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Abstract

A definitive consequence of the aging process is the progressive deterioration of higher cognitive functions. Defects in DNA
repair mechanisms mostly result in accelerated aging and reduced brain function. DNA polymerase m is a novel accessory
partner for the non-homologous end-joining DNA repair pathway for double-strand breaks, and its deficiency causes
reduced DNA repair. Using associative learning and long-term potentiation experiments, we demonstrate that Polm2/2

mice, however, maintain the ability to learn at ages when wild-type mice do not. Expression and biochemical analyses
suggest that brain aging is delayed in Polm2/2 mice, being associated with a reduced error-prone DNA oxidative repair
activity and a more efficient mitochondrial function. This is the first example in which the genetic ablation of a DNA-repair
function results in a substantially better maintenance of learning abilities, together with fewer signs of brain aging, in old
mice.
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Introduction

Non-homologous end-joining (NHEJ) is a fundamental pathway

for the repair of double-strand breaks (DSB) in mammals.

Deficiency in any of the NHEJ core factors results in immuno-

deficiency, general sensitivity to double-strand-break-inducing

agents, and premature cellular senescence [1], [2]. When, due to

their structure, broken DNA ends cannot be directly ligated,

NHEJ reactions require a variety of accessory factors to pre-

process the ends. Three DNA polymerase activities (TdT, Poll
and Polm), belonging to the PolX family, are involved in this step

of the NHEJ reaction in mammals [3–6]. The three polymerases

participate in the repair of similar DNA intermediates, but due to

its unique structural features, Polm is the only one capacitated to

repair DNA breaks whose 39protrusions have null complemen-

tarity [6–8].

Recently, the structure of all members of the PolX family has

been resolved [9], and a working model for Polm action during

end-bridging of broken DNA ends (Text S1and Figure S1)

proposed [9], [10]. According to this model, and considering the

ability of Polm to carry out untemplated deoxynucleotide and

ribonucleotide insertions [11], [12], Polm would behave as an

error-prone DNA repair polymerase. It is therefore currently

thought that, during the NHEJ reaction, Polm will be used as

a backup to other PolX members that are less prone to introducing

mutations in the DNA. Conversely, the analysis of knockout

mouse models indicates that only Polm seems to promote selective

accuracy during immunoglobulin kappa recombinatiom [11], as

immunoglobulin heavy chain junctions from Polm-deficient

(Polm2/2) animals have shorter length with normal N-additions

[13], [14]. Hence, it was proposed that Polm, Poll and TdT have

non-overlapping functions during immunoglobulin V(D)J recom-

bination [14].

Polm2/2 animals present impaired DSB repair [15], and this in

turn causes a significant alteration in hematopoietic homeostasis.

During the regular phenotyping of Polm2/2 mice, we realized that

they showed remarkably low exploratory behavior after cage

change, at different age stages (P#0.05; Text S1 and Figure S2A,

B). Moreover, analysis of Polm2/2 mice in the rota-rod test

showed significantly better sensorimotor coordination at the three

ages analyzed (3, 8, and 18 months old; P#0.05; Text S1 and

Figure S2C, D); furthermore, 18-month-old Polm2/2 mice

demonstrated that they were able to improve sensorimotor

coordination over the 4 days of the test, contrary to age-matched
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wild-type controls that were unable to do so (Text S1 and Figure

S2D). These data suggested improved brain function at old age in

Polm2/2 mice. Although Polm is expressed in the central nervous

system [11], its specific function in it remains to be determined.

We have analyzed here the consequences of genetic elimination of

Polm in a fundamental aspect of the central nervous system:

deterioration of learning capacities in association with aging [16].

Furthermore, we have evaluated young (3-month-old) and aged

(18-month-old) wild-type or Polm2/2 mice in associative learning

and long-term potentiation (LTP) tests [17].

Results

Classical Conditioning of Eyelid Responses in Behaving
Wild-type and Polm2/2 Mice

Trace conditioning is a hippocampus-related paradigm of

associative learning [18], [19]. Mice are capable of acquiring

classically conditioned eyelid responses using trace paradigms [17],

[20], [21]. Polm2/2 and wild-type animals (n = 10 per group) were

classically conditioned, using a tone as a conditioned stimulus (CS)

and an electrical shock presented to the supraorbital nerve as an

unconditioned stimulus (US; Figure 1). The percentage of

conditioned responses (CRs) for 3-month-old wild-type and

Polm2/2 animals was similar (Figure 2B), with a profile equivalent

to previous descriptions in mice, using comparable trace condi-

tioning procedures [17], [19–21]. Although the learning curve for

the Polm2/2 group was steeper than that for wild-type animals

(76.5% vs. 55% of CRs by the 5th session, respectively), the two

groups reached similar asymptotic values by the last four

conditioning sessions (Figure 2B). Both 18-month-old wild-type

and Polm2/2 mice reached significantly lower CR values than

their corresponding 3-month-old controls for the 5th-10th and for

the 2nd-10th conditioning sessions, respectively (F(18,162) = 26.11,

P#0.05; Figure 2B, D). However, from the 2nd to the 10th

conditioning sessions, 18-month-old Polm2/2 mice presented

a learning curve significantly steeper than that of their controls

(F(18,162) = 26.11, P,0.001; Figure 2D). The values reached during

the five extinction sessions were also significantly different

(P,0.001) among 18-month-old wild-type and Polm2/2 mice

(Figure 2D). These differences in the acquisition of CRs cannot be

ascribed to changes in age-dependent modifications in eyeblink

reflex circuits (Text S1 and Figure S3).

Eyeblink conditioning evokes a change in strength at the

hippocampal CA3-CA1 synapse in behaving mice [17]. Hence we

studied activity-dependent synaptic changes during associative

learning in this model, by the presentation of a single electrical

pulse to the Schaffer collateral/commissural pathway 300 ms after

CS onset (Figure 1A, B). The electrical stimulation of Schaffer

collaterals during the CS-US interval evoked a field excitatory

postsynaptic potential (fEPSP) in the CA1 area, as illustrated by

representative examples of the four experimental groups

(Figure 1D). The slope of the evoked fEPSPs increased pro-

gressively during conditioning to about 140% of the baseline

during the 5th-10th sessions in 3-month-old Polm2/2 mice and

during the 8th-10th sessions in the 3-month-old wild-type mice

(Figure 2A). In contrast, 18-month-old Polm2/2 mice displayed

significantly steeper slopes than those presented by 18-month-old

wild-type mice from the 6th to 10th conditioning sessions, and

during the first two extinction sessions (F(18,162) = 19.521, P#0.001;

Figure 2C). In all experimental groups, with the exception of 18-

month-old wild-type mice, fEPSP changes during conditioning

were linearly related to learning evolution (Text S1 and Figure S4).

These results demonstrate associative learning in 18-month-old

Polm2/2 mice and no learning in 18-month-old wild-type mice.

Long-term Potentiation of the Hippocampal CA3-CA1
Synapse in Wild-type and Polm2/2 Mice

LTP is a well-known form of synaptic plasticity that shares

many properties with the synaptic potentiation evoked by motor or

cognitive learning [17], [21–25]. We investigated whether the

improved synaptic plasticity observed in the 18-month-old Polm2/

2 mice at the hippocampal CA3-CA1 synapse during associative

learning could also be detected during LTP evoked by high-

frequency-stimulation (HFS) trains applied to Schaffer collaterals;

LTP evoked at the CA3-CA1 synapse can last from hours to days

[26]. For these experiments, we used an established LTP-evoking

protocol (see Methods). Polm2/2 or wild-type (3-month-old) mice

showed significant LTP for 24 h (F(36,324) = 115.3, P,0.001) that

was indistinguishable between the two groups. There were no

significant differences between the LTP evoked in young (3-

month-old) wild-type and Polm2/2 mice (F(49,441) = 0.217, P = 1;

Figure 3A, B). However, and similarly to the results obtained for

associative learning (Figure 2), no LTP was evoked in 18-month-

old wild-type mice, whereas a clear LTP was evoked in 18-month-

old Polm2/2 mice (F(49,441) = 4.815, P,0.001; Figure 3C, D).

Aging has an evident effect on LTP induction, which was

significantly smaller in both groups of 18-month-old mice than

in their respective 3-month-old matched genotypes

(F(49,441) = 6.602, P,0.001 for wild-type and F(49,441) = 7.950,

P,0.001 for Polm2/2 mice). In marked contrast, the four groups

behaved equally in the paired-pulse protocol, a test aimed at

detecting the presence of short-term synaptic plasticity (Text S1

and Figure S5). Taken together, these results show that Polm
deficiency enhances the activity-dependent synaptic potentiation,

taking place at the CA3-CA1 hippocampal synapse during the

acquisition of associative learning in conscious mice [17]. LTP

evoked in alert behaving mice by HFS of Schaffer collaterals

further confirmed that Polm plays a definite but negative role in

maintaining long-term plastic changes at the CA3-CA1 synapse

during the aging process.

Polm2/2 Mice Brain Shows a Molecular Profile
Compatible with a Delayed Aging Phenotype

As Polm2/2 animals show reduced DNA DSB repair capacity

and increased sensitivity to ionizing radiation [15], the results

described above contrast with those reported for many other

DNA-repair defects [27]. To understand the cellular basis of the

enhanced neurological functions preservation caused by the lack of

Polm, we have explored the hypothesis that the improved

hippocampal function of Polm2/2 mice might correlate with an

improved maintenance of neuronal circuits during aging. Classical

silver stains (Figure 4A, B) reveal different sets of axonal systems in

the trisynaptic circuit of the hippocampus, including the perforant

pathway that conveys afferent axons from the entorhinal cortex to

the hippocampus proper and the mossy fibers formed by dentate

gyrus granule cell axons projecting onto CA3 pyramidal cells.

First, we addressed whether young adult, 4-months-old Polm2/2

mice have a normal hippocampal circuitry. No major differences

in the distribution of axons of the perforant pathway, or in the area

of distribution of mossy fiber terminals in CA3 stratum lucidum were

found between wild type and Polm2/2 mice at 4 months of

postnatal age (Figure 4A, B). The vesicular Zn2+ transporter ZnT3

is strongly expressed in synaptic vesicles of the mossy fiber

expansions in area CA3 stratum lucidum. We analyzed Znt3+

mossy fiber expansions surrounding map2+ postsynaptic dendrites

of CA3 pyramidal cells in 4- and 18-months-old animals, finding

that they were less organized in 18-months-old mice as compared

to 4-month-old ones (Figure 4C–F’), a feature possibly associated

Polymerase m and Brain Aging
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with aging. However, we observed no apparent changes in these

axon terminals induced by the absence of Polm at both ages

(Figure 4C–F’). This suggests that the enhanced functional state of

the hippocampal circuits in aged Polm2/2 mice might not be

caused by enriched axonal input to at least two elements of the

trisynaptic circuit, i.e. the perforant path to dentate gyrus and the

mossy fibers to CA3.

No significant differences could be observed in the level of

double-strand breaks (DSB; staining for 53BP1 (Figure S6A) or

autophagy, evaluated by the expression level of a panel of critical

genes (Figure S6B). In addition, Polm2/2 animals seemed not to

present better telomere maintenance (Figure S6C, D). Further-

more, we ruled out that the observed effects could be associated

with compensatory mechanisms involving the closest partners in

DSB repair, namely Poll and Polb (Figure S6E).

The adult brain is essentially a post-mitotic organ, and repair of

deleterious oxidative DNA damage associated with 8-oxo-guanine

(8oxoG) generation is a substantial need. Base excision repair is the

main mechanism eliminating 8oxoG from DNA, but several other

players have been proposed for the tolerance/repair alternative

[28], [29]. 8oxoG behaves as a pre-mutagenic lesion; when used as

template by a repair polymerase activity, 8oxoG dictates not only

the insertion of a correct dCTP residue (when 8oxoG is in anti-

orientation), but also has the potential to direct misinsertion of

dATP (when 8oxoG adopts a syn-orientation), thereby forming an

8oxoG:dAMP mismatch. Contrary to other repair polymerases,

such as Polb or Poll, purified human Polm is strongly mutagenic

when copying 8oxoG, as dATP or rATP is preferably inserted in

front of 8xoG compared with dCTP or rCTP (Figure S7D, E).

Evaluation of wild-type versus Polm2/2 brain extracts from old

(21–23 months) mice demonstrated a similar overall gap-filling

activity in both samples (Figure S7A), in agreement with a greater

contribution of other repair polymerases from family X, such as

Polb and Poll, but – strikingly – Polm2/2 extracts presented

Figure 1. Experimental design for recording activity-dependent synaptic changes at the CA3-CA1 synapse during classical eyeblink
conditioning. (A) Location of recording (left) and stimulating (right) electrodes implanted chronically in the CA1 and CA3 areas respectively. (B)
Animals were implanted with electromyographic (EMG) recording electrodes in the orbicularis oculi (O.O.) muscle, and with stimulating electrodes on
the supraorbital nerve for presentation of unconditioned (US) stimuli. Conditioned stimulus (CS) consisted of a tone preceding the US by 500 ms.
Animals were also implanted with recording (Rec.) electrodes in the CA1 area and with stimulating (St.) electrodes at the ipsilateral Schaffer
collaterals. (C) Example of fEPSP evoked at the CA3-CA1 synapse in an 18-month-old Polm2/2 mouse (1) and eyeblink evoked in the O.O. muscle by
the electrical stimulation of the supraorbital nerve (2). (D) The top two traces illustrate the trace conditioning paradigm, and the moment at which
a single pulse was presented to Schaffer collaterals (arrow, St. Hipp.). Samples of EMG activity of the O.O. muscle and hippocampal extracellular
activity collected from the 9th conditioning session from an animal of each experimental group (1–4). Calibrations in (1) are for all of the records. Note
fEPSPs evoked by the pulse presented to Schaffer collaterals (bend arrows).
doi:10.1371/journal.pone.0053243.g001
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a significant reduction in mutagenic 8oxoG bypass activity

(Figure 5A–C). When the 1nt-gapped DNA substrate contained

an 8oxoG residue as template (see a scheme of the reaction in

Figure 5A), the two extracts produced a similar level of the

immediate insertion step of the short-patch reactions (+16;

indicated by a white asterisk in Figure 5B), using either dA or

dC; however, a significant difference was demonstrated for the

generation of the full-length (+34) ‘‘repaired/ligated’’ product (also

indicated by a white asterisk in Figure 5B). That full-length bypass

product (in which 8oxoG was tolerated as template) was especially

prominent when dATP (error-prone reaction) was provided in

comparison with dCTP (error-free reaction), and was mostly Polm-

dependent (Figures 5B, C and S7). By providing either dGTP or

dTTP (Figure S7B), Polm-dependent mutagenic bypass of 8oxoG

was also observed, but at a lower level than that obtained with

Figure 2. Learning curves and evolution of the evoked field potential (fEPSP) at the CA3-CA1 synapse for young and aged Polm2/2

and wild-type mice, across training. (A, B) Evolution of the fEPSP slope (A) and of the percentage (%) of conditioned responses (CRs, B) for 3-
month-old wild-type (black circles) and Polm2/2 (white circles) mice, during habituation, conditioning, and extinction sessions. At the top are
illustrated averaged (n = 5) fEPSPs collected from the 1st and 9th conditioning sessions. (C, D) A similar set of data collected from 18-month-old wild-
type (black triangles) and Polm2/2 (white triangles) animals. Mean % values are followed by6 SEM. Differences in the percentage of CRs between 18-
month-old wild-type and Polm2/2 animals were statistically significant as indicated (*P,0.001, two-way ANOVA). Differences in fEPSP slopes are also
indicated, expressed as the % change with respect to mean values collected during the last two-habituation sessions (*P,0.001, two-way ANOVA).
doi:10.1371/journal.pone.0053243.g002
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dATP, mimicking the substrate preference observed with purified

human Polm (Figure S7D).

Polm has an unusually low discrimination between dNTPs and

rNTPs, leading to the proposal that the use of ribonucleotide

substrates could be advantageous for DNA repair, especially in

non-dividing cells where the dNTPs pool could be greatly reduced

[12], [30]. Interestingly, when 8oxoG tolerance was evaluated in

wild-type versus Polm2/2 brain extracts using ribonucleotides

(rATP versus rCTP), the 34-mer full-length bypass product was

preferentially obtained with rATP (mutagenic), and the reaction

was about 4-fold more efficient than that with dATP (Figure 5B,

C). As shown with deoxynucleotides, the mutagenic (rATP) bypass

product was considerably reduced in Polm2/2 brain samples

(about 7-fold lower). By providing either rGTP or UTP, Polm-

dependent mutagenic bypass of 8oxoG was also observed (Figure

S7C), but at a lower level than that obtained with rATP, again

mimicking the substrate preference observed with purified human

Polm (Figure S7E).

Figure 3. Long-term potentiation (LTP) evoked at the CA3-CA1 synapse in 3- and 18-month-old Polm2/2 and wild-type mice. (A) LTP
induction in representative 3-month-old control (black circles) and Polm2/2 (white circles) mice. LTP was evoked in CA1 pyramidal cells by HFS of
ipsilateral Schaffer collaterals (five 200 Hz, 100 ms trains of pulses at a rate of 1/s. This protocol was presented 6 times in total, at intervals of 1 min).
The fEPSP is given as a percentage of the baseline (100%) slope. Records in the inset were collected at the indicated (1–3) times. (B) Mean 6 SEM
fEPSP values 1–15 min before (baseline), and 15–30 min (1), 105–120 min (2), and 24 h (3) after HFS for 3-month-old control (black bars) and Polm2/2

(white bars) animals. No significant differences were observed between LTP evoked in these two groups of animals (P= 1, two-way ANOVA). (C, D) A
similar set of data collected from 18-month-old wild-type (black triangles and bars) and Polm2/2 (white triangles and bars) mice. Note that, in contrast
with Polm2/2 mice, 18-month-old controls presented a non-significant increase in fEPSP slopes after the presentation of the HFS protocol (*P,0.05,
**P,0.01, ***P,0.001, two-way ANOVA).
doi:10.1371/journal.pone.0053243.g003
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These combined data imply that brains from old wild-type

animals have a significant mutagenic bypass activity in templates

harboring 8oxoG lesions, as the most representative oxidative

damage, and that this mutagenic potential is significantly reduced

in the absence of Polm. This revealed global reduction in

mutagenic bypass of modeled 8oxoG lesions and can be

considered a relevant difference that could have a direct or

indirect impact in brain physiology.

Due to the remarkable role of mitochondrial function in

oxidative stress and physiological decline [31–33] we examined the

activity status in old (23–28 months) Polm2/2 or wild-type brain.

The analyses did not find differences either in mitochondrial

content or in the mtDNA copy-number (Figure S8A, B). However,

the results clearly demonstrated that Polm2/2 samples showed

a better performance after evaluation of several relevant param-

eters (COX/CS, CII+CIII/CS, and aconitase/CS ratios) in

comparison with equivalent fractions obtained from wild-type

brain (Figures 5D and S8C–E); this effect is not global because

evaluation of equivalent liver fractions did not reveal such

difference (Figure 5E). In conclusion, these results indicating

a reduced mutagenic bypass activity on 8oxoG lesions and a more

efficient mitochondrial activity in brain of 18-month-old Polm2/2

mice, strongly suggest a plausible impact in the improved brain

physiology maintenance in Polm2/2 mice.

Therefore, we analyzed expression levels of a panel of candidate

genes, whose increment have been associated with physiological

murine and human aging [34] (Figure S9A). In this analysis, only 6

out of 19 genes analyzed showed reduced expression levels in

Polm2/2 brains (Egln3, Bid, Acin1, C1qa, Mrps12, and Igf1). The

most striking down-regulation in Polm2/2 mice was that of Egln3/

Phd3, an oxygen sensor. However, because Egln3 expression could

not be detected in the brain or liver (in either wild-type or Polm2/

2) before the age of 16 months (and then only in some wild-type

mice), we focused on two other candidates: C1qa (a member of the

complement system) and Bid (BH3 interacting domain death

agonist), a modulator of pro-apoptotic functions. Both genes

showed a clear down-regulation in 18-month-old Polm2/2 brains

(Figure 5F), whereas another member of the complement system

(C5a; used as an internal control) was not significantly modulated.

Evolution of the expression levels of these genes during aging in

Polm2/2 and wild-type brains (Figure 5G, H) suggest a gene

expression pattern partially compatible with a putative retardation

in brain aging, although other previously proposed potential aging

markers in CNS were not found to be significantly modified or

even up-regulated in Polm2/2 old brains, such as P16 (Text S1

and Figure S9A).

Finally, to evaluate the putative involvement of a differential

oxidative stress response in the described phenotype, Polm2/2 and

wild-type mice were treated with an acute dose of paraquat and

brains analyzed. It was demonstrated that 9,365 genes (38.7%)

were deregulated as a consequence of the treatment, but very few

(0.03%) were differentially altered between Polm2/2and wild-type

mice (Figure S10B, C). This group of genes includes Igfbp3, Lrrc46,

Erdr1, Myo1g, Tmed4, Nipsnap1, and Ascc2. Low quantitative

differences were confirmed for functions (0.8- and 1.3-fold, for

Igfbp3 and Erdr1 respectively with a plausible impact; no obvious

relationship could be established with the other modulated genes,

and no other major player in oxidative stress control was revealed

as being involved (Figures S9A and S10). All together, the results

suggest a moderately increased damage-resistance state in the

Figure 4. Absence of visible changes in hippocampal circuitry in Polm2/2 mice. (A, B) Silver staining shows perforant path axons (pp) and
mossy fibers forming axon terminals (mt) in the stratum lucidum of CA3 (outlined), in 4-months-old mice. The images do not suggest anatomical
differences between wild-type (A) and Polm2/2 (KO) mice (B). (C – F’) Mossy fiber terminals in CA3 stratum lucidum immunostained for ZnT3 in wild-
type (C, E) and Polm2/2 (D, F) mice, at 4 months (C, D) and 18 months (E, F); map2 immunostaining reveals dendrites of CA3 pyramidal cells. The
distribution of the ZnT3+ mossy fiber expansions was altered with aging, but no differences occurred between wild-type and Polm2/2 (KO) mice of
each age. CA1, CA3, areas of the hippocampus proper; DG, dentate gyrus; mt, mossy fiber expansions; pp, perforant pathway. Scale bar, A, B: 250 mm;
C–F’: 10 mm.
doi:10.1371/journal.pone.0053243.g004
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Figure 5. Polm2/2 mice brain shows a molecular profile compatible with a delayed aging phenotype. (A, B, C) Evaluation of 8oxoG
bypass repair activity (tolerance) in brain (wild-type vs. Polm2/2) extracts, using the indicated labeled-template primer (B). After incubation (309–1 h,
30uC) with the clarified extracts (10 mg), with the addition of the indicated nucleotides (50 mM) and 1 mM MnCl2, products were recovered and

Polymerase m and Brain Aging
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Polm2/2 mice. Additionally, we analyzed expression of selected

genes involved in brain development or homeostasis (Figure

S10B), in response to an acute oxidative stress challenge. Only

Bmp4, clearly induced after paraquat treatment in wild-type

animals, was down-regulated (0.6-fold) in Polm2/2 mice. Based on

previously published evidences [35], [36], [37], the differences in

Bmp4 up-regulation upon acute oxidative stress challenge (Figure

S9B) could imply that Polm2/2 brain could be less prompted to

suffer premature senescence associated with Bmp4 enhanced

signaling [37].

The Brain of Polm2/2 Mice Presents an Altered Endocrine
Network

In an attempt to obtain further clues of the relaying mechanism,

we carried out DNA expression array analysis of brain samples in

both adult (8–11 months) and old (18 months) animals.

Comparative expression profiles between 18-month-old Polm2/2

and wild-type mice demonstrated a very similar pattern and small

quantitative differences (Figure 6A). Bioinformatics analysis

revealed two gene networks altered in the Polm2/2 mice. The

first gene network (Figure S10) altered in the old Polm2/2 mice

pivots around several Hox genes (A3, B2, B3, B4, and C4), with no

obvious relationships with brain functions recognized. The second

is centered on endocrine functional differences, and is mainly

based on the brain modulation of GH, Igfbp1, Prl1, Pttg1, and Prok1

(Figure 6B). Several, but not all (there was an extremely high inter-

animal variability), of the revealed genes were confirmed by qRT-

PCR (Figure 6C). The fact that paired-age (18–24 w) Polm2/2

mice, in comparison with wild-type animals, do not present

significant differences in serum concentration (Figure 6D) of either

GH (91.2968.03 ng/mL vs. 94.17610.59 ng/mL, respectively)

or IGF1 (28.9663.54 ng/mL vs. 26.6062.59 ng/mL, respective-

ly) strongly suggests that the potential derived defects must be

local.

Because the neuroendocrine network detected is centered on the

regulation of GH/Igf1 and it has been demonstrated that the

simple heterozygous inactivation of brain insulin-like growth factor

receptor (Igf1R) led to a consistent somatotropic deficit (without

any detectable effects on other brain functions) and increased

mean lifespan [38], we evaluated whether lack of Polm could affect

Igf1R expression. Real-time reverse transcription PCR expression

analyses in old mice revealed no significant differences in Igf1

expression or up-regulation of Igf1R (Figure 6E). No significant

differences were detected in the expression level or localization of

Igf1R immunoreactivity in the CA1 area of old Polm2/2 brain

(Figures 6F and S9). However, IGF1 immunofluorescence

suggested an increased expression of the protein in CA1 non-

pyramidal cells of aged Polm2/2 brain (higher numbers of Igf1+
cells and with increased expression). In contrast, no changes in

CA1 IGF1 immunostaining were observed in 4-month-old Polm2/

2 brain. Therefore a more intense IGF1 immunostaining of non-

pyramidal cell processes in Polm2/2 brain could indicate an

increased level of Igf1 expression in that neuron population

(Figure 6F). Altogether, these results and the down-regulation of

Igfbp3 (Figure 6C) do not support an important involvement of the

classical somatotropic axis in the better preservation of cognitive

functions in the old Polm2/2 mice.

Discussion

Trace conditioning is a hippocampus-related paradigm of

associative learning [18], [19]. Eyeblink conditioning evokes

a change in strength at the hippocampal CA3-CA1 synapse in

behaving mice [17] and evaluates associative learning capacity of

them mouse model under study. In addition, LTP is a well-known

form of synaptic plasticity that shares many properties with the

synaptic potentiation evoked by motor or cognitive learning [17],

[21–25]. Comparative analysis of 18-month-old wid-type and

Polm2/2 mice demonstrated an improved synaptic plasticity

Polm2/2 mice during associative learning, and LTP evoked in

alert behaving mice confirmed that old mice deficient in Polm
demonstrate a better preservation of these two high level brain

functions.

Analyses of young/adult (3–8 months) Polm2/2 mice for some

parameters (Figure S2) showed that animals are less active then

wild-type controls, whereas at old–ages (18 months) the differences

get inverted. We confirmed a role for Polm in early B-cell

development [10] and recently it has been confirmed that retina

development is delayed Polm2/2 mice (E. de la Rosa et al., to be

published). So, in this context it is not difficult to assume that the

poorer results obtained in some tests in young animals originates

from a moderate weak impairment during central nerve system

development derived from deficit in DSB repair. In fact it is

possible that the phenotypes observed in the adult/old animals

might be conditioned from a compensatory re-equilibrium of

coordinated pathways during development, as has been recently

proposed for some functions that affect mitochondrial aging [38].

In any case, what is it more surprising is that even with this

apparent initial deficit, the adult neural system seems to cope

perfectly well along the whole life, being apparently better

preserved along physiological aging.

Physiological aging has a clear effect on LTP induction [39],

which was significantly smaller in both groups of 18-month-old

mice with respect to 3-month-old matched genotypes (Figure 3).

Therefore we have tried to define whether an altered aging could

be contributing to the improved brain maintenance in old Polm2/

2 mice. Immunohistochemical studies suggested that the enhanced

functional state of the CA3–CA1 synapses was not related to an

enriched axonal projection to CA3 pyramidal neurons. The

present histological and immunohistochemical studies suggested

that the enhanced functional state of the hippocampal circuits in

aged Polm2/2 as compared to aged wild-type mice did not

correlate with an improved maintenance of neuronal circuits in

the hippocampus along the protracted aging observed in these

mice. This preliminary conclusion requires refinement, since more

resolved in 20% PAGE. The scheme (A) illustrates the mobility of the different expected products: the original labeled primer (+15) could appear
intact or degraded by endogenous nucleases (degraded products); extended primers appear at positions (+16 or +17) if no ligation with the 59-flank
of the gap has occurred (short-patch repair), and at full-length repaired (or mutated) product (+34) if ligation did occur. (C). Densitometric analysis of
full-length repaired (+34) product was carried out, for the reaction using dATP or rATP, and represented relative to the activity yield by wild-type
brain extracts using dATP. (D, E) Evaluation of mitochondrial function in whole extracts (Hom) or mitochondrial purified fractions (Mits), in brain and
liver of wild-type and Polm2/2 mice. Several relevant parameters (COX/CS, CII+CIII/CS, and aconitase/CS ratios) were monitored in brain (D) and
compared with activity in liver (E). Differences were considered statistically significant at P,0.05. *P,0.01; **, P,0.001; ***, P,0.0001 and ns, non-
significant. (F, G, H) qRT-PCR analysis (F) of genes found to be differentially expressed in brain of old Polm2/2 mice (Figure S8). Evolution of gene
expression at different ages (G, H). All qRT-PCR analyses were carried out in triplicate and normalized to (36B4 or b-actin), and represented as the
relative level of expression of the indicated gene.
doi:10.1371/journal.pone.0053243.g005
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subtle changes in neuronal circuitry in aged Polm2/2 mice cannot

be excluded.

At the cellular and molecular levels several pathways involved in

modulation of aging were studied, and potential compensatory

effects by the closest PolX DSB repair enzymes, were ruled out.

Brain of Polm2/2 mice does not demonstrate a better maintenance

of telomeres, incremented autophagy or significant reduced DSB.

Based on the main proposed role for Polm in vivo [11], [12], [15]

Figure 6. Polm2/2 mice brain presents an altered endocrine network. (A) Hierarchical clustering of the differential mRNA expression between
wild-type and Polm2/2 old (18 months) mice. (B) Schematic representation of the expression network detected using the software Ingenuity. (C) qRT-
PCR analysis of genes belonging to the previously described network (B) and others found in DNA expression arrays carried out with brain of acutely
treated animals (Figure S10). Black bars denote values for wild-type animals and white bars correspond to Polm2/2 animals. (D) Circulating levels of
IGF1 and GH (ng/mL) were monitored by ELISA in old (21–24 months) animals. (E, F) qRT-PCR expression (E) and immunoconfocal analysis (F) of Igf1
and Igf1R in the hippocampal CA1area from wild-type and Polm2/2 young adult (4 months) mice. Igf1 immunoreactivity-labeled non-pyramidal cells
(short arrows) of stratum oriens (so), stratum pyramidale (sp), and stratum radiatum (sr; not shown); no differences in labeling frequency or labeling
intensity were found between Polm2/2 and wild-type mice. Igf1R-immunostaining delineated cell processes in the stratum radiatum (sr) of Polm2/2

but not of wild-type mice. As compared with the case of aged mice, unspecific punctate labeling (long arrows) was infrequent in these tissue
sections. Slight differences were found, however, in the occurrence of Igf1-immunoreactive cells in the CA1 area of aged mice, and in the expression
of Igf1R between young wild-type and Polm2/2 mice. Scale bar, 25 mm.
doi:10.1371/journal.pone.0053243.g006
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we analyzed mutagenic bypass repair activity (8oxoG:dAMP) on

an artificial 8oxoG modeled lesion, in crude brain extracts.

Evaluation of wild-type versus Polm2/2 brain extracts from old

mice demonstrated a significant difference for the generation of

full-length ‘‘bypassed/ligated’’ products, especially prominent

when dATP (error-prone reaction) was provided in comparison

with dCTP (error-free reaction), in wild-type extracts. These

results, in companion of the parallel control reactions, imply that

brains from old wild-type animals have a significant mutagenic

bypass activity in templates harboring 8oxoG lesions, as the most

representative oxidative damage, and that this mutagenic potential

is significantly reduced in the absence of Polm. Although a direct

association between this global reduction in mutagenic bypass of

8oxoG lesions evaluated in crude brain extracts, mainly contrib-

uted by glial cells, and the positive effects demonstrated in the

preservation of high level brain functions could be difficult to be

solidly established, it can be envisioned as a relevant difference

that could impact in brain physiology maintenance, directly or

indirectly. This evidences, combined with a more efficient

mitochondrial activity (Figure 5) and the reported reduced reactive

oxygen species (ROS) levels in Polm2/2 mice [15], could constitute

a less aggressive environment, both for the genetic and non-genetic

constituents of the cell.

Due to the established association between a defective or

mutagenic DNA repair capacity, oxidative stress and the aging

process, and the unexpectedly improved brain function in 18-

month-old Polm2/2 mice, we hypothesized that brain aging could

be delayed in Polm2/2 mice. Analysis of a panel of candidate

genes showed that one third of them (Egln3, Bid, Acin1, C1qa,

Mrps12, and Igf1) were reduced in Polm2/2 brain, and the

evolution of the expression levels of C1qa and Bid demonstrate

a pattern compatible with a putative retardation in brain aging in

Polm2/2 brains. However, other previously proposed potential

aging markers in CNS were not found to be significantly modified

or even up-regulated, such as P16 (Text S1 and Figure S9A) in

Polm2/2 old brains. Further global comparative DNA array

expression analysis of brain samples in both adult (8–11 months)

and old (18 months) animals confirmed small differences between

old Polm2/2 and wild-type brains, focusing the attention in two

networks. The first is structured around several Hox genes (Figure

S10), but with no recognized implications in brain function or

aging. Clarification of their putative involvement in the better

preservation of high-level brain functions in Polm2/2 mice will

require a dedicated and intense effort. The second network is

centered on endocrine functional differences, and is mainly based

on the brain modulation of GH, Igfbp1, Prl, Pttg1, and Prok1; some

of the genes involved have been associated with aging. PRL seems

to be markedly increased in serum along aging (hyperprolactine-

mia), GH secretion declines during normal aging, resulting in

lower serum levels of IGF1, and very disparate results have been

reported with regard to Igbp-1 [40]. In the same sense, it has been

reported that chronic treatment with recombinant GH mitigates

age-related cognitive decline, enhancing basal synaptic trans-

mission and both AmpaR-dependent basal synaptic transmission

and LTP [41], [42].

However evaluation of circulating levels of GH and IGF1 in

paired-age old wild-type and Polm2/2 mice did not reveal

significant differences, suggesting that, if relevant, those differences

might be local. In this sense, it was demonstrated that the simple

heterozygous inactivation of brain insulin-like growth factor

receptor (Igf1R) led to a consistent somatotropic deficit and

increased mean lifespan [38]. In this context, we confirmed that

lack of Polm does not affect neither Igf1 expression nor up-

regulation of Igf1R (Figure 6E) in old mice. However, IGF1

immunofluorescence suggested an increased expression of the

protein in CA1 non-pyramidal cells of aged Polm2/2 brain, which

is not evident in young (4-month-old) animals. Altogether, these

results and the down-regulation of Igfbp3 (Figure 6C) do not

support an important involvement of the classical somatotropic

axis in the better preservation of cognitive functions in the old

Polm2/2 mice, although the local overexpression of Igf1/GH by

some subgroups of cells could play some role.

Finally, Polm2/2 and wild-type adult mice were treated with an

acute dose of paraquat and brains analyzed as an experimental

model to evaluate the putative involvement of a differential

oxidative stress response in the described phenotype. DNA

expression array analysis demonstrated few (0.03%) but consistent

differences between Polm2/2and wild-type mice. Main genes

revealed include Igfbp3, Lrrc46, Erdr1, Myo1g, Tmed4, NipSnap1, and

Ascc2. Igfbp3 has previously been demonstrated to be up-regulated

in several cell systems as a consequence of oxidative stress,

mediating in amplification of hyperglycemic damage [43]; Igfbp3 is

down-regulated (0.8-fold) in the resting brain of Polm2/2 mice.

Erdr1 (erythroid differentiation regulator 1) was moderately up-

regulated (1.3-fold) in non-treated (basal) animals (Figure 6C).

Erdr1 has been defined as a pro-apoptotic or anti-metastatic factor

[44], but also as a nuclear factor (HoxB4-like) able to promote self-

renewal hematopoietic stem cells (HSCs) after forced overexpres-

sion [45]. Therefore, it is tempting to speculate that the moderate

increase demonstrated in Polm2/2 mice could contribute to

a better maintenance of tissue homeostasis. No obvious relation-

ship could be established with the other modulated genes, and no

other major player in oxidative stress control was revealed

involved (Figures S9A and S10). Additionally, analysis of more

candidate genes involved in brain development or homeostasis

(Figure S10B) revealed Bmp4 as down-regulated (0.6-fold) in

Polm2/2 mice after paraquat treatment. Bmp4 is a multifunctional

growth factor with pleiotropic roles whose enhanced signaling has

negative implications for adult hippocampal neurogenesis [35].

Conversely, a down-regulation of Bmp4 mediates the positive effect

of elective exercise on hippocampal neurogenesis and cognition

[36]. The differences in Bmp4 up-regulation upon acute oxidative

stress challenge (Figure S9B) suggest that Polm2/2 brain could be

less prompted to suffer premature senescence associated with

Bmp4 enhanced signaling [37]. All together, these results strongly

suggest that Polm deficiency favors an aging slow-down of some

brain functions, being probably mediated by a probable enhanced

damage-resistance, although a formal demonstration is needed.

This interpretation is in full agreement with the recently

demonstrated lifespan extension phenotype in Polm2/2 mice

(Escudero et al., submitted).

Genetic ablation of other members of the NHEJ pathway (Ku70,

Ku80, DNA-PKCS, XRCC4, or Lg IV) generates a severe DNA repair

deficiency, promoting global premature replicative senescence and

B and T immunodeficiency [2]. Particularly interesting is the

phenotype described for the Ku80 knockout mice, which exhibit

a premature aging, associated with an accelerated organismal

senescence, but a lower incidence of tumors (about 10-fold lower)

with an earlier onset [46]. Paradoxically, it was demonstrated that

Ku80 knockout mice present a significant decrease in basal somatic

point mutation (a reduction of around 2-fold) in both liver and

brain [46], and an almost complete absence of chromosomal

rearrangements (more than 30-fold). These unexpected findings

were interpreted as formal proof for the in vivo co-operation

between NHEJ and HR pathways, rendering _ in the K80

knockout context _ a more accurate DSB repair due to the

augmented participation of HR instead of the intrinsically

mutagenic DNA repair mediated by the NHEJ pathway [46].
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Following the hypothesis established in Ku80 knockout mice, the

fact that Polm2/2 mice display a milder DNA repair deficiency

[15] could conform a more favorable scenario for evidencing the

co-operation between NHEJ and HR pathways. Preliminary

independent studies (Escudero et al., submitted) have obtained

compatible results with several cellular lineages with reduced Polm
activity, thereby outlining a plausible molecular mechanism for the

delayed brain-aging phenotype, generated in origin by a less

efficient but more conservative global DNA repair status of neural

cell lineages.

Concluding Remarks
Here we have described how mice genetically deficient in Polm,

a novel member of the NHEJ pathway, show a significantly better

maintenance of cognitive/learning abilities and activity-dependent

synaptic plasticity in hippocampal circuits during aging. This

phenotype is probably due to delayed brain aging. The current

molecular models for age-related deterioration point to the

combined accumulation of multiple, minute changes in the

regulation of genes and pathways as the most plausible cause of

decline in cellular functions. Following the compatible working

model hypothesis for Polm function in vivo, we are tempted to

speculate that the absence of Polm function, which is prone to non-

conservative end-joining repair, could provoke a less efficient but

more conservative NHEJ repair, affecting mitochondrial biological

efficiency and maintaining a lower chronic rate of ROS

generation. The global physiological cell status would delay the

typical organismal evolution that accompanies aging.

In summary, DNA polymerase m activity influences brain aging.

Polm2/2 mice demonstrate a delayed aging, supported on

a reduced error-prone DNA oxidative repair activity and a more

efficient mitochondrial function.

Materials and Methods

Mice
The generation of Polm2/2 mice and their wild-type counter-

parts has been described previously [15]. Mice were bred in our

specific pathogen-free facility, and were routinely screened for

pathogens, at the Animal House of the Centro Nacional de

Investigaciones Cardiovasculares (CNIC, Madrid, Spain). Elec-

trophysiological and behavioral experiments were performed, at

the Animal House of the Pablo de Olavide University (Uni-

versidad Pablo de Olavide, Sevilla, Spain), with young (3-month-

old), medium-age (8-month-old), and aged (18-month-old) male

homozygous Polm2/2 mice and their corresponding littermate

controls. When indicated wild-type and Polm2/2 mice (8–12 w)

where injected with paraquat (50 mg/kg; i.p.), animals were

sacrificed 7 h later and brains and liver extracted for further

analyses. All experiments were performed in accordance to the

guidelines of the European Union Council (86/609/EU) and

current Spanish regulations (BOE 252/34367-91, 2005) for the

use of laboratory animals in chronic studies. Experiments were

also approved by the local institutional Ethics Committee for

animal care and handling.

Locomotion Test
Locomotion was measured in an activity box (26639 cm;

Cibertec, Madrid, Spain) as indicated by the number of broken

light beams during periods of 10 min. Measurements of locomotor

activity were carried out in a total of 15 mice/group of 3-, 8-, and

18-month-old wild-type and Polm2/2 animals.

Rota-rod Test
The rota-rod test is a behavioral task assessing motor co-

ordination performance. In this study, we used an accelerating

rota-rod treadmill (Ugo Basile, Varese, Italy). Mice (n = 15 per

group) were placed on the rod and tested at 25 rpm, for

a maximum of 400 s at each speed. Between trials, mice were

allowed to recover in their home cages. The total time that each

animal was able to stay on the rod was computed as the latency to

fall, recorded automatically by a trip switch under the floor of each

rotating drum. Mice were tested for 4 consecutive days, and the

results averaged to obtain a single value for each group at the

selected rotational speed [47].

Surgical Preparation of the Experimental Animals
Before surgery, animals were housed in collective cages (n = 5

per cage). Mice were kept on a 12 h light/dark cycle with constant

ambient temperature (2161uC) and humidity (5067%). Food and

water were available ad libitum. For classical conditioning of eyelid

responses, a total of 10 successful animals for each experimental

group were used. LTP studies were carried out on 10 additional

animals per group. Mice were anesthetized with 0.8–3%

halothane (AstraZeneca, Madrid, Spain) and placed in a stereo-

taxic apparatus (David Kopf Instruments, Tujunda, CA, USA).

Halothane was administered through a home-made mask from

a calibrated Fluotec 5 (Fluotec-Ohmeda, Tewksbury, MA, USA)

vaporizer, at a flow rate of 1–4 L/min oxygen. Once anesthetized,

animals were implanted with bipolar stimulating electrodes on the

left supraorbital nerve and with bipolar recording electrodes in the

ipsilateral orbicularis oculi muscle [17]. Electrodes were made of

50 mm, Teflon-coated, annealed stainless steel wire (A-M Systems,

Carlsborg, WA, USA), with their tips bared for <0.5 mm.

Electrode tips were bent as a hook to facilitate a stable insertion

in the upper eyelid. Animals were also implanted with bipolar

stimulating electrodes aimed at the right (contralateral) Schaffer

collateral-commissural pathway of the dorsal hippocampus. The

selected implantation site was located 2 mm lateral and 1.5 mm

posterior to Bregma, and 1.0–1.5 mm from the brain surface [48].

A recording electrode aimed at the ipsilateral stratum radiatum

underneath the CA1 area (1.2 mm lateral and 2.2 mm posterior to

Bregma; depth from the brain surface, 1.0–1.5 mm; ipsilateral to

the stimulating ones) was also implanted. Stimulating and

recording electrodes were made of 50 mm, Teflon-coated tungsten

wire (Advent Research Materials Ltd., Eynsham, England). The

final position of hippocampal stimulating and recording electrodes

was determined following the recording procedures explained

below [17]. A 0.1 mm bare silver wire was affixed to the skull as

ground. All the implanted wires were connected to two four-pin

sockets (RS-Amidata, Madrid, Spain). Sockets were fixed to the

skull with the help of two small screws and dental cement [17],

[49]. After surgery, animals were housed in individual cages. Two

weeks were allowed for animal recovery before the start of classical

conditioning or LTP experiments.

Classical Conditioning Procedures
For classical conditioning of eyelid responses, the animal was

placed in a small (565610 cm) plastic chamber located inside

a larger Faraday box (30630620 cm). Conditioning was achieved

using a trace paradigm consisting of a tone (20 ms, 2.4 kHz,

85 dB) presented as a conditioned stimulus (CS), and a cathodal,

square pulse applied to the supraorbital nerve (500 ms, 36thresh-

old) as the unconditioned stimulus (US). The US started 500 ms

after the end of the CS. A total of four habituation, 10

conditioning, and five extinction sessions were carried out for

each animal. A conditioning session consisted of 60 CS-US
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presentations, and lasted ,30 min. For a proper visual identifi-

cation and further analysis of conditioned responses (CRs), the CS

was presented alone in 10% of the cases. CS-US paired

presentations were separated at random by 3065 s. For habitu-

ation and extinction sessions, only the CS was presented, also for

60 times per session, at intervals of 3065 s. Eyelid responses were

determined by recording the electromyographic (EMG) activity of

the orbicularis oculi muscle ipsilateral to US presentation.

Hippocampal Recording and Stimulation Procedures
Electromyographic (EMG) recordings were carried out with the

help of Grass P511 differential amplifiers within a bandwidth of

0.1 Hz–10 kHz (Grass-Telefactor, West Warwick, RI, USA).

Hippocampal recordings were made with a high impedance

probe (261012 V, 10 pF).

As a criterion, we accepted as a CR the presence, within the

CS-US interval, of EMG activity of the orbicularis oculi muscle

lasting .10 ms and initiated .50 ms following CS onset.

Moreover, the integrated EMG activity recorded during the CS-

US period had to be at least 2.5 times greater than the averaged

activity recorded immediately before CS presentation [50].

Electrodes were surgically implanted in the CA1 area, using as

a guide the field potential depth profile evoked by paired (10–

500 ms interval) pulses presented at the ipsilateral Schaffer

collateral pathway. The recording electrode was fixed at the site

where a reliable monosynaptic field excitatory postsynaptic

potential (fEPSP) was recorded. Synaptic field potentials in the

CA1 area were evoked during habituation, conditioning, and

extinction sessions by a single 100 ms, square, biphasic (negative-

positive) pulse applied to Schaffer collaterals 300 ms after CS

presentation. Stimulus intensities ranged from 50 to 350 mA. For

each animal, the stimulus intensity was set well below the threshold

for evoking a population spike _ usually at 30–40% of the intensity

necessary for evoking a maximum fEPSP response [48]. An

additional criterion for selecting stimulus intensity was that

a second stimulus, presented 40 ms after a conditioning pulse,

evoked a larger (.20%) synaptic field potential than the first one

[17], [51–52].

Field EPSP baseline values were collected 15 min prior to LTP

induction. For this, we presented single (100 ms, square, biphasic)

pulses at a rate of 3/min. For evoking LTP, each animal was

presented with five 200 Hz, 100 ms trains of pulses at a rate of 1/

s. This HFS protocol was presented 6 times in total, at intervals of

1 min. The 100 ms, square, biphasic pulses used to evoke LTP

were applied at the same intensity used for baseline recordings.

After HFS, single pulses were presented again for 120 min at the

same rate as for baseline records. Recordings were repeated 24 h

later for 15 additional minutes.

Identification of the Implanted Sites
At the end of behavioral experiments, mice were deeply re-

anesthetized (sodium pentobarbital, 50 mg/kg), and perfused

transcardially with saline and 4% phosphate-buffered paraformal-

dehyde. Selected sections (50 mm) including the dorsal hippocam-

pus were mounted on gelatinized glass slides and stained using the

Nissl technique with 0.1% Toluidine blue, to determine the

location of stimulating and recording electrodes [17].

Electrophysiology Data Analysis
EMG and hippocampal activity, and 1-volt rectangular pulses

corresponding to CS and US presentations, were stored digitally

on a computer through an analog/digital converter (CED 1401

Plus, Cambridge, England), at a sampling frequency of 11–22 kHz

and with an amplitude resolution of 12 bits. Commercial

computer programs (Spike 2 and SIGAVG from CED) were

modified to represent EMG, EEG, and extracellular synaptic field

potential recordings. Data were analyzed off-line for quantification

of CRs and of fEPSP slopes with the help of home-made

representation programs [17],[50–53]. Computed results were

processed for statistical analysis using the SPSS for Windows

package. Unless otherwise indicated, data are represented as the

mean 6 SEM. Acquired data were analyzed using a one- and two-

way ANOVA test, with session and group as repeated measure.

Data collected from the behavioral tests (actimeter and rota-rod)

were also analyzed with one- and two-way ANOVA. Contrast

analysis was added to study further significant differences.

Regression analysis was used to study the relationship between

fEPSP slopes and the percentage of CRs.

Microarray Gene Expression Profiling
Sample labeling and microarray hybridization. The one-

color Microarray-Based Gene Expression Analysis Protocol

(Agilent Technologies, Palo Alto, CA, USA) was used to amplify

and label RNA. Briefly, 400 ng of total RNA was reverse

transcribed using T7 promoter Primer and MMLV-RT. cDNA

was then converted to aRNA using T7 RNA polymerase, which

simultaneously amplifies target material and incorporates cyanine

3-labeled CTP. Cy3 labeled aRNA (1.65 mg) was hybridized to

a Whole Human Genome Microarray 4644 K (G4112F, Agilent

Technologies) for 17 hours at 65uC in 1X GEx Hybridization

Buffer HI-RPM in a hybridization oven (G2545A, Agilent

Technologies) set to 10 rpm. Arrays were washed according to

the manufacturer’s instructions, dried by centrifugation, and

scanned at 5 mm resolution on an Agilent DNA Microarray

Scanner (G2565BA, Agilent Technologies) with the default

settings for 4644 K format one-color arrays. Scanned images

were analyzed with Feature Extraction software (Agilent Tech-

nologies).

Data analysis. Feature Extraction data files were imported

into GeneSpringH GX software version 9.0 (Agilent Technologies).

Quantile normalization was performed and expression values (log2

transformed) were obtained for each probe. Probes were also

flagged (Present, Marginal, Absent) using GeneSpringH default

settings. Probes with signal values above the lower percentile

(20th), and flagged as Present or Marginal in 100% of replicates in at

least one out of the two conditions under study, were selected for

further analysis. Data were edited and analyzed in R (R

Development Core Team) using different packages of the

Bioconductor project [54], as well as custom written R routines.

Data processing. Data were read into R and processed using

the Agi4644PreProcess Bioconductor package as follows. Agi4644-

PreProcess options were set to use the MeanSignal and the

BGMedianSignal as foreground and background signals, respective-

ly. Then, data were background corrected and normalized

between arrays using the half and quantile methods. The half

method produces a positive background corrected signal by

subtracting the background signal from the foreground signal

keeping any intensity less than 0.5 equal to 0.5 to produce positive

corrected intensities. Then data were normalized between arrays

using the quantile method [55]. A constant equals 50 was added to

the intensities before the log transformation in order to reduce the

signal variability of the low intensity expressed genes. The AFE

image analysis software attaches to each feature a set of flags that

identify different quantification properties of the signal. Agi4644-

PreProcess uses these flags to filter out features that 1) are controls 2)

are out of the dynamic range of the scanner and 3) are outliers. To

keep features within the dynamic range 3 independent levels of

filtering can be done to ensure that 1) the signal is distinguishable
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from the background, 2) the signal is found, and 3) the signal is not

saturated. For each of these filtering steps, we required for each

feature that more than the 75% of its replicates within at least one

experimental condition have a quantification flag denoting that

the signal is within the dynamic range. In addition, for each

replicated feature across the whole set of samples, we filtered out

those probes that had more than 25% of its replicates in at least

one experimental condition with a flag indicating presence of

outliers. After the completion of all the pre-processing steps there

were 26,670 (T20 vs. T3 data set) features available for the

statistical analysis. Finally, Agi4644PreProcess maps each Agilent

manufacture’s probe identifier to its corresponding accession

number, gene symbol, gene description and Gene Ontology

identifiers (GO; The Gene Ontology Consortium) using the

Bioconductor annotation hgug4112a.db. Data were finally analyzed

using the Ingenuity Systems IPA software (Ingenuity Systems Inc.,

CA, USA).

Statistical Analysis
The differential expression analysis was done using the linear

modeling features implemented in the Bioconductor limma

package. The limma package incorporates empirical Bayes

methods to obtain moderated statistic [56]. To estimate the

differential expression between the different experimental condi-

tions in the two data sets (T20 vs. T3 and P21 vs. P2), the following

linear model was fitted to each gene: yij~tizeij where yij is the

observation of treatment ith for individual jth, ti is the effect of the

ith treatment and eij is the experimental error, assumed normally

distributed with 0 mean and variance s2e . The differentially

expressed genes due to differences in the treatments were

discovered by testing for each gene the hypothesis of no differences

between gene signals under different treatment using the estimates

s2e .

To reduce the number of genes for the multiple testing

correction without missing relevant information, a non-specific

filtering was done by removing the genes that showed either

a constant expression between samples (IQR ,0.50) or low

expression signal (log2 expression ,5 in all samples) using the

Bioconductor genefilter function. Since the eBayes function estimates

the average variability of the genes on the microarray, the non-

specific filtering was done after the eBayes correction. Then, the

multiple comparisons of genes were taken into account by

controlling the false discovery rate, which was estimated in terms

of the q value statistic using the Bioconductor qvalue package [57].

To integrate significant expression profiles into functional

categories we performed a Gene Ontology (GO)-based statistical

analysis using the hyperGTest function of the GOstats package [58].

The hyperGTest computes hypergeometric p values to test for

overrepresentation and underrepresentation of each GO term in

a given subset of genes in comparison to the distribution of GO

terms in a defined universe of genes. The universe included those

genes that were above the background signal and had a known

GO term in the corresponding database. Duplicated genes were

removed before the GO analysis.

Quantitative Real Time RT-PCR Evaluation
Total RNA was isolated from brain of young (2 months old),

and old (11, 14, and 19 months old) mice using TRIH REAGENT

(Sigma, P/N: T9424) as indicated by the manufacturer. cDNA

synthesis was performed using a Reverse Transcription kit

(Promega, P/N: A3500) following the manufacturer’s protocol.

Gene expression was evaluated by Real Time PCR or TaqMan

assay and expressed as mRNA level normalized to a standard

housekeeping gene (36B4 and b-actin, respectively). Real-time

Quantitative PCR assays were performed using Applied Biosys-

tems 7000 Sequence Detecting system, and Power SYBER Green

PCR Master Mix (Applied Biosystems, P/N:4367659) or TaqMan

2X PCR master mix (Applied Biosystems, P/N: KP0054). Ten ng

of cDNA per animal brain was used to perform triplicate PCR

analyses per experiment. We used the primers summarized in

Table S1 for RT-PCR amplification. Cox2 cDNA was amplified by

TaqMan, with the probe 59-TCATGAGCAGTCCCCTCCC-

TAGGACTTAA-39; (59 FAM 39 TAMRA), the upstream primer

59-TTTCATCTGAAGACGTCCTCCA-39 and the downstream

primer 59- GGCCTGGGATGGCATCA-39. The rest of the

cDNAs were amplified using the corresponding TaqMan gene

assay, designed and provided by Applied Biosystems. These were

the following: Mm00432142_m1 for C1qa, Mm00432448_m1 for

P21, Mm00480750_m1 for Perp, Mm00477210_m1 for Pten,

Mm00472200_m1 for Egln3, Mm00432073_m1 for Bid,

Mm000479895_m1 for Acin1, Mm00546086_m1 for Gfap,

Mm00431960_m1 for Atp5a1, Mm00465919_m1 for Mrpl28,

Mm00488728_m1 for Mrps12, Mm00809812_m1 for Timm17a,

Mm00600325_m1 for Ndufa10, Mm00802841_m1 for Igf1R,

Mm00439560_m1 for Igf1, and 4352933-E for b-Actin. The

amount of transcripts was calculated as follows: 2‘(–Dct), where

Dct is the ct value normalized to the corresponding housekeeping

gene.

Immunoconfocal Analysis
Animals for immunohistochemistry (n = 19) were deeply

anesthetized with ketamine-xylazine, i.p., and perfused transcar-

dially with saline followed by 4% parafomaldehyde in 0.12 M

phosphate buffer, pH 7.2. Brains were dissected out, postfixed

overnight at 4uC, and stored in PBS or in an ethylene glycol-

glycerol-PBS anti-freeze solution at 4uC. Cryoprotected blocks

were sectioned at 50 mm in a freezing sliding microtome. Sections

were blocked in 4% bovine serum albumin, 3% normal horse

serum, 0.1% Triton X-100, and 0.05% azide in PBS for 2 h.

Then, sections were incubated in the primary antibodies diluted in

the same blocking solution overnight. Primary antibodies used

were mouse monoclonal antibody M23 to IGF1 (Abcam, Cam-

bridge, UK; 1:300), mouse monoclonal antibody AP-20 to

microtubule-associated protein 2 (map2, 2a+2b; Sigma; 1:250),

rabbit polyclonal antibody sc-713 to IGF1Rb (Santa Cruz

Biotechnology, CA, USA; 1:150) and rabbit polyclonal antibody

to the Zn2+ vesicular transporter ZnT3 (Synaptic Systems,

Göttingen, Germany; 1:500). Secondary antibodies were Alexa

Fluor 488 anti-mouse IgG and Alexa Fluor 546 anti-rabbit IgG

(both from Molecular Probes - Invitrogen, Barcelona, Spain;

1:500). The secondary antibodies were diluted in blocking solution

and applied for 3 h. Sections were then washed in PBS and

coverslipped with Citifluor (London, UK). Sequential confocal

images were obtained in a Leica TCS SL confocal microscope.

For the 53BP1 immunofluorescence, paraffin sections were

deparaffined, rehydrated and unmasked with Trilogy pretreatment

solution (CELL MARQUE, 20X), by incubation in 1X of this

during 15 min in a microwave at full power. Paraffin sections were

washed two times in TBS containing 0.2% Tween (TBST) 5 min

each one, and blocked (10 min) in CAS-Block (Invitrogen).

Preparation were incubated 1h with anti 53BP1 antibody

(NovusBio) diluted 1/50 in CAS-Block (Invitrogen). After washing

with TBST and incubated with the secondary antibody (Anti-

Rabbit 568) during 45 min, slides were washed again for two times

with TBST and mounted with DAPI (VectaShield mounting

medium, Vector). Confocal images were acquired on Leica SPE

microscope using LAS AF Software. Tiff images were analyzed
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with Images J program, and were scored the number of 53BP1

positive nuclei.

Silver Staining of Axonal Systems in the Hippocampus
Adult brains (n = 10) perfused as above were sectioned at 50 mm

in a Vibratome, mounted on gelatinized slices and silver stained as

described elsewhere [59].

Telomere Length Evaluation
DNA was extracted from brain tissue through the DNAzol

methods adaptation. Average telomere length was measured from

total genomic DNA using a real time quantitative PCR method.

PCR reaction was performed on the Mastercycler realplex2

(Eppendorf), using telomeric primers; primers for the reference

control genes were mouse single copy gene 36B4 [60], and human

single copy gene (retinoic X receptor b gene) [61]. Each reaction

in the assay was performed as references above. Equal amounts of

genomic DNA (100 ng) were used with several duplicates. The

reaction condition in the thermocycler includes first step at 95uC
for 10 min followed by 40 cycles of 95uC for 15s and 60uC anneal-

extend step for 1 min. We made internal standard curve with the

relative telomere length ratio (T/S) of human cells lines of which

the telomeric length is known such as Tin2, LXSN and Tin 2–13

[62], to estimate the telomeric length of our samples. Ratio (T/S)

is defined as 2‘-(delta Ct), where delta Ct = mean Ct telomere/

mean Ct single copy internal gene.

Quantitiative FISH was carried out using a Cy3- labeled

LL(CCCTAA)3 peptide nucleic acid (PNA) telomeric probe

(Eurogentec, Liège) as previously described [59] with the following

modifications. After hybridization slides were washed three times

with PBS-0.1% Tween for 10 min at 60uC and dehydrated

through an ethanol series (70%, 90% and 100%; 5 min each).

Slides were then counterstained and mounted in Vectashield H-

1200 mounting medium. Digital images were acquired as de-

scribed above. Telomere signals were captured with the same

exposure time in all samples. Telomere length (in kb) was

extrapolated from the fluorescence of hTert-immortalized 82-6

fibroblasts expressing either TIN2 or TIN2-13 proteins with

known and stable telomere lengths (3.4 and 8.4 kb respectively;

kindly provided by Dr Judith Campisi). Telomere signals from at

least 20–30 nuclei per group were quantified using TFL-Telo

(version 2), kindly provided by Dr Peter Lansdorp (British

Columbia Cancer Centre, Vancouver, Canada). All images were

captured and analyzed in parallel on the same day by an

experimenter blinded to the treatment groups.

Evaluation of Mitochondria Activity
Preparation of mitochondrial fractions and spectrophotometric

activities of individual complexes were performed as described

elsewhere [63]. Evaluation of the different parameters of

mitochondrial activity was carried essentially as previously de-

scribed [64] and mitochondrial supercomplex study also as

described elsewhere [65].

Evaluation of Mutagenic DNA Repair Activity
Extracts were prepared essentially as previously described [66].

Briefly, tissues were washed three times with ice-cold phosphate-

buffered saline and resuspended in 1ml for 500 mg tissue of Buffer

I (10 mm Tris-Cl, pH 7.8, and 200 mm KCl). After the addition

of an equal volume of Buffer II (10 mm Tris-Cl, pH 7.8, 200 mm

KCl, 2 mm EDTA, 40% glycerol, 0.2% Nonidet P-40, 2 mm

dithiothreitol, 0.5 mm phenylmethylsulfonyl fluoride, 10 mg/ml

aprotinin, 5 mg/ml leupeptin, 1 mg/ml pepstatin), the suspension

was rocked at 4uC for 1 h and then centriguged at 16,0006g for

10 min. The supernatant was recovered and stored in small

aliquots at 280uC.

PAGE-purified oligonucleotides were 59 end labeled with

[c-32P]ATP by polynucleotide kinase. The oligonucleotides used

to generate the DNA substrates were the following: for gapped

8OxG containing substrate, P15 (59-CTGCAGCTGATGCGC-

39), T348G (59- GTACCCGGGGATC.

CGTAC8GCGCATCAGCTGCAG-39) and 59 phosphate-

containing D18 (59-GTACGGATC CCCG.

GGTAC-39), were 8 indicates the presence of an 8OxG moiety;

for standard (gap-filling) polymerization assays T348G oligonucle-

otide was substituted for T34 (59- GTACCCGGGG ATCCG-

TACGGCGCATCAGCTGCAG-39). For ex vivo evaluation of

extracts, appropriate template primer (T/P/D) substrates were

used with the clarified brain extracts (wild-type vs. Polm2/2).

For standard (gap-filling or bypass mutagenic repair) polymer-

ization assays, the incubation mixture (20 ml) contained 50 mM

Tris-HCl (pH 7.5), 1 mM MnCl2 (alternatively 10 mM MgCl2),

1 mM DTT, 4% glycerol, 0.1 mg/ml BSA, 5 nM gapped DNA,

the indicated concentration of NTPs, and either wild-type or

Polm2/2 brain extracts (10 mg). After 30 min of incubation at

30uC, reactions were stopped by addition of loading buffer

(10 mM EDTA, 95% [v/v] formamide, 0.03% [w/v] bromophe-

nol blue, 0.3% [w/v] cyanol blue) and subjected to electrophoresis

in 8 M urea-containing 20% polyacrylamide sequencing gels.

After electrophoresis, the unextended, degraded or extended DNA

primers were detected by autoradiography, and quantified.

Circulating Levels of GH and IGF1
Animals, at different ages, were bled (approx. 250 ml) and serum

obtained and kept frozen. Circulating levels of growth hormone

(GH) were determined using the Growth Hormone (GH) EIA

Rat/Mouse 96 Test kit (Materlab) and IGF-1 using the IgF-1

(Rat/Mouse) EIA 96 TEST kit (Materlab), following the in-

struction of the manufacturer. Evaluations were done in triplicates.

Supporting Information

Figure S1 Mechanistic working model for in vivo Polm
function in NHEJ reactions. (A) NHEJ (error-prone) and HR

(error-free) are the fundamental pathways for double-strand break

(DSB) repair in mammals, and both compete for the same

substrates. The contribution of either mechanism is dictated by the

avidity of the heterodimer ku70/ku80 and the activity of the MRX

complex for the DSB (Lee et al., 2008), and is strictly dependent on

the cell cycle status; D-NHEJ, the classical pathway dependent on

DNA-PK; B-NHEJ, a novel subpathway (called backup NHEJ

mechanism), recently characterized, dependent on PARP-1, DNA

Ligase III, and Histone 1 (Rosidi et al., 2008). (B) The HR pathway

is preferentially active in the S and G2 phases of the cell cycle

when a homologous sister chromosome or chromatid is available

for direct base-pairing to effect error-free repair of a DNA DSB.

Conversely, the NHEJ repair pathway can be used within any

phase of the cell cycle and can be error-prone. The reported

comparative strength of the two mechanisms (NHEJ vs. HR) along

the different phases of the cell cycle has been schematized,

following recent evidence (Kan’o et al., 2007; Mao et al., 2008;

Natarajan et al., 2008). The letter size is intended to illustrate

graphically the comparative contribution of the two mechanisms

in each phase of the cell cycle. (C) A basic model for Polm-

dependent nucleotide insertions catalyzed during DSB repair.

Processed NHEJ typically results in rearrangements. End-proces-

sing activities exist to deal with terminal damage, and occasionally,
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incompatible ends are generated as a collateral phenomenon. Polm
is unique in that it can process incompatible overhangs: at some

end sequences, Polm action can be template-directed (error-free),

but in other cases wrong nucleotides are inserted, thus contrib-

uting to mutagenesis. (a) Schematic representation of a minimally

processed DSB (1nt 39-protruding ends), with non-complementary

sequences. (b) Polm structure (in gray) depicted as 2 ellipses, the

larger one representing the polymerization core, and the smaller

one indicating the 8kDa domain, having an ssDNA binding cleft

that contains the 59-P binding site, critical for stabilizing enzyme/

DNA binding. c) Synapsis/juxtaposition of the two incompatible

DNA ends mediated by Polm, in which the ends could be properly

(left scheme) or wrongly (right scheme) aligned. d) Depending on

the alignment (end-sequence dependent) and potential damage

context, Polm can insert a nucleotide complementary to the other

end (green X; left column), or non-complementary (red N; central

column), by virtue of its Terminal Transferase activity; addition-

ally, and based on its high tendency to use microhomology for

local primer relocalization prior to polymerization, a putative

second insertion is postulated on some occasions (green X, after

the red N; right column), which could facilitate ligation. (e) All

these intermediates can be managed by DNA Ligase IV,

generating different final products. (f) A restored wild-type

sequence (Error-free; left column), or modified sequences (Error-

prone), including mismatches (central column) or a +1 frameshift

(right column).

(TIF)

Figure S2 Polm2/2 mice display reduced exploratory
activity and enhanced sensorimotor coordination during
aging. (A–B) Motor activity (defined as number of beam

interruptions per 10 min) of 3-, 8-, and 18-month-old wild-type

(black bars) or Polm2/2 (white bars) mice. (C–D) Maximum time

of permanency on the rota-rod (C) for 3-, 8-, and 18-month-old

wild-type (closed circles) or Polm2/2 (open circles) mice analyzed

on a rota-rod machine for 400 s per day over 5 days. (D) A total of

n = 15 animals/group were used in these experiments. * P,0.05,

** P,0.01, two-way ANOVA.

(TIF)

Figure S3 Characteristics of eyeblink responses evoked
in young and aged Polm2/2 and wild-type mice. (A) A

diagram indicating the location of stimulating (St.) electrodes

implanted on the supraorbital nerve and electromyographic

(EMG) recording electrodes implanted in the orbicularis oculi

(O.O.) muscle. (B) Three superimposed records of the O.O.

EMG response to the electrical stimulation of the ipsilateral

supraorbital nerve collected from an 18-month-old Polm2/2

mouse. Note the two short- (R1) and long- (R2) latency

components characterizing the blink reflex in mammals. EMG

calibration as indicated. (C, D) Mean (6 SEM; n = 20 measure-

ments) values collected for EMG latency (C) and area of rectified

EMG records (D) of both R1 and R2 components of electrically

evoked blinks in 3- and 18-month-old wild-type (black bars) and

Polm2/2 (white bars) mice. No significant difference (P$0.425,

two-way ANOVA) was observed between groups for any of the

four parameters.

(TIF)

Figure S4 Quantitative analysis of the relationships
between the percentage of CRs and fEPSP slopes for the
different experimental groups across habituation, con-
ditioning, and extinction sessions. Data collected from 3-

month-old wild-type (A) and Polm2/2 (B) mice and from 18-

month-old wild-type (C) and Polm2/2 (D) mice are illustrated.

Each point represents the mean value collected from a single

animal during the corresponding session. Equations corresponding

to each of the three relationships included in each plot are

indicated. Note that this linear regression analysis was non-

significant for habituation sessions in all of the groups and for

conditioning and extinction sessions as well in the 18-month-old

control group.

(TIF)

Figure S5 Paired-pulse facilitation of field excitatory
postsynaptic potentials (fEPSP) recordings in the CA1
area following stimulation of the ipsilateral Schaffer
collateral-commissural pathway. Data were collected from

extracellular fEPSP paired traces collected from 18-month-old

wild-type and Polm2/2 mice at different inter-pulse intervals. The

data shown are mean 6 SEM slopes of the second fEPSP

expressed as a percentage of the first for the six (10, 20, 40, 100,

200, 500 ms) inter-stimulus intervals for the four experimental

groups.

(TIF)

Figure S6 Molecular characterization of Polm2/2 mice
associated with aging. (A) Paraffin brain sections from wild-

type and Polm2/2 mice (18–20 months old) were processed and

stained for 53BP1 (M). (B) qRT-PCR expression analysis of

a selection of genes (Atg5l, Atg7l, Atg12l, Maplc3b, and Atg9a) critical

for execution or regulation of autophagy. Black bars correspond to

wild-type samples and gray bars to Polm2/2. (C, D). Telomere-

length evaluation in brain tissue. In C, genomic DNA from wild-

type or Polm2/2 mice was subjected to telomere-specific PCR

reaction using specific primers. The relative telomere length ratio

(T/S) was calculated as indicated in Material and Methods

section, and is defined as 2̂-(delta Ct), where delta Ct = mean Ct

telomere/mean Ct single copy internal gene. Quantitative FISH

was carried out using a Cy3- labeled LL(CCCTAA)3 peptide

nucleic acid (PNA) telomeric probe as previously described (Estrada

et al., 2011). In D are illustrated representative pictures of wild-

type and Polm2/2 samples stained for telomere length (red) and

nuclei (DAPI, blue). (E). Comparative qRT-PCR expression

analysis of DNA polymerase lambda (Poll) and DNA polymerase

beta (Polb) in brain samples of Polm2/2 and wild-type mice, at

several ages (11, 14 and 19 months). All results were referred to the

expression level demonstrated in the wild-type animals. Samples

were run in triplicated, and several mice (3–5) were used for each

determination, that was normalized using the internal actin

expression control. Data are expressed as the mean value 6 SD.

(***,** P,0.0001, Student’s t test).

(TIF)

Figure S7 Comparative evaluation of DNA repair activ-
ity in brain extracts. (A). Evaluation of gap filling activity in

brain (wild-type vs. Polm2/2) extracts, using the indicated labeled-

template primer (upper part). After incubation (309–1 h, 30uC)

with the clarified extracts (10 mg), with the addition of the

indicated concentration of ddCTP, products were recovered and

resolved in 20% PAGE. As an additional variable, we tested

different combinations of divalent activation cation. The different

observed products are indicated. The original labeled primer

could appear (+15) intact or degraded by endogenous nucleases,

meanwhile extended primers appear at position (+16). (B, C).

Evaluation of the ‘‘repair’’ activity on the above indicated (A)

template primer in brain (wild-type vs. Polm2/2) extracts, using

dNTPs (B) or rNTPs (C). The graphics show a quantification of

the generation of the full-length (+34) ‘‘repaired’’ product (also

indicated by an asterisk in Figure 4E). The figure also shows the

preference of immediate insertion (+16) in the template primer

used (A) of purified hPolm enzyme (25 nM), using dNTPs (D) or
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rNTPs (E), and identical reaction conditions to (B, C). That profile

found is quite similar with the revealed in the wild-type brain

extracts (B, C).

(TIF)

Figure S8 Evaluation of mitochondrial activity in brain.
Crude extract or mitochondrial fractions, prepared as previously

described (Birch-Machin and Turnbull, 2001) from wild-type or

Polm2/2 brains, were evaluated for their mitochondria number

(A), defined as citrate synthetase activity (CS IU) per mg of protein,

or the mtDNA content (B), expressed as the ratio mtDNA/nDNA.

Relative extract activity for Complex I (CI), Complex II (CII) and

Complex I+III (CI+CIII) was monitored (C, D and E, re-

spectively) and expressed in relation with total protein. All

estimations were carried essentially as previously described (Acı́n-

Pérez et al., 2004). Finally mitochondrial supercomplexes were also

studied in wild-type or Polm2/2 brain extracts from old (18 m)

mice (n = 3). (F). Wild-type and Polm2/2 mitochondrial brain

fractions, solubilized with digitonin (4 mg DIG/mg protein), were

separated in blue native gel electrophoresis (BNGE) and analyzed

by western blot for CIII (core 2) –upper panel-, for CIV (COXI 2)

–middle panel- and FpSDH. All determinations were done as

previously described (Acı́n-Pérez et al., 2008). Comparisons between

groups were made using one-way ANOVA. Pair wise comparisons

were made by post hoc Fisher PLSD test. Differences were

considered statistically significant at P,0.05; *P,0,01; **,

P,0.001; ***, P,0.0001; ns, non significant. Data analyses were

performed using the statistical program StatView. In all experi-

ments, error bars indicate standard deviations (Adept Scientific,

Bethesda, MD, USA).

(TIF)

Figure S9 qRT-PCR expression analysis of a panel of
aging-associated functions in brain of aged Polm2/2

mice. (A). Differential transcript levels of selected aging-related

(Zahn et al., 2006) functions, related to inflammation (C1qa, C5a,

C3aR, C5aR, Cox2), mitochondrial activity (Timm17a, Nfa10,

Mrps12, Mrpl28, Atp5a), and apoptosis or p53 targets (Acin1, Egln3,

Bid, P21, P16, Perp, Pten) were assessed by real-time reverse

transcription polymerase chain reaction from brain samples of 17–

19-month-old mice; each determination was normalized using the

internal actin expression control, and represented as the level of

expression of the indicated gene in Polm2/2 mice (gray and

dashed bars) relative to the expression level in age-paired wild-type

animals (black bar), taken as 1. Some genetic functions seem to be

unaffected by the genetic ablation of Polm (denoted by dark gray

bars), others are reduced (clear gray), or appear up-regulated

(dashed bars). The figure shows the median result of at least three

independent experiments; for the different gene functions the

number of determinations varied (n = 4–8); (*) The expression of

Egln3 (Phd3) presents important differences only at very late ages

(19 months and more); even in this case the differences

(augmentation in the wild-type animals) is apparent in only a small

percentage of the animals analyzed; (**) The expression levels of

Cox2 is very variable between individuals. (B). qRT-PCR

expression analysis of a selection of genes (Sox2, Snca, Hoxa3,

Zic3, Hes1 and Bmp4) with a clear role in development or function

of the neural system in brain of wild-type animals; brain samples of

treated (p) or non-treated (-) animals with an acute dose of

paraquat (50 mg/kg) and recovered 7 hours later. Each de-

termination was normalized using the internal actin expression

control; for the different gene functions the number of determina-

tions varied (n = 4–8).

(TIF)

Figure S10 Brain expression profile alterations associ-
ated to oxidative stress. Differential mRNA expression

analysis between wild-type and Polm2/2 (12–14 m) mice, treated

(c) or non-treated (s) with an acute unique dose (50 mg/Kg) of

paraquat, and samples taken 7 h later. (A). Venn diagram showing

the different relations. (B) Principal components analysis (PDA) of

the unfiltered normalized data. Triangles represent data from

untreated samples and squares dots from PQ-treated samples. Blue

correspond to wild-type samples and red to Polm2/2 samples. (C)

Schematic representation of the expression networked detected

using the software Ingenuity (Ingenuity Systems Inc) mainly

associating several Hox genes.

(TIFF)
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