Then, 

informative nodes/terms are automatically highlighted, by contrasting results, and displaying the 

ontology tree with a color code to visual integrate set enrichment results in a unique graph, for 

each main GO category (MF, BP and CC). The proposed strategy is named multi-reference 

contrast method (MRCM) and it is free available at 

https://sites.google.com/site/biologicaldatamininggroup/software.  

We show that meaningful biological information is recovered by means of multi-reference 

comparison that is missed when only a single BR is used. The MRCM not only recovers 

enriched terms, but also improves the identification by highlighting informative terms using a 

color pattern. The method also allows an easy and fast identification of new informative terms, 

only seen with the user defined reference, enhancing the typical reference choice (genome or 

chip genes). The proposed strategy was tested on three microarray studies from the Gene 

https://sites.google.com/site/biologicaldatamininggroup/software
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Expression Omnibus repository (GEO, www.ncbi.nlm.nih.gov/geo) and in a proteomic 2D-DIGE 

experiment. In all cases new relevant terms supported by evidence in the literature were 

identified. 

METHODS 

The following BRs were used: 

 BR-I: the whole genome gene list, as provided by DAVID (default). 

 BR-II: the complete gene list present in the analyzed chip (i.e. Affymetrix chips present 

in DAVID). This reference is only available for microarray experiments. 

 BR- III: a smaller reference gene list, built from only those genes that were detectable in 

the experiment, such as using detection calls of flagged probesets in microarray chips[9 

-13] or identified spots in proteomic 2D-gels. 

Affymetrix chips were processed using affy package [14-16]. Probesets having an expression 

call = “P” and unique anti-sense “_at” codification were used and differentially expressed genes 

identified by means of Bioconductor’s limma package [17]. False discovery correction was 

applied in the detection procedure. The 2D-DIGE proteomic experiment was analyzed 

according to Fernandez et al. [18] recommendations. 

A differentially expressed gene/protein list was uploaded to DAVID and enriched terms for each 

BR were identified using the full GO annotation (MF, BP and CC). Functional annotation charts 

were obtained without any filtering (EASE score = 1 and count threshold = 1) for each BR. In 

this way, all GO terms were retrieved from DAVID and locally stored. Then, EntreZ Gene ID and 

symbol names were obtained through DAVID to standardize gene identification as required by 

Bioconductor packages (Figure 1). 

FIGURE 1 near here 

A threshold EASE score value of 0.1 (as suggested in [19]) was used to identify enriched terms. 

These terms were then displayed using GO DAG structures provided by GoStats[20] and color-

coded depending on if they were identified by one or more BRs. Finally, all the information was 

presented using a HTML front end report, which allows visual inspection of the contrasted 

DAGs. 
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The proposed method (MRCM) contrasts the enriched nodes provided by each BR evaluation 

and displays them, color-coded, in each GO DAG. The color scheme allows us to identify nodes 

found enriched by one or several BR evaluations. Enriched nodes were labeled as follows: 

 Consensus node (CN): term enriched in all BRs. 

 Non-consensus node (nCN): term enriched in at least one BR but not in all BRs. 

 Not-enriched node (NEN): not enriched inner node of the DAG structure. 

As CN nodes were able to be identified in any case, only nCNs were explored and validated. In 

particular, we focused our interest on leaves (nodes without child nodes), because they contain 

the most specific biological information and explain ancestor terms. Relevant selected 

candidates were validated by searching published papers in PubMed databases.  

Example datasets for the MCRM 

Human smoke dataset 

We have analyzed data from Spira et al. [21] that compared the effects on bronchial epithelia 

from humans who were current smokers (CS), had never smoked (NS) or were former smokers. 

They concluded that cigarette smoking induces xenobiotic, redox-regulating and several 

oncogenes and decreases expression of several tumor suppressor and airway inflammation 

modulator genes. They also reported some potential oncogenes and tumor suppressors that 

failed to return to their normal expression level in former smokers. 

Affymetrix HG-U133A sample chips (20 for each group, CS and NS) were pre-processed 

according to McClintick & Edenberg [12] (available at GEO repository with GSE994 accession 

series). However, we only include in the analysis those genes whose detection call was present 

in at least four chips in each group. This results in 4128 genes for differential expression 

analysis. One hundred and sixteen of these were differentially expressed (73 up and 43 down) 

using an adjusted p-value < 0.05 and a |log2(fold-change)| > 0.4 (Supplementary Table 1). 

Mouse smoke dataset 

We also analyzed data from McGrath-Morrow et al. [22] that studied lung expression over a 14 

day exposure to cigarette smoke (CgS) of neonatal Mus musculus. They showed that perinatal 

lungs were particularly susceptible to the damaging effects of CgS, inhibiting innate immunity 

and mildly impairing postnatal lung growth. 
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Gene expression profiling was carried out using Affymetrix Mouse Genome 430 2.0 microarray 

on lung samples collected from 6 mice exposed to CgS and 4 controls (available at GEO 

repository with GSE7310 accession series). In this case intensity was scaled for a target of 500 

and genes present in at least 3 CgS chips and 2 controls were included (12905 genes). One 

hundred and eighteen differentially expressed genes were identified (10 up and 108 down) 

using an adjusted p-value < 0.05 (Supplementary Table 2). 

Melanoma genomic dataset 

Dataset from Packer et al. [23] was also analyzed. They carried out gene expression profiling to 

select novel downstream effectors of p14ARF in humans. 

Affymetrix Human Genome U133 plus 2.0 microarrays were used for this study (12 wild-type 

and 23 mutant p14ARFs). This dataset is available at GEO repository with GSE7152 accession 

series. Intensity was scaled for a target of 500 and genes present in 6 wild-type and 12 mutant 

chips were included (11986 genes). One hundred and sixty five of these were found to be 

differentially expressed (68 up and 97 down) using an adjusted p-value < 0.05 (Supplementary 

Table 3). 

Melanoma proteomic dataset 

A data set of differential proteins was obtained from 2D-DIGE analysis of secretomes (i.e. 

extracellular proteins) of two melanoma cell lines that varied in the levels of expression of the 

protumorigenic protein SPARC ([24] and Girotti et al, unpublished). In the case of proteomic 2D-

DIGE experiments, the nature of experimentation with proteins indicates that a BR-II is never 

available (there is no a priori list of proteins to be detected). Moreover, biological and technical 

constraints allow seeing only a subset of the proteins actually present in the proteome under 

study. In this particular case, for example, only extracellular proteins were analyzed. In addition, 

analysis of differential proteins by DIGE occurs before protein identification, and identification 

methods are usually applied only on differential spots. In order to build a BR-III for this 

experiment, we started by identifying all proteins present in the analyzed 2D-DIGE gels. The 

resulting list of proteins was then pooled with a list of secreted proteins of the same cell lines 

separated and identified by LC-MS/MS using an Orbitrap (Girotti et al, unpublished). This 
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integrated list resulted in 3154 genes, 72 of which were found to be DE (46 up and 26 down) 

(Supplementary Table 4).  

FIGURE 2 near here 

RESULTS 

In Figure 2, overall results (from all data sets) are shown. We found that, merging the results 

from all the main GO categories (far left Venn diagram in Figure 2), most of the enriched terms 

(462) were shared by the different BRs. Chip reference results (BR-II) were completely 

contained into BR-I in each GO DAG, except for one enriched term in CC (far right Venn 

diagram in Figure 2). This term is found in the inner structure of the DAG; thus, it does not add 

new biological information (it could be explained by more terms further down the branch i.e. 

specific enriched leaves). The genome background (BR-I) produced much more enriched terms 

(125) than the other references. However even when BR-III only holds 43.4% of the genome 

genes (BR-I) (see Table 1), it provided 46 new enriched terms not recognized by any of the 

other two references. From them, an overall of 39% represented new remarkable biological 

information (see below sections for details). 

TABLE 1 near here 

FIGURE 3 near here 

In Figure 3 the general DAG overlapping method is presented (in this case showing MF results 

from Packer dataset). For each main GO category the same DAG structure over each BR result 

was obtained and overlapped by the MCRM. Then a unique color-coded DAG is displayed for 

all the references. Enriched nodes were highlighted by different colors according to the overlap 

(Figure 3, Bottom DAG). The MCRM summarizes consensus nodes (in red) and highlights less 

consensus nodes/branches in orange (enriched in BR-I) and yellow (BR-I & BR-II). We found 

that by using the “user defined” reference (BR-III), new biological relevant branches terms 

emerged (see following sections). They were easily visualized by displaying them in green by 

the MRCM. These nodes were not identified by any of the other references. 

TABLE 2 near here  

Human smoke dataset 
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When analyzing MF ontology, we found that most enriched terms were consensus terms (see 

Table 2 and Supplementary Figure 1). The MRCM highlighted the nCN electron carrier activity, 

identified with BR-I and BR-II. This node was identified in the original work by Spira et al. [21]. 

The other nCN was calcium ion bindin, only enriched with BR-III. We found that genes in this 

term were reported to be involved in DNA damage mechanism, tumor cell migration and wound 

healing [25-27].  All these processes were also related to smoke by these authors. 

In the BP DAG 55 nodes were found enriched. These nodes mainly belonged to metabolic, 

response-to-stimulus and cellular processes. Among them 27 were CNs. The MRCM 

highlighted a nCN branch (far right branch in Supplementary Figure 2), only enriched in both 

BR-I and BR-III, related to angiogenesis, a well-documented process related to smoke-derived 

injury [28]. In this branch, we also identified a new term (only detected by BR-III) named skeletal 

system morphogenesis which was found to adversely affect development when cigarette smoke 

interacts with cells [29]. 

Another new BP node (only enriched in BR-III) was identified by the MRCM. This node, cell 

adhesion, was reported to be induced by cigarette smoke extracts [30]. In addition, another 9 

nCNs were highlighted by the MRCM, which were also literature validated (see Supplementary 

Table 5). 

The CC cellular component DAG of this experiment has only 2 CNs from the 12 enriched ones. 

The MRCM identified 3 new nCNs (only detected by BR-III). One of them was the proteinaceous 

extracellular matrix node, whose genes were found to participate in the earliest stages of lung 

cancer development [31]. On the contrary, the enriched nodes found by BR-II (chip reference) 

were only CNs. This means that all other informative terms found by the genome reference or 

by the user defined reference with literature support would have been missed if only this 

reference had been used (see Supplementary Figure 3 and Table 6). 

Mouse smoke dataset 

The MCRM showed a major consensus over the main GO categories. All enriched terms were 

identified using BR-I (see Table 2).  

However, in MF DAG four enriched terms were highlighted exclusively by the genome reference 

(Supplementary Figure 4) and three of them were found to be relevant such as protein, RNA 
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and zinc ion binding associated with smoke-related embryo deformity development during 

pregnancy [32, 21 and 11]. These terms would be missing if only chip reference analysis (BR-II) 

had been carried out. 

In BP DAG eight enriched nodes were highlighted. Three of them were non consensus leaves 

(nCL) (Supplementary Figure 5). Two of these nCLs (nutrient and cellular response to stimulus) 

were related to oxidative stress induced by smoke in mice [33-34]. The third nCL, cellular 

catabolic process, proved to induce connective tissue breakdown by cigarette smoke by Dhami 

et al. [35] was automatically highlighted by MCRM. 

In the CC GO category two terminal branches that ended in CNs, contained all the biological 

relevant information: phosphoinositide 3-kinase complex[36] and PML body which is related to 

viral infection, consistent with the McGrath-Morrow hypothesis (Supplementary Figure 6). 

Melanoma genomic dataset 

The analysis of the MF DAG showed 35 enriched terms distributed as shown in Table 2, where 

16 of them represented CNs (Figure 3 and Supplementary Figure 7). In this case, the MRCM 

allowed us to identify three new enriched branches (only with BR-III) directly related to the 

experimental setting. The far left branch (Figure 3, A) ends in transmembrane receptor activity 

node, which holds many genes reported in the original work related to cell-surface receptor-

mediated transduction pathways [23]. The calcium ion binding node was highlighted in the new 

central branch (Figure 3, B). This node was found to be a potential target for malignant 

melanoma therapy [37]. The last new branch (Figure 3, C) ended in the carboxylic acid 

transmembrane transporter activity node which contains genes of the SCL16 family. This family 

was reported fundamental for metabolism and pH regulation by Halestrap & Meredith [38] but 

not directly associated to melanoma. 

The MRCM also highlighted two branches and one nCL present in BR-I and/or II. These 

relevant biological terms (ATP binding, protein serine/threonine kinase activity and nucleoside-

triphosphatase regulator activity) were related to different p53 processes by different authors in 

melanoma studies [39-41]. 

In BP DAG 147 enriched terms were found, where 91 of these were consensus terms 

(Supplementary Figure 8). This dataset showed the greatest number of nCLs among the tested 
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gene expression datasets (see Table 2). By means of the MRCM, seven new terms (BR-III) 

relevant to the experiment emerged at different levels of the DAG. These were mainly related to 

three aspects: development, immunity and hemostasis. Relevant nodes in the first group 

(cartilage development, organ morphogenesis and lipid transport) were associated with different 

target genes of the p53 pathway [42-44]). Immunity related enriched nodes (humoral immune 

response and positive regulation of alpha-beta T cell differentiation) were also related to p53 

activity where it could also affect T cell differentiation with other Wnt pathway genes [45-[46]. 

Validation of the last nodes group (hemostasis and regulation of coagulation) suggested that 

tissue factor protein plays an important role in blood coagulation and also at cytoplasm levels, 

where it is able to transduce a melanoma cell signal that promotes metastasis [47-48]. 

The remaining highlighted (by BR-I and BR-II) enriched nCLs in this DAG, suggested general 

biological aspects and others that had already been reported in the original work (MAPKKK 

cascade, regulation of MAP kinase activity and regulation of Ras GTPase activity). Our 

proposed method produces an easier visualization and identification of these terms than using 

only one reference. 

In the CC DAG, 15 consensus terms were identified (Supplementary Figure 9). The MRCM 

could easily highlight membrane cellular parts related to the experimental setting. New enriched 

terms (BR-III) like external side of plasma membrane and integral to membrane of membrane 

fraction held genes related to tumor cell adhesion, invasion and metastatic activity [49-50]. 

Melanoma proteomic dataset 

Proteomic studies, unlike microarray experiments, do not have a “chip” reference. The only two 

possible available references were the genome and user defined (BR-I and III, respectively). In 

this case, although BR-III only holds at most 17% of the BR-I, a major consensus on ontology 

was achieved as in the mouse dataset case. 

Thirty nine enriched nodes present in MF DAG were found to be CNs. By means of the MRCM 

we were able to identify 15 terms (only present in the genome reference, BR-I) where 9 of them 

were leaves (Supplementary Figure 10). From these highlighted nodes, the unfolded protein 

binding node was found to be related to SPARC during embryonic development, when collagen 

IV deposition in basal lamina was studied, and when mentioned as a collagen molecular 
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chaperone in the endoplasmic reticulum [51-52]. The MRCM also highlighted a voltage-gated 

chloride channel activity nCN branch, where two CLIC family genes showed upregulated 

activity. These genes were found to be related to melanoma cell migration by Madeja et al. [53-

54]. 

In this dataset, the highest number of enriched terms (228) and consensus (170) among all 

datasets was found for BP DAG (see Table 2 and Supplementary Figure 11). The MCRM 

highlighted 10 nodes (only in BR-I) related to SPARC. For instance intermediate filament 

cytoskeleton organization term is strongly affected by SPARC [55]. Likewise, positive regulation 

of leukocyte migration and chemotaxis are directly affected by SPARC expression as reported 

by Alvarez et al. [56] and Kelly et al. [57]. Response terms such as cellular stress, axon injury 

and steroid hormone were also highlighted and associated to this gene [58-63]. Matricellular 

proteins like SPARC are also involved in the highlighted terms nervous system development 

and cell differentiation [64-66]. Interestingly, by means of the MRCM we found highlighted terms 

in both MF and BP DAG where the CLIC family genes were present. A relation between SPARC 

and CLIC family on enriched negative regulation of protein ubiquitination node was recently 

suggested by Nakayama [67] and Bellei et al. [68]. 

One nCN, amine transport, was found to be highlighted in BP DAG by the MRCM and related 

only to BR-III. We have found no conclusive evidence of this process related to SPARC. 

In CC DAG a consensus of 54 enriched terms was reached (Supplementary Figure 12). The 

MRCM highlighted (only in BR-I) three additional leaves, basement membrane, ubiquitin 

conjugating enzyme complex and nuclear envelope associated to SPARC expression by 

Fukunaga-Kalabis et al.[69], Anwar et al. [70] and Sacks-Wilner & Freddo [71]. 

DISCUSSIONS 

Here we show that SEA results vary according to the used background gene reference list, 

potentially biasing or misleading the biological interpretation. In our tested datasets, a great 

consensus was reached regardless of the used BR, in agreement with Hedegaard [72], who 

suggested that if biological results (i.e. the differential genes) are reliable, results among 

reference should be comparable to some extent. Nevertheless, informative ontology terms 
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could be missed depending on the BR or the visualization scheme used (e.g. tabular format) 

making the discovery process of biologically relevant information difficult. 

The contrast of several background reference gene lists, and in particular the inclusion of a 

specific user-defined (BR-III), showed that more relevant biological and experiment-specific 

information is made available. By using the user-defined BR we were able to find previously 

unseen enriched terms. 

We also propose a color–code scheme to visualize ontology results. The color-code display 

facilitates the identification of informative biological terms, yielding a rapid overview of the 

experiment’s results. The method automatically highlights nodes or DAG branches which, in our 

case, suggested being relevant to the experimental context. The proposed strategy facilitates 

the DAG inspection, avoiding looking into great detail and saving time in the analysis. Our 

results suggest that consensus nodes provide a global overview of the experiment and provide 

information about the expressed gene list reliability (they appear enriched no matter what BR is 

used). On the contrary, we found that non-consensus nodes provided interesting information, 

strongly related to the experimental setting and with published literature supporting their 

biological relevance. In some datasets, non-consensus terms also highlighted full new enriched 

branches of highly representative terms which were unseen or blurred when using the single 

reference strategy (see Supplementary Figures).  

Unlike other tools, our method includes all the a priori (without trimming GO DAGs) and a 

posteriori (no further filtering criteria) information, in order to let the DAGs and the MCRM speak 

for themselves together. Our results (supported by literature validation) suggest that information 

is gained using DAVID and GO results without any constraints (no adjustments, no filtering). In 

this context the proposed MRCM for information retrieval (simultaneous data bases query) and 

visualization scheme, as a data-mining tool, helps us to easily visualize contextual information 

by means of highlighting potentially relevant nodes in the DAG (identifying novel information on 

the DAG picture). For instance, the voltage-gated chloride channel activity enriched branch, 

which proved to be highly significant in the melanoma proteomic experiment, would not be 

identified in the default DAVID strategy (it excludes terms with less than 3 genes by default). 

This is especially important in proteomic studies where, as in our case, a term holding two 
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genes (CLIC4 and CLIC1) was found to be enriched. These genes were represented by several 

differentially expressed isoforms in the gels of the melanoma proteomic dataset. 
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FIGURE CAPTIONS 

Figure 1: Schematic multi-reference contrast method flowchart. 

Figure 2: Venn diagrams showing the distribution of the enriched terms found in all datasets for 

the different GO DAGs. Enriched terms in each subset are displayed in numbers (black). 

Corresponding nodes that fell onto leaves (most informative terms) are presented in 

percentages (gray). 

Figure 3: Contrast schematic output for Packer dataset MF DAG. Enriched nodes are displayed 

in color for each BR used (top graphs). Combined results are summarized in a single graph 

according to Venn diagram color legend. MRCM highlights the central branches by BR-I and II, 

while A, B and C emerge only with BR-III. 

Supplementary Figure 1: GO MF DAG for the human smoke dataset [21]. Node color legend is 

displayed on the Venn diagram for the three BR sets (see text). White nodes indicate no 

enrichment by any of the used BRs. 

Supplementary Figure 2: GO BP DAG for the human smoke dataset [21]. Node color legend is 

displayed on the Venn diagram for the three BR sets (see text). White nodes indicate no 

enrichment by any of the used BRs. 

Supplementary Figure 3: GO CC DAG for the human smoke dataset [21]. Node color legend is 

displayed on the Venn diagram for the three BR sets (see text). White nodes indicate no 

enrichment by any of the used BRs. 
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Supplementary Figure 4: GO MF DAG for the mouse smoke dataset [22]. Node color legend is 

displayed on the Venn diagram for the three BR sets (see text). White nodes indicate no 

enrichment by any of the used BRs. 

Supplementary Figure 5: GO BP DAG for the mouse smoke dataset [22]. Node color legend is 

displayed on the Venn diagram for the three BR sets (see text). White nodes indicate no 

enrichment by any of the used BRs. 

Supplementary Figure 6: GO CC DAG for the mouse smoke dataset [22]. Node color legend is 

displayed on the Venn diagram for the three BR sets (see text). White nodes indicate no 

enrichment by any of the used BRs. 

Supplementary Figure 7: GO MF DAG for the melanoma genomic dataset [23]. Node color 

legend is displayed on the Venn diagram for the three BR sets (see text). White nodes indicate 

no enrichment by any of the used BRs. 

Supplementary Figure 8: GO BP DAG for the melanoma genomic dataset [23]. Node color 

legend is displayed on the Venn diagram for the three BR sets (see text). White nodes indicate 

no enrichment by any of the used BRs. 

Supplementary Figure 9: GO CC DAG for the melanoma genomic dataset [23]. Node color 

legend is displayed on the Venn diagram for the three BR sets (see text). White nodes indicate 

no enrichment by any of the used BRs. 

Supplementary Figure 10: GO MF DAG for the melanoma proteomic dataset (Girotti et al. 

unpublished). Node color legend is displayed on the Venn diagram for the three BR sets (see 

text). White nodes indicate no enrichment by any of the used BRs. 

Supplementary Figure 11: GO BP DAG for the melanoma proteomic dataset (Girotti et al. 

unpublished). Node color legend is displayed on the Venn diagram for the three BR sets (see 

text). White nodes indicate no enrichment by any of the used BRs. 

Supplementary Figure 12: GO CC DAG for the melanoma proteomic dataset (Girotti et al. 

unpublished). Node color legend is displayed on the Venn diagram for the three BR sets (see 

text). White nodes indicate no enrichment by any of the used BRs. 

 



 

Table 1: Gene population in each Gene Ontology main category according to the three 

background references used. 

Example dataset 

Molecular Function Biological Process Cellular Component 

I II III I II III I II III 

Human smoke 

 

15143 

(100) 

10886 

(71.9) 

3212 

(21.2) 

14116 

(100) 

10391 

(73.6) 

3089 

(21.9) 

15908 

(100) 

11082 

(69.7) 

3299 

(20.7) 

Mouse smoke 

 

15404 

(100) 

12995 

(84.4) 

6549 

(42.5) 

14219 

(100) 

11944 

(84.0) 

6005 

(42.2) 

15855 

(100) 

13596 

(85.6) 

6888 

(43.4) 

Melanoma  genomic 

 

15143 

(100) 

14128 

(93.3) 

6216 

(41.0) 

14116 

(100) 

13187 

(93.4) 

5798 

(41.1) 

15908 

(100) 

14741 

(92.7) 

6384 

(40.1) 

Melanoma proteomic 

 

15143 

(100) 

- 

- 

2561 

(16.9) 

14116 

(100) 

- 

- 

2381 

(16.8) 

15908 

(100) 

- 

- 

2583 

(16.2) 

 

Total background reference (BR) population count for the different Gene Ontology categories 

and BR types (I genome, II chip or III user defined). In parenthesis, population percentage 

respects to BR-I members. Interestingly, BR-II is almost as complete as the genome (BR-I) 

while one would expect to have a tidier relationship as found in the melanoma genomic dataset. 

Filtering criteria on BR-III, has removed more than half of the total genome genes available in 

each Gene Ontology category. 

Table 1



Table 2: Total enriched terms on Gene Ontology categories for the three background 

references used for the four example datasets 

Example dataset 
Node 

type 

Molecular 

Function 

Biological 

Process 

Cellular 

Component 

I II III I II III I II III 

Human smoke 

 

T 18 16 14 51 33 37 9 2 9 

nCL 1 1 1 10 3 3 4 0 3 

Mouse smoke 

 

T 22 18 18 24 17 16 10 6 2 

nCL 3 0 0 3 1 0 0 0 0 

Melanoma genomic 

 

T 26 24 25 127 114 116 38 33 24 

nCL 1 2 3 7 4 7 6 4 3 

Melanoma proteomic 

 

T 54 - 39 225 - 173 63 - 54 

nCL 9 - 0 23 - 1 3 - 0 

 

T: total amount of enriched nodes for a given background reference (I genome, II chip or III user 

defined). nCL: non consensus nodes at the end of the branch (leaves), i.e. enriched nodes only 

detected by one or two BRs. 
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Supplementary Table 1 to 4: microarray gene description for Spira et al.[21], McGrath-Morrow 

et al.[22], Packer et al.[23] and Girotti et al. (unpublished) respectively. The “Type” column 

descriptor stands for “Ref” (Reference), “Up” or “Down” gene expression according to the 

experimental setting described in the main article. 



Supplementary Table 5: additional 9 biological process non-consensus nodes enriched by the 

Multi-Reference Contrast Method on Human smoke dataset. 

Gene 

Ontology 

Biological 

Process term 

Enrichment 

source 
Literature reference 

Cell redox 

homeostasis 
BR-I & BR-II 

Kaushik G et al., Cigarette smoke condensate promotes cell 

proliferation through disturbance in cellular redox homeostasis 

of transformed lung epithelial type-II cells. Cancer Lett., 270, 

120-131 (2008). 

Heterocycle 

metabolic 

process 

BR-I 

Cotgreave IA & Moldéus P, Lung protection by thiol-containing 

antioxidants., Bull. Eur. Physiopathol. Respir., 23, 275-277 

(1987). 

Positive 

regulation of 

cellular protein 

metabolic 

process 

BR-I 

Hu Q et al., The altertion and significance of surfactant protein 

A in rats chronically exposed to cigarette smoke. J Huazhong 

Univ Sci Technolog Med Sci., 28, 128-31 (2008). 

Regulation of 

mitochondrial 

depolarization 

BR-I & BR-II 

Slebos DJ et al., Mitochondrial localization and function of 

heme oxygenase-1 in cigarette smoke-induced cell death, Am 

J Respir. Cell. Mol. Biol., 36, 409-417 (2006). 

Regulation of 

synaptic 

plasticity 

BR-I & BR-III 

Qiao D et al., Oxidative mechanisms contributing to the 

developmental neurotoxicity of nicotine and chlorpyrifos. 

Toxicol. Appl. Pharmacol., 206, 17-26, (2205). 

Response to 

insecticide 
BR-I & BR-II 

Bal R et al., Assessing the effects of the neonicotinoid 

insecticide imidacloprid in the cholinergic synapses of the 

stellate cells of the mouse cochlear nucleus using whole-cell 

patch-clamp recording. Neurotoxicology., 31, 113-120 (2010). 

Response to BR-I Banerjee et al., Cellular and molecular mechanisms of 



vitamin cigarette smoke-induced lung damage and prevention by 

vitamin C. J. Inflamm. (Lond), 5, 21 (2008). 

Vesicle 

targeting, to, 

from or within 

Golgi 

BR-I 

Mukhopadhyay S et al., Cytoplasmic provenance of STAT3 

and PY-STAT3 in the endolysosomal compartments in 

pulmonary arterial endothelial and smooth muscle cells: 

implications in pulmonary arterial hypertension. Am. J. 

Physiol. Lung. Cell. Mol. Physiol., 294, L449-L468 (2008). 

Vitamin 

metabolic 

process 

BR-I 
Bruno et al., Cigarette smoke alters human vitamin E 

requirements. J. Nutr., 135, 671-674 (2005). 

 

BR-I, BR-II and BR-III correspond to genome, chip and user defined background references 

respectively. 

 



Supplementary Table 6: additional five cellular component non-consensus nodes enriched by 

the Multi-Reference Contrast Method on Human smoke example dataset 

Gene 

Ontology 

Cellular 

Component 

term 

Enrichment 

Source 
Literature reference 

Cytosol BR-I 

Yasuda,S. et at., Cigarette smoke toxicants as substrates 

and inhibitors for human cytosolic SULTs, Toxicol. Appl. 

Pharmacol., 221, 13-20 (2007). 

Extracellular 

space 
BR-I & BR-III 

Yin,L. et al., Alterations of extracellular matrix induced by 

tobacco smoke extract., Arch. Dermatol. Res. 292, 188-194 

(2000). 

Integral to 

plasma 

membrane 

BR-I & BR-III 

Rusznak,C. et al., Effect of cigarette smoke on the 

permeability and IL-1beta and sICAM-1 release from cultured 

human bronchial epithelial cells of never-smokers, smokers, 

and patients with chronic obstructive pulmonary disease, Am. 

J. Respir. Cell. Mol. Biol., 23, 530-536 (2000). 

Proteinaceous 

extracellular 

matrix 

BR-III 

Oh,J.J. et al., RBM5/H37 tumor suppressor, located at the 

lung cancer hot spot 3p21.3, alters expression of genes 

involved in metastasis. Lung. Cancer, 70, 253-262 (2010). 

Vacuole BR-I 

Cantin,A., Cellular response to cigarette smoke and oxidants: 

adapting to survive, Proc. Am. Thorac. Soc., 7, 368-375 

(2010). 

 

BR-I, BR-II and BR-III correspond to genome, chip and user defined background references 

respectively. 

 



Supplementary Table 7: supplementary Gene Ontology direct acyclic graphs for each example 

dataset 

 
Supplementary 

figure 
Example dataset 

Main GO 

category 

1 Human Smoke, Spira et al. [21] Molecular 

Function 

2 Human Smoke, Spira et al. [21] Biological 

Process 

3 Human Smoke, Spira et al. [21] Cellular 

Component 

4 Mouse Smoke, McGrath-Morrow et al. [22] Molecular 

Function 

5 Mouse Smoke, McGrath-Morrow et al. [22] Biological 

Process 

6 Mouse Smoke, McGrath-Morrow et al. [22] Cellular 

Component 

7 Melanoma Genomic, Packer et al. [23] Molecular 

Function 

8 Melanoma Genomic, Packer et al. [23] Biological 

Process 

9 Melanoma Genomic, Packer et al. [23] Cellular 

Component 

10 Melanoma Proteomic, Girotti et al. unpublished Molecular 

Function 

11 Melanoma Proteomic, Girotti et al. unpublished Biological 

Process 

12 Melanoma Proteomic, Girotti et al. unpublished Cellular 

Component 



 

Node color legend is displayed on the Venn diagram for the three BR sets (see text). White 

nodes indicate no enrichment by any of the used background references. 
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